First Solar plants near U.S. loan decision

By Reuters


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Three of First Solar Inc's largest solar power plants are moving closer to winning government loan guarantees under a program that could vastly expand the country's use of the clean energy source.

According to letters issued by the U.S. Energy Department on May 10 and posted on First Solar's website, the company's planned projects, with a total capacity of more than 1,300 megawatts, remain candidates to win the government commitments that would enable them to be constructed.

Together, the plants would be larger than the entire amount of solar power added in the United States last year, when 878 megawatts of photovoltaic systems were built, and would have about 30 percent more capacity than an average nuclear reactor.

About two-thirds of the funds under the Energy Department's loan guarantee program have been allocated so far to 19 projects, and not all the projects that are now awaiting approval will win backing. Jonathan Silver, the executive director of the loan guarantee program, said in the letters.

"We are, therefore, focused on ensuring that we leverage the remaining funds as effectively as possible in the brief time that remains," he wrote.

The government's loan guarantee program has attracted intense interest from renewable energy companies, which are seeking to use the funds to help build clean energy projects on a far larger scale than in the past.

Other companies that received letters stating their applications were on track included biofuels company Poet, thermal solar company SolarReserve and geothermal company Ormat Technologies Inc.

First Solar, the world's largest solar power maker by market value, previously received a conditional commitment for a U.S. loan guarantee of $967 million for its 290-MW Agua Caliente plant in January. It announced in December that it would sell that plant to power company NRG Energy Inc for up to $800 million.

First Solar has sought the loan guarantees to help build its Topaz and Desert Sunlight plants in Southern California, which are expected to have output capacity of 550 MW each, enough for each to supply power to about 160,000 homes.

Analysts have estimated that each plant will cost more than $1 billion to construct, although the company would not comment on the costs.

Both plants are working their way through the permitting process, with the Topaz Solar Farm winning local approval from San Luis Obispo County's Planning Commission.

The other proposal is for its AV Solar Ranch One, a 230-MW project planned for the Antelope Valley in Los Angeles County, California.

Winning the government support for the power plants would help First Solar find buyers for the projects, which are part of its pipeline of about 2,400 MW of plants planned for construction.

"It makes the projects much more attractive because the profit returns go up if you can get lower-priced funding from the government," said Auriga USA analyst Mark Bachman.

Solar power is one of the fastest-growing sources of power generation, but remains tiny compared with coal, natural gas and nuclear power and it relies on government subsidies to make it profitable.

First Solar's panels are the lowest-cost in the industry. They are made using cadmium telluride rather than silicon, the material used in most solar panels.

Earlier this month, First Solar reported quarterly earnings that topped Wall Street expectations, but shares fell on fears that cuts in solar subsidies in Italy would hurt demand for its panels.

The company's China-based rivals Yingli Green Energy Holding Co Ltd, Trina Solar Ltd and JA Solar Holdings Co Ltd all reported that sales were lagging expectations because of cuts in subsidies in Italy, the world's second-largest solar market.

Related News

Canada and Manitoba invest in new turbines

Manitoba Clean Electricity Investment will upgrade hydroelectric turbines, expand a 230 kV transmission network, and deliver reliable, affordable low-carbon power, reducing greenhouse gas emissions and strengthening grid reliability across Portage la Prairie and Winnipeg River.

 

Key Points

Joint federal-provincial funding to upgrade hydro turbines and build a 230 kV grid, boosting reliable, low-carbon power.

✅ $314M for new turbines at Pointe du Bois (+52 MW capacity)

✅ $161.6M for 230 kV transmission in Portage la Prairie

✅ Cuts Brandon Generating Station emissions by ~37%

 

The governments of Canada and Manitoba have announced a joint investment of $475.6 million to strengthen Manitoba’s clean electricity grid that can support neighboring provinces with clean power and ensure continued supply of affordable and reliable low-carbon energy.

This federal-provincial investment provides $314 million for eight new hydroelectric turbines at the 75 MW Pointe du Bois Generating Station on the Winnipeg River, as well as $161.6 million to build a new 230 kV transmission network in the Portage la Prairie area, bolstering power sales to SaskPower and regional reliability.

The $314 million joint investment in the Pointe du Bois Renewable Energy Project includes $114.1 million from the Government of Canada and nearly $200 million from the Government of Manitoba. The joint investment will enable Manitoba Hydro to replace eight generating units that are at the end of their lifecycle, amid looming new generation needs for the province. The new, more efficient units will increase the capacity of the Pointe du Bois generating station by 52 MW.

The $161.6 million joint investment in the Portage Area Capacity Enhancement project includes $70.9 million from the Government of Canada and $90.6 million from the Government of Manitoba. The joint investment will support the construction of a new transmission line to enhance reliability for customers across southwest Manitoba and help Manitoba Hydro meet increasing demand, with projections that demand could double over the next two decades. By decreasing Manitoba’s reliance on its last grid-connected fossil-fuel generating station, this investment will reduce greenhouse gas emissions at the Brandon Generating Station by about 37%.

The federal government’s total contribution of $184.9 million is provided through the Green Infrastructure Stream of the Investing in Canada Plan, alongside efforts to improve interprovincial grid integration such as NB Power agreements with Hydro-Quebec that strengthen regional reliability. This federal funding is conditional on meeting Indigenous consultation requirements, as well as environmental assessment obligations. Including today’s announcement, the Green Infrastructure Stream has supported 38 infrastructure projects in Manitoba, for a total federal contribution of more than $766.8 million and a total provincial contribution of over $658.4 million.

“A key part of our economic plan is making Canada a clean electricity superpower. Today’s announcement in Manitoba will deliver clean, reliable, and affordable electricity to people and businesses across the province—and we will continue working to expand our clean electricity grid and create great careers for people from coast to coast to coast,” said Deputy Prime Minister and Finance Minister Chrystia Freeland.

The federal government will continue to invest in making Canada a clean electricity superpower, supporting provincial initiatives like Hydro-Quebec's fossil-free strategy that complement these investments to ensure Canadians from coast to coast to coast have the affordable and reliable clean electricity they need today and for generations to come.

“Manitoba Hydro is extremely pleased to be receiving this federal funding through the Green Infrastructure Stream of the Investing in Canada Infrastructure Program. The investments we are making in both these critical infrastructure projects will help provide Manitobans with energy for life and power our province’s economic growth with clean, reliable, renewable hydroelectricity. These projects build on our legacy of investments in renewable energy over the past 100 years, as we work towards a lower carbon future for all Manitobans,” said Jay Grewal, president and chief executive officer of Manitoba Hydro.

About 97% of Manitoba’s electricity is generated from clean hydro, with most of the remaining 3% coming from wind generation. Manitoba’s abundant clean electricity has resulted in Manitobans paying 9.455 ¢/kWh — the second-lowest electricity rate in Canada, though limits on serving new energy-intensive customers have been flagged recently.

 

Related News

View more

The UK’s energy plan is all very well but it ignores the forecast rise in global sea-levels

UK Marine Energy and Climate Resilience can counter sea level rise and storm surge with tidal power, subsea turbines, heat pumps, and flood barriers, delivering renewable electricity, stability, and coastal protection for the United Kingdom.

 

Key Points

Integrated use of tidal power, barriers, and heat pumps to curb sea level rise, manage storms, and green the UK grid.

✅ Tidal bridges and subsea turbines enhance baseload renewables

✅ Integrated barriers cut storm surge and river flood risk

✅ Heat pumps and marine heat networks decarbonize coastal cities

 

IN concentrating on electrically driven cars, the UK’s new ten-point energy plans, and recent UK net zero policies, ignores the elephant in the room.

It fails to address the forecast six-metre sea level rise from global warming rapidly melting the Greenland ice sheet.

Rising sea levels and storm surge, combined with increasingly heavy rainfall swelling our rivers, threaten not only hundreds of coastal communities but also much unprotected strategic infrastructure, including electricity systems that need greater resilience.

New nuclear power stations proposed in this United Kingdom plan would produce radioactive waste requiring thousands of years to safely decay.

This is hardly the solution for the Green Energy future, or the broader global energy transition, that our overlooked marine energy resource could provide.

Sea defences and barrier design, built and integrated with subsea turbines and heat pumps, can deliver marine-driven heat and power to offset the costs, not only of new Thames Barriers, but also future Severn, Forth and other barrages, while reducing reliance on high-GWP gases such as SF6 in switchgear across the grid.

At the Pentland Firth, existing marine turbine power could be enhanced by turbines deployed from new tidal bridges to provide much of UK’s electricity needs, as nations chart an electricity future that replaces fossil fuels, from its estimated 60 gigawatt capability.

Energy from Bluemull Sound could likewise be harvested and exported or used to enhance development around UK’s new space station at Unst.

The 2021 Climate Change Summit gives Glasgow the platform to secure Scotland’s place in a true green, marine energy future and help build an electric planet for the long term.

We must not waste this opportunity.

THERE is no vaccine for climate change.

It is, of course, wonderful news that such progress is being made in the development of Covid-19 vaccines but there is a risk that, no matter how serious the Covid crisis is, it is distracting attention, political will and resources from the climate crisis, a much longer term and more devastating catastrophe.

They are intertwined. As climate and ecological systems change, vectors and pathogens migrate and disease spreads.

What lessons can be learned from one to apply to the other?

Prevention is better than cure. We need to urgently address the climate crisis, charting a path to net zero electricity by the middle of the century, to help prevent future pandemics.

We are only as safe as the most vulnerable. Covid immunisation will protect the most vulnerable; to protect against the effects of climate change we need to look far more deeply. Global challenges require systemic change.

Neither Covid or climate change respect national borders and, for both, we need to value and trust science and the scientific experts and separate them from political posturing.

 

Related News

View more

RBC agrees to buy electricity from new southern Alberta solar power farm project

RBC Renewable Energy PPA supports a 39 MW Alberta solar project, with Bullfrog Power and BluEarth Renewables, advancing clean energy in a deregulated market through a long-term power purchase agreement in Canada today.

 

Key Points

A long-term power purchase agreement where RBC buys most output from a 39 MW Alberta solar project via Bullfrog Power.

✅ 39 MW solar build in County of Forty Mile, Alberta

✅ Majority of output purchased by RBC via Bullfrog Power

✅ Supports cost-competitive renewables in deregulated market

 

The Royal Bank of Canada says it is the first Canadian bank to sign a long-term renewable energy power purchase agreement, a deal that will support the development of a 39-megawatt, $70-million solar project in southern Alberta, within an energy powerhouse province.

The bank has agreed with green energy retailer Bullfrog Power to buy the majority of the electricity produced by the project, as a recent federal green electricity contract highlights growing demand, to be designed and built by BluEarth Renewables of Calgary.

The project is to provide enough power for over 6,400 homes and the panel installations will cover 120 hectares, amid a provincial renewable energy surge that could create thousands of jobs, the size of 170 soccer fields.

The solar installation is to be built in the County of Forty Mile, a hot spot for renewable power that was also chosen by Suncor Energy Inc. for its $300-million 200-MW wind power project (approved last year and then put on hold during the COVID-19 pandemic), and home to another planned wind power farm in Alberta.

BluEarth says commercial operations at its Burdett and Yellow Lake Solar Project are expected to start up in April 2021, underscoring solar power growth in the province.

READ MORE: Wind power developers upbeat about Alberta despite end of power project auctions

It says the agreement shows that renewable energy can be cost-competitive, with lower-cost solar contracts in a deregulated electricity market like Alberta’s, adding the province has some of the best solar and wind resources in Canada.

“We’re proud to be the first Canadian bank to sign a long-term renewable energy power purchase agreement, demonstrating our commitment to clean, sustainable power, as Alberta explores selling renewable energy at scale,” said Scott Foster, senior vice-president and global head of corporate real estate at RBC.

 

Related News

View more

Is nuclear power really in decline?

Nuclear Energy Growth accelerates as nations pursue decarbonization, complement renewables, displace coal, and ensure grid reliability with firm, low-carbon baseload, benefiting from standardized builds, lower cost of capital, and learning-curve cost reductions.

 

Key Points

Expansion of nuclear capacity to cut CO2, complement renewables, replace coal, and stabilize grids at low-carbon cost.

✅ Complements renewables; displaces coal for faster decarbonization

✅ Cuts system costs via standardization and lower cost of capital

✅ Provides firm, low-carbon baseload and grid reliability

 

By Kirill Komarov, Chairman, World Nuclear Association.

As Europe and the wider world begins to wake up to the need to cut emissions, Dr Kirill Komarov argues that tackling climate change will see the use of nuclear energy grow in the coming years, not as a competitor to renewables but as a competitor to coal.

The nuclear industry keeps making headlines and spurring debates on energy policy, including the green industrial revolution agenda in several countries. With each new build project, the detractors of nuclear power crowd the bandwagon to portray renewables as an easy and cheap alternative to ‘increasingly costly’ nuclear: if solar and wind are virtually free why bother splitting atoms?

Yet, paradoxically as it may seem, if we are serious about policy response to climate change, nuclear energy is seeing an atomic energy resurgence in the coming decade or two.

Growth has already started to pick up with about 3.1 GW new capacity added in the first half of 2018 in Russia and China while, at the very least, 4GW more to be completed by the end of the year – more than doubling the capacity additions in 2017.

In 2019 new connections to the grid would exceed 10GW by a significant margin.

If nuclear is in decline, why then do China, India, Russia and other countries keep building nuclear power plants?

To begin with, the issue of cost, argued by those opposed to nuclear, is in fact largely a bogus one, which does not make a fully rounded like for like comparison.

It is true that the latest generation reactors, especially those under construction in the US and Western Europe, have encountered significant construction delays and cost overruns.

But the main, and often the only, reason for that is the ‘first-of-a-kind’ nature of those projects.

If you build something for the first time, be it nuclear, wind or solar, it is expensive. Experience shows that with series build, standardised construction economies of scale and the learning curve from multiple projects, costs come down by around one-third; and this is exactly what is already happening in some parts of the world.

Furthermore, those first-of-a-kind projects were forced to be financed 100% privately and investors had to bear all political risks. It sent the cost of capital soaring, increasing at one stroke the final electricity price by about one third.

While, according to the International Energy Agency, at 3% cost of capital rate, nuclear is the cheapest source of energy: on average 1% increase adds about US$6-7 per MWh to the final price.

When it comes to solar and wind, the truth, inconvenient for those cherishing the fantasy of a world relying 100% on renewables, is that the ‘plummeting prices’ (which, by the way, haven’t changed much over the last three years, reaching a plateau) do not factor in so-called system and balancing costs associated with the need to smooth the intermittency of renewables.

Put simply, the fact the sun doesn’t shine at night and wind doesn’t blow all the time means wind and solar generation needs to be backed up.

According to a study by the Potsdam Institute for Climate Impact Research, integration of intermittent renewables into the grid is estimated in some cases to be as expensive as power generation itself.

Delivering the highest possible renewable content means customers’ bills will have to cover: renewable generation costs, energy storage solutions, major grid updates and interconnections investment, as well as gas or coal peaking power plants or ‘peakers’, which work only from time to time when needed to back up wind and solar.

The expected cost for kWh for peakers, according to investment bank Lazard is about twice that of conventional power plants due to much lower capacity factors.

Despite exceptionally low fossil fuel prices, peaking natural gas generation had an eye-watering cost of $156-210 per MWh in 2017 while electricity storage, replacing ‘peakers’, would imply an extra cost of $186-413 per MWh.

Burning fossil fuels is cheaper but comes with a great deal of environmental concern and extensive use of coal would make net-zero emissions targets all but unattainable.

So, contrary to some claims, nuclear does not compete with renewables. Moreover, a recent study by the MIT Energy Initiative showed, most convincingly, that renewables and load following advanced nuclear are complementary.

Nuclear competes with coal. Phasing out coal is crucial to fighting climate change. Putting off decisions to build new nuclear capacities while increasing the share of intermittent renewables makes coal indispensable and extends its life.

Scientists at the Brattle group, a consultancy, argue that “since CO2 emissions persist for many years in the atmosphere, near-term emission reductions are more helpful for climate protection than later ones”.

The longer we hesitate with new nuclear build the more difficult it becomes to save the Earth.

Nuclear power accounta for about one-tenth of global electricity production, but as much as one-third of generation from low-carbon sources. 1GWe of installed nuclear capacity prevents emissions of 4-7 million metric tons of CO2 emissions per year, depending on the region.

The International Energy Agency (IEA) estimates that in order to limit the average global temperature increase to 2°C and still meet global power demand, we need to connect to the grid at least 20GW of new nuclear energy each year.

The World Nuclear Association (WNA) sets the target even higher with the total of 1,000 GWe by 2050, or about 10 GWe per year before 2020; 25 GWe per year from 2021 to 2025; and on average 33 GWe from 2026 to 2050.

Regulatory and political challenges in the West have made life for nuclear businesses in the US and in Europe's nuclear sector very difficult, driving many of them to the edge of insolvency; but in the rest of the world nuclear energy is thriving.

Nuclear vendors and utilities post healthy profits and invest heavily in next-gen nuclear innovation and expansion. The BRICS countries are leading the way, taking over the initiative in the global climate agenda. From their perspective, it’s the opposite of decline.

Dr Kirill Komarov is first deputy CEO of Russian state nuclear energy operator Rosatom and chairman of the World Nuclear Association.

 

Related News

View more

Ottawa sets out to protect its hydro heritage

Ottawa Hydro Substation Heritage Designation highlights Hydro Ottawa's 1920s architecture, Art Deco facades, and municipal utility history, protecting key voltage-reduction sites in Glebe, Carling-Merivale, Holland, King Edward, and Old Ottawa South.

 

Key Points

A city plan to protect Hydro Ottawa's 1920s substations for architecture, utility role, and civic electrical heritage.

✅ Protects five operating voltage-reduction sites citywide

✅ Recognizes Art Deco and early 20th century utility architecture

✅ Allows emergency demolition to ensure grid safety

 

The city of Ottawa is looking to designate five hydro substations built nearly a century ago as heritage structures, a move intended to protect the architectural history of Ottawa's earliest forays into the electricity business, even as Ottawa electricity consumption has shifted in recent years.

All five buildings are still used by Hydro Ottawa to reduce the voltage coming from transmission lines before the electricity is transmitted to homes and businesses, and when severe weather causes outages, Sudbury Hydro crews work to reconnect service across communities.

Electricity came to Ottawa in 1882 when two carbon lamps were installed on LeBreton Flats, heritage planner Anne Fitzpatrick told the city's built heritage subcommittee on Tuesday. It became a lucrative business, and soon a privately owned monopoly that drew public scrutiny similar to debates over retroactive charges in neighboring jurisdictions.

In 1905, city council held a special meeting to buy the electrical company, which led to a dramatic drop in electricity rates for residents, a contrast with recent discussions about peak hydro rates for self-isolating customers.

The substations are now owned by Hydro Ottawa, which agreed to the heritage designations on the condition it not be prevented from emergency demolitions if it needs to address incidents such as damaging storms in Ontario while it works to "preserve public safety and the continuity of critical hydro electrical services."

Built in 1922, the substation at the intersection of Glebe and Bronson avenues was the first to be built by the new municipal electrical department, long before modern battery storage projects became commonplace on Ontario's grid.

The largest of the substations being protected dates back to 1929 and is found at the corner of Carling Avenue and Merivale Road. It was built to accommodate a growing population in areas west of downtown including Hintonburg and Mechanicsville.

The substation on Holland Avenue near the Queensway is different from the others because it was built in 1924 to serve the Ottawa Electric Railway Company. The streetcar company operated from 1891 to 1959, and urban electrical infrastructure can face failures such as the Hydro-Québec manhole fire that left thousands without power.

This substation on King Edward Avenue was built in 1931 and designed by architect William Beattie, who also designed York Street Public School in Lowertown and the substation on Carling Avenue. 

The last substation to be built in a 'bold and decorative style' is at 39 Riverdale Ave. in Old Ottawa South, according to city staff. It was designed in an Art Deco style by prominent architect J. Albert Ewart, who was also behind the Civic Hospital and nearby Southminster Church on Bank Street.

 

Related News

View more

TotalEnergies to Acquire German Renewables Developer VSB for US$1.65 Billion

TotalEnergies VSB Acquisition accelerates renewable energy growth, expanding wind and solar portfolios across Germany and Europe, advancing decarbonization, net-zero targets, and the energy transition through a US$1.65 billion strategic clean power investment.

 

Key Points

A US$1.65B deal: TotalEnergies acquires VSB to scale wind and solar in Europe and advance net-zero goals.

✅ US$1.65B purchase expands wind and solar pipeline

✅ Strengthens presence in Germany and wider Europe

✅ Advances net-zero, energy transition objectives

 

In a major move to expand its renewable energy portfolio, French energy giant TotalEnergies has announced its decision to acquire German renewable energy developer VSB for US$1.65 billion. This acquisition represents a significant step in TotalEnergies' strategy to accelerate its transition from fossil fuels to greener energy sources, aligning with the global push towards sustainability and carbon reduction, as reflected in Europe's green surge across key markets.

Strengthening TotalEnergies’ Renewable Energy Portfolio

TotalEnergies has long been one of the largest players in the global energy market, historically known for its oil and gas operations. However, in recent years, the company has made a concerted effort to diversify its portfolio and shift its focus toward renewable energy. The purchase of VSB, a leading developer of wind and solar energy projects, occurs amid rising European wind investment trends and is a clear reflection of TotalEnergies' commitment to this green energy transition.

VSB, based in Dresden, Germany, specializes in the development, construction, and operation of renewable energy projects, particularly wind and solar power. The company has a significant presence in Europe, with a growing portfolio of projects in countries like Germany, where clean energy accounts for 50% of electricity today, Poland, and the Czech Republic. The acquisition will allow TotalEnergies to bolster its renewable energy capacity, particularly in the wind and solar sectors, which are key components of its long-term sustainability goals.

By acquiring VSB, TotalEnergies is not only increasing its renewable energy output but also gaining access to a highly experienced team with a proven track record in energy project development. This move is expected to expedite TotalEnergies’ renewable energy ambitions, enabling the company to build on VSB’s strong market presence and established partnerships across Europe.

VSB’s Strategic Role in the Energy Transition

VSB’s expertise in the renewable energy sector makes it a valuable addition to TotalEnergies' green energy strategy. The company has been at the forefront of the energy transition in Europe, particularly in wind energy development, as offshore wind is set to become a $1 trillion business over the coming decades. Over the years, VSB has completed numerous large-scale wind projects, including both onshore and offshore installations.

The acquisition also positions TotalEnergies to better compete in the rapidly growing European renewable energy market, including the UK, where offshore wind is powering up alongside strong demand due to increased governmental focus on achieving net-zero emissions by 2050. Germany, in particular, has set ambitious renewable energy targets as part of its Energiewende initiative, which aims to reduce the country’s carbon emissions and increase the share of renewables in its energy mix. By acquiring VSB, TotalEnergies is not only enhancing its capabilities in Germany but also gaining a foothold in other European markets where VSB has operations.

With Europe increasingly shifting toward wind and solar power as part of its decarbonization efforts, including emerging solutions like offshore green hydrogen that complement wind buildouts, VSB’s track record of developing large-scale, sustainable energy projects provides TotalEnergies with a strong competitive edge. The acquisition will further TotalEnergies' position as a leader in the renewable energy space, especially in wind and solar power generation.

Financial and Market Implications

The US$1.65 billion deal marks TotalEnergies' largest renewable energy acquisition in recent years and underscores the growing importance of green energy investments within the company’s broader business strategy. TotalEnergies plans to use this acquisition to scale up its renewable energy assets and move closer to its target of achieving net-zero emissions by 2050. The deal also positions TotalEnergies to capitalize on the expected growth of renewable energy across Europe, particularly in countries with aggressive renewable energy targets and incentives.

The transaction is also expected to boost TotalEnergies’ presence in the global renewable energy market. As the world increasingly turns to wind, solar, and other sustainable energy sources, TotalEnergies is positioning itself to be a major player in the global energy transition. The acquisition of VSB complements TotalEnergies' previous investments in renewable energy and further aligns its portfolio with international sustainability trends.

From a financial standpoint, TotalEnergies’ purchase of VSB reflects the growing trend of large energy companies investing heavily in renewable energy. With wind and solar power becoming more economically competitive with fossil fuels, this investment is seen as a prudent long-term strategy, one that is likely to yield strong returns as demand for clean energy continues to rise.

Looking Ahead: TotalEnergies' Green Transition

TotalEnergies' acquisition of VSB is part of the company’s broader strategy to diversify its energy offerings and shift away from its traditional reliance on oil and gas. The company has already made significant strides in renewable energy, with investments in solar, wind, and battery storage projects across the globe, as developments like France's largest battery storage platform underline this momentum. The VSB acquisition will only accelerate these efforts, positioning TotalEnergies as one of the foremost leaders in the clean energy revolution.

By 2030, TotalEnergies plans to allocate more than 25% of its total capital expenditure to renewable energies and electricity. The company has already set ambitious goals to reduce its carbon footprint and shift its business model to align with the global drive toward sustainability. The integration of VSB into TotalEnergies’ portfolio signals a firm commitment to these goals, ensuring the company remains at the forefront of the energy transition.

In conclusion, TotalEnergies’ purchase of VSB for US$1.65 billion marks a significant milestone in the company’s renewable energy journey. By acquiring a company with deep expertise in wind and solar power development, TotalEnergies is taking decisive steps to strengthen its position in the renewable energy market and further its ambitions of achieving net-zero emissions by 2050. This acquisition will not only enhance the company’s growth prospects but also contribute to the ongoing global shift toward clean, sustainable energy sources.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.