IESO outlook remains positive

By Canada News Wire


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The Independent Electricity System Operator (IESO) says there should be sufficient supply within Ontario to meet the demand for electricity under normal weather conditions over the next 18 months

The latest 18-Month Outlook released today reports that more than 4,500 megawatts (MW) of new supply is scheduled to come into, or return to service over the next year and a half. The additional supply includes approximately 3,100 MW of gas-fired generation, 800 MW of nuclear generation, 700 MW of wind capacity and 100 MW of hydroelectric generation. Most of the new supply projects are now under construction with the majority of projects becoming available to produce electricity in the latter half of the period.

"When completed, the new supply will provide generators with additional opportunities to schedule needed maintenance outages, including during the winter months, instead of having to limit maintenance to the spring or fall seasons," said Ken Kozlik, IESO Chief Operating Officer. "This should in turn provide greater assurances that the generation will be available for the high-demand periods during summer."

While the reliability picture is positive over the next 18 months, the IESO cautioned that there may be times when Ontario will need to rely on imports from neighbouring jurisdictions if extreme weather occurs or if generation or transmission equipment problems occur.

Related News

Biden administration pushes to revitalize coal communities with clean energy projects

Coal-to-Clean Energy Hubs leverage Bipartisan Infrastructure Law and Inflation Reduction Act funding to repurpose mine lands with microgrids, advanced nuclear, carbon capture, and rare earth processing, boosting energy security, jobs, and grid modernization.

 

Key Points

They are federal projects converting coal communities and mine lands into clean energy hubs, repurposing infrastructure.

✅ DOE demos on mine lands: microgrids, nuclear, carbon capture.

✅ Funding from BIL, CHIPS and IRA targets energy communities.

✅ Rare earths from coal waste bolster EV supply chains.

 

The Biden administration is channeling hundreds of millions of dollars in clean energy funding from recent legislation into its efforts to turn coal communities into clean energy hubs, the White House said.

The administration gave an update on its push across agencies to kick-start projects nationwide with funding Congress approved during Biden’s first two years in office. The effort includes $450 million from the Bipartisan Infrastructure Law that the Department of Energy will allocate to an array of new clean energy demonstration projects on former mine lands.

“These projects could focus on a range of technologies from microgrids to advanced nuclear to power plans with carbon capture,” Energy Secretary Jennifer Granholm said on a call with reporters Monday. “They’ll prove out the potential to reactivate or repurpose existing infrastructure like transmission lines and substations across an aging U.S. power grid, and these projects could spur new economic development in these communities.”

Among the projects the White House highlighted, it said $16 million from the infrastructure law will go to the University of North Dakota and West Virginia University to create design studies for the first-ever full-scale refinery facility in the U.S. that could extract and separate rare earth elements and minerals from coal mine waste streams. The materials are critical for electric vehicle-battery components that are currently heavily sourced from outside the U.S.

“Those efforts will pave the way toward building a first of its kind facility that produces essential materials for solar panels, wind turbines, EVs and more while cleaning up polluted land and water and creating good-paying jobs for local workers,” Granholm said.

Biden created an interagency working group focused on revitalizing coal-power communities through federal investments when he took office. In 2021, the group selected 25 priority areas ranging from West Virginia to Wyoming to focus on development, as high natural gas prices strengthened the case for clean electricity. There are nearly 18,000 identified mine sites across 1.5 million acres in the United States, according to the White House.

The massive effort fits into a broader Biden administration push to both fight climate change and support communities that have lost economic activity during a transition away from fossil fuel sources such as coal. While Biden’s most ambitious clean energy plans fell flat in Congress in the face of opposition from Republicans and some Democrats after the previous administration’s power plant overhaul, three major laws still unlocked funding for his administration to deploy.

Many of the initiatives are made possible through the Bipartisan Infrastructure Law, Chips and Science Act and the Inflation Reduction Act, even without a clean electricity standard on the books. The task force aims to make sure communities most affected by the changing energy landscape are taking maximum advantage of the federal benefits.

“Those new and expanded operations are coming to energy communities and creating good paying jobs,” Biden’s senior advisor for clean energy innovation and implementation John Podesta said on the call. “These laws can provide substantial federal support to energy communities like capping abandoned oil and gas wells, extracting critical minerals, building battery factories and launching demonstration projects in carbon capture or green hydrogen.”

The administration touted the potential benefits of the Inflation Reduction Act, a bill passed by Democrats to spur clean energy investments last year, even as early assessments show mixed results to date. At the time, U.S. consumers were dealing with decades-high inflation fueled in part by an energy crisis and high gas prices that drove debate — a point Republicans emphasized as the plan moved through Congress.

Deputy Treasury Secretary Wally Adeyemo said the Inflation Reduction Act aims to both “lower the deficit, as well as promote our energy security, lowering energy costs for consumers and combatting climate change.”

“As the Treasury works to implement the law, we’re focused on ensuring that all Americans benefit from the growth of the clean energy economy, particularly those who live in communities that have been dependent on the energy sector for job for a long time,” Adeyemo told reporters. “Economic growth and productivity are higher when all communities are able to reach their full potential.”

 

Related News

View more

When will the US get 1 GW of offshore wind on the grid?

U.S. Offshore Wind Capacity is set to exceed 1 GW by 2024, driven by BOEM approvals, federal leases, and resilient supply chains, with eastern states scaling renewable energy, turbines, and content despite COVID-19 disruptions.

 

Key Points

Projected gigawatt-scale offshore wind growth enabled by BOEM approvals, federal leases, and East Coast state demand.

✅ 17+ GW leased; only 1,870 MW in announced first phases.

✅ BOEM approvals are critical to reach >1 GW by 2024.

✅ Local supply chains mitigate COVID-19 impacts and lower costs.

 

Offshore wind in the U.S. will exceed 1 GW of capacity by 2024 and add more than 1 GW annually by 2027, a trajectory consistent with U.S. offshore wind power trends, according to a report released last week by Navigant Research.

The report calculated over 17 GW of offshore state and federal leases for wind production, reflecting forecasts that $1 trillion offshore wind market growth is possible. However, the owners of those leases have only announced first phase plans for 1,870 MW of capacity, leaving much of the projects in early stages with significant room to grow, according to senior research analyst Jesse Broehl.

The Business Network for Offshore Wind (BNOW) believes it is possible to hit 1 GW by 2023-24, according to CEO Liz Burdock. While the economy has taken a hit from the coronavirus pandemic, she said the offshore wind industry can continue growing as "the supply chain from Asia and Europe regains speed this summer, and the administration starts clearing" plans of construction.

BNOW is concerned with the economic hardship imposed on secondary and tertiary U.S. suppliers due to the global spread of COVID-19.

Offshore wind has been touted by many eastern states and governors as an opportunity to create jobs, with U.S. wind employment expected to expand, according to industry forecasts. Analysts see the growing momentum of projects as a way to further lower costs by creating a local supply chain, which could be jeopardized by a long-term shutdown and recession.

"The federal government must act now — today, not in December — and approve project construction and operation plans," a recent BNOW report said. Approving any of the seven projects before BOEM, which has recently received new lease requests, currently would allow small businesses to get to work "following the containment of the coronavirus," but approval of the projects next year "may be too late to keep them solvent."

The prospects for maintaining momentum in the industry falls largely to the Department of the Interior's Bureau of Ocean Energy Management (BOEM). The industry cannot hit the 1 GW milestone without project approvals by BOEM, which is revising processes to analyze federal permit applications in the context of "greater build out of offshore wind capacity," according to its website.

"It is heavily dependent on the project approval success," Burdock told Utility Dive.

Currently, seven projects are awaiting determinations from BOEM on their construction operation plans in Massachusetts, New York, where a major offshore wind farm was recently approved, New Jersey and Maryland, with more to be added soon, a BNOW spokesperson told Utility Dive.

To date, only one project has received BOEM approval for development in federal waters, a 12 MW pilot by Dominion Energy and Ørsted in Virginia. The two-turbine project is a stepping stone to a commercial-scale 2.6 GW project the companies say could begin installation as soon as 2024, and gave the developers experience with the permitting process.

In the U.S., developers have the capacity to develop 16.9 GW of offshore wind in federal U.S. lease areas, even as wind power's share of the electricity mix surges nationwide, Broehl told Utility Dive, but much of that is in early stages. The Navigant report did not address any impacts of coronavirus on offshore wind, he said.

Although Massachusetts has legislation in place to require utilities to purchase 1.6 GW of wind power by 2026, and several other projects are in early development stages, Navigant expects the first large offshore wind projects in the U.S. (exceeding 200 MW) will come online in 2022 or later, and the first projects with 400 MW or more capacity are likely to be built by 2024-2025, and lessons from the U.K.'s experience could help accelerate timelines. The U.S. would add about 1.2 GW in 2027, Broehl said.

The federal leasing activities along with the involvement from Eastern states and utilities "virtually guarantees that a large offshore wind market is going to take off in the U.S.," Broehl said.

 

Related News

View more

Heating and Electricity Costs in Germany Set to Rise

Germany 2025 Energy Costs forecast electricity and heating price trends amid gas volatility, renewables expansion, grid upgrades, and policy subsidies, highlighting impacts on households, industries, efficiency measures, and the Energiewende transition dynamics.

 

Key Points

Electricity stabilizes, gas-driven heating stays high; renewables, subsidies, and efficiency measures moderate costs.

✅ Power prices stabilize above pre-crisis levels

✅ Gas volatility keeps heating bills elevated

✅ Subsidies and efficiency upgrades offset some costs

 

As Germany moves into 2025, the country is facing significant shifts in heating and electricity costs. With a variety of factors influencing energy prices, including geopolitical tensions, government policies, and the ongoing transition to renewable energy sources, consumers and businesses alike are bracing for potential changes in their energy bills. In this article, we will explore how heating and electricity costs are expected to evolve in Germany in the coming year and what that means for households and industries.

Energy Price Trends in Germany

In recent years, energy prices in Germany have experienced notable fluctuations, particularly due to the aftermath of the global energy crisis, which was exacerbated by the Russian invasion of Ukraine. This geopolitical shift disrupted gas supplies, which in turn affected electricity prices and strained local utilities across the country. Although the German government introduced measures to mitigate some of the price increases, many households have still felt the strain of higher energy costs.

For 2024, experts predict that electricity prices will likely stabilize but remain higher than pre-crisis levels. While electricity prices nearly doubled in 2022, they have gradually started to decline, and the market has adjusted to the new realities of energy supply and demand. Despite this, the cost of electricity is expected to stay elevated as Germany continues to phase out coal and nuclear energy while ramping up the use of renewable sources, which often require significant infrastructure investments.

Heating Costs: A Mixed Outlook

Heating costs in Germany are heavily influenced by natural gas prices, which have been volatile since the onset of the energy crisis. Gas prices, although lower than the peak levels seen in 2022, are still considerably higher than in the years before. This means that households relying on gas heating can expect to pay more for warmth in 2024 compared to previous years.

The government has implemented measures to cushion the impact of these increased costs, such as subsidies for vulnerable households and efforts to support energy efficiency upgrades. Despite these efforts, consumers will still feel the pinch, particularly in homes that use older, less efficient heating systems. The transition to more sustainable heating solutions, such as heat pumps, remains a key goal for the German government. However, the upfront cost of such systems can be a barrier for many households.

The Role of Renewable Energy and the Green Transition

Germany has set ambitious goals for its energy transition, known as the "Energiewende," which aims to reduce reliance on fossil fuels and increase the share of renewable energy sources in the national grid. In 2024, Germany is expected to see further increases in renewable energy generation, particularly from wind and solar power. While this transition is essential for reducing carbon emissions and improving long-term energy security, the shift comes with its own challenges already documented in EU electricity market trends reports.

One of the main factors influencing electricity costs in the short term is the intermittency of renewable energy sources. Wind and solar power are not always available when demand peaks, requiring backup power generation from fossil fuels or stored energy. Additionally, the infrastructure needed to accommodate a higher share of renewables, including grid upgrades and energy storage solutions, is costly and will likely contribute to rising electricity prices in the near term.

On a positive note, Germany's growing investment in renewable energy is expected to make the country less reliant on imported fossil fuels, particularly natural gas, which has been a major source of price volatility. Over time, as the share of renewables in the energy mix grows, the energy system should become more stable and less susceptible to geopolitical shocks, which could lead to more predictable and potentially lower energy costs in the long run.

Government Interventions and Subsidies

To help ease the burden on consumers, the German government has continued to implement various measures to support households and businesses. One of the key programs is the reduction in VAT (Value Added Tax) on electricity, which has been extended in some regions. This measure is designed to make electricity more affordable for all households, particularly those on fixed incomes facing EU energy inflation pressures that have hit the poorest hardest.

Moreover, the government has been providing financial incentives for households and businesses to invest in energy-efficient technologies, such as insulation and energy-saving heating systems, complementing the earlier 200 billion euro energy shield announced to buffer surging prices. These incentives are intended to reduce overall energy consumption, which could offset some of the rising costs.

The outlook for heating and electricity costs in Germany for 2024 is mixed, even as energy demand hit a historic low amid economic stagnation. While some relief from the extreme price spikes of 2022 may be felt, energy costs will still be higher than they were in previous years. Households relying on gas heating will likely see continued elevated costs, although those who invest in energy-efficient solutions or renewable heating technologies may be able to offset some of the increases. Similarly, electricity prices are expected to stabilize but remain high due to the country’s ongoing transition to renewable energy sources.

While the green transition is crucial for long-term sustainability, consumers must be prepared for potentially higher energy costs in the short term. Government subsidies and incentives will help alleviate some of the financial pressure, but households should consider strategies to reduce energy consumption, such as investing in more efficient heating systems or adopting renewable energy solutions like solar panels.

As Germany navigates these changes, the country’s energy future will undoubtedly be shaped by a delicate balance between environmental goals and the economic realities of transitioning to a greener energy system.

 

Related News

View more

Opinion: Germany's drive for renewable energy is a cautionary tale

Germany Energiewende Lessons highlight climate policy tradeoffs, as renewables, wind and solar face grid constraints, coal phase-out delays, rising electricity prices, and public opposition, informing Canada on diversification, hydro, oil and gas, and balanced transition.

 

Key Points

Insights from Germany's renewable shift on costs, grid limits, and emissions to guide Canada's balanced energy policy.

✅ Evidence: high power prices, delayed coal exit, limited grid buildout

✅ Land, materials, and wildlife impacts challenge wind and solar scale-up

✅ Diversification: hydro, nuclear, gas, and storage balance reliability

 

News that Greta Thunberg is visiting Alberta should be welcomed by all Canadians.

The teenaged Swedish environmentalist has focused global attention on the climate change debate like never before. So as she tours our province, where selling renewable energy could be Alberta's next big thing, what better time for a reality check than to look at a country that is furthest ahead in already adapting steps that Greta is advocating.

That country is Germany. And it’s not a pretty sight.

Germany embraced the shift toward renewable energy before anyone else, and did so with gusto. The result?

Germany’s largest newsmagazine Der Spiegel published an article on May 3 of this year entitled “A Botched Job in Germany.” The cover showed broken wind turbines and half-finished transition towers against a dark silhouette of Berlin.

Germany’s renewable energy transition, Energiewende, is a bust. After spending and committing a total of US$580 billion to it from 2000 to 2025.

Why is that? Because it’s been a nightmare of foolish dreams based on hope rather than fact, resulting in stalled projects and dreadfully poor returns.

Last year Germany admitted it had to delay its phase-out of coal and would not meet its 2020 greenhouse gas emissions reduction commitment. Only eight per cent of the transmission lines needed to support this new approach to powering Germany have been built.

Opposition to renewables is growing due to electricity prices rising to the point they are now among the highest in the world. Wind energy projects in Germany are now facing the same opposition that pipelines are here in Canada. 

Opposition to renewables in Germany, reports Forbes, is coming from people who live in rural or suburban areas, in opposition to the “urbane, cosmopolitan elites who fetishize their solar roofs and Teslas as a sign of virtue.” Sound familiar?

So, if renewables cannot successfully power Germany, one of the richest and most technologically advanced countries in the world, who can do it better?

The biggest problem with using wind and solar power on a large scale is that the physics just don’t work. They need too much land and equipment to produce sufficient amounts of electricity.

Solar farms take 450 times more land than nuclear power plants to produce the same amount of electricity. Wind farms take 700 times more land than natural gas wells.

The amount of metal required to build these sites is enormous, requiring new mines. Wind farms are killing hundreds of endangered birds.

No amount of marketing or spin can change the poor physics of resource-intensive and land-intensive renewables.

But, wait. Isn’t Norway, Greta’s neighbour, dumping its energy investments and moving into alternative energy like wind farms in a big way?

No, not really. Fact is only 0.8 per cent of Norway’s power comes from wind turbines. The country is blessed with a lot of hydroelectric power, but that’s a historical strength owing to the country’s geography, nothing new.

And yet we’re being told the US$1-trillion Oslo-based Government Pension Fund Global is moving out of the energy sector to instead invest in wind, solar and other alternative energy technologies. According to 350.org activist Nicolo Wojewoda this is “yet another nail in the coffin of the coal, oil, and gas industry.”

Well, no.

Norway’s pension fund is indeed investing in new energy forms, but not while pulling out of traditional investments in oil and gas. Rather, as any prudent fund manager will, they are diversifying by making modest investments in emerging industries such as Alberta's renewable energy surge that will likely pay off down the road while maintaining existing investments, spreading their investments around to reduce risk. Unfortunately for climate alarmists, the reality is far more nuanced and not nearly as explosive as they’d like us to think.

Yet, that’s enough for them to spin this tale to argue Canada should exit oil and gas investment and put all of our money into wind and solar, even as Canada remains a solar power laggard according to experts.

That is not to say renewable energy projects like wind and solar don’t have a place. They do, and we must continue to innovate and research lower-polluting ways to power our societies on the path to zero-emissions electricity by 2035 in Canada.

But like it actually is in Norway, investment in renewables should supplement — not replace — fossil fuel energy systems if we aim for zero-emission electricity in Canada by 2035 without undermining reliability. We need both.

And that’s the message that Greta should hear when she arrives in Canada.

Rick Peterson is the Edmonton-based founder and Beth Bailey is a Calgary-based supporter of Suits and Boots, a national not-for-profit group of investment industry professionals that supports resource sector workers and their families.

 

Related News

View more

Canadian power crews head to Irma-hit Florida to help restore service

Canadian Power Crews Aid Florida after Hurricane Irma, supporting power restoration for Tampa Electric and Florida Power & Light. Hydro One and Nova Scotia Power teams provide mutual aid to speed outage repairs across communities.

 

Key Points

Mutual aid effort sending Canadian utility crews to restore power and repair outages in Florida after Hurricane Irma.

✅ Hydro One and Nova Scotia Power deploy line technicians

✅ Support for Tampa Electric and Florida Power & Light

✅ Goal: rapid power restoration and outage repairs statewide

 

Hundreds of Canadian power crews are heading to Florida to help restore power to millions of people affected by Hurricane Irma.

Two dozen Nova Scotia Power employees were en route Tampa on Tuesday morning. An additional 175 Hydro One employees from across Ontario are also heading south. Tuesday to assist after receiving a request for assistance from Tampa Electric.

Nearly 7½ million customers across five states were without power Tuesday morning as Irma — now a tropical storm — continued inland, while a power outage update from the Carolinas underscored the regional strain.

In an update On Tuesday, Florida Power & Light said its "army" of crews had already restored power to 40 per cent of the five million customers affected by Irma in the first 24 hours.

FPL said it expects to have power restored in nearly all of the eastern half of the state by the end of this coming weekend. Almost everyone should have power restored by the end of day on Sept. 22, except for areas still under water.Jason Cochrane took a flight from Halifax Stanfield International Airport along with 19 other NSP power line technicians, two supervisors and a restoration team lead, drawing on lessons from the Maritime Link first power project between Newfoundland and Nova Scotia. "It's different infrastructure than what we have to a certain extent, so there'll be a bit of a learning curve there as well," Cochrane said. "But we'll be integrated into their workforce, so we'll be assisting them to get everything put back together."

The NSP team will join 86 other Nova Scotians from their parent company, Emera, who are also heading to Tampa. Halifax-based Emera, whose regional projects include the Maritime Link, owns a subsidiary in Tampa.

"We're going to be doing anything that we can to help Tampa Electric get their customers back online," said NSP spokesperson Tiffany Chase. "We know there's been significant damage to their system as a result of that severe storm and so anything that our team can do to assist them, we want to do down in Tampa."

Crews have been told to expect to be on the ground in the U.S. for two weeks, but that could change as they get a better idea of what they're dealing with.

'It's neat to have an opportunity like this to go to another country and to help out.'- Jason Cochrane, power line technician

"It's neat to have an opportunity like this to go to another country and to help out and to get the power back on safely," said Cochrane.

Chase said she doesn't know how much the effort will cost but it will be covered by Tampa Electric. She also said Nova Scotia Power will pull its crews back if severe weather heads toward Atlantic Canada, as utilities nationwide work to adapt to climate change in their planning.

 

Related News

View more

Renewable power developers discover more energy sources make better projects

Hybrid renewable energy projects integrate wind, solar, and battery storage to enhance grid reliability, reduce curtailment, and provide dispatchable power in markets like Alberta, leveraging photovoltaic tracking, overbuilt transformers, and improved storage economics.

 

Key Points

Hybrid renewable energy projects combine wind, solar, and storage to deliver reliable, dispatchable clean power.

✅ Combine wind, solar, and batteries for steady, dispatchable output

✅ Lower curtailment by using shared transformers and smart inverters

✅ Boost farm income via leases; diversify risk from oil and gas

 

Third-generation farmer James Praskach has been burned by the oil and gas sector and watched wicked weather pound his crops flat, but he is hoping a new kind of energy -- the renewable kind -- will pay dividends.

The 39-year-old is part of a landowner consortium that is hosting the sprawling 300-megawatt Blackspring Ridge wind power project in southeastern Alberta.

He receives regular lease payments from the $600-million project that came online in 2014, even though none of the 166 towering wind turbines that surround his land are actually on it.

His lease payments stand to rise, however, when and if the proposed 77-MW Vulcan Solar project, which won regulatory approval in 2016, is green-lighted by developer EDF Renewables Inc.

The panels would cover about 400 hectares of his family's land with nearly 300,000 photovoltaic solar panels in Alberta, installed on racks designed to follow the sun. It would stand in the way of traditional grain farming of the land, but that wouldn't have been a problem this year, Praskach says.

"This year we actually had a massive storm roll through. And we had 100 per cent hail damage on all of (the Vulcan Solar lands). We had canola, peas and barley on it this year," he said, adding the crop was covered by insurance.

Meanwhile, poor natural gas prices and a series of oilpatch financial failures mean rents aren't being paid for about half of the handful of gas wells on his land, showing how a province that is a powerhouse for both fossil and green energy can face volatility -- he's appealed to the Alberta surface Rights Board for compensation.

"(Solar power) would definitely add a level of security for our farming operations," said Praskach.

Hybrid power projects that combine energy sources are a growing trend as selling renewable energy gains traction across markets. Solar only works during the day and wind only when it is windy so combining the two -- potentially with battery storage or natural gas or biomass generation -- makes the power profile more reliable and predictable.

Globally, an oft-cited example is on El Hierro, the smallest of the Canary Islands, where wind power is used to pump water uphill to a reservoir in a volcanic crater so that it can be released to provide hydroelectric power when needed. At times, the project has provided 100 per cent of the tiny island's energy needs.

Improvements in technology such as improving solar and wind power and lower costs for storage mean it is being considered as a hybrid add-on for nearly all of its renewable power projects, said Dan Cunningham, manager of business development at Greengate Power Corp. of Calgary.

Grant Arnold, CEO of developer BluEarth Renewables, agreed.

"The barrier to date, I would say, has been cost of storage but that is changing rapidly," he said. "We feel that wind and storage or solar and storage will be a fundamental way we do business within five years. It's changing very, very rapidly and it's the product everybody wants."

Vulcan Solar was proposed after Blackspring Ridge came online, said David Warner, associate director of business development for EDF Renewables, which now co-owns the wind farm with Enbridge Inc.

"Blackspring actually had incremental capacity in the main power transformers," he said. "Essentially, it was capable of delivering more energy than Blackspring was producing. It was overbuilt."

Vulcan Solar has been sized to utilize the shortfall without producing so much energy that either will ever have to be constrained, he said. Much of the required environmental work has already been done for the wind farm.

Storage is being examined as a potential addition to the project but implementing it depends on the regulatory system. At present, Alberta's regulators are still working on how to permit and control what they call "dispatchable renewables and storage" systems.

EDF announced last spring it would proceed with the Arrow Canyon Solar Project in Nevada which is to combine 200 MW of solar with 75 MW of battery storage by 2022 -- the batteries are to soak up the sun's power in the morning and dispatch the electricity in the afternoon when Las Vegas casinos' air conditioning is most needed.

What is clear is that renewable energy will continue to grow, with Alberta renewable jobs expected to follow -- in a recent report, the International Energy Agency said global electricity capacity from renewables is set to rise by 50 per cent over the next five years, an increase equivalent to adding the current total power capacity of the United States.

The share of renewables is expected to rise from 26 per cent now to 30 per cent in 2024 but will remain well short of what is needed to meet long-term climate, air quality and energy access goals, it added.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified