PSEG the 'Best Places to Launch a Career'

By PR Newswire


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Public Service Enterprise Group was named one of the country's "Best Places to Launch a Career" in BusinessWeek's third annual list, released on its website.

The Best Places to Launch a Career ranking is based on three separate surveys: a BusinessWeek poll of career-services directors at U.S. colleges; a survey of 40,000 U.S. college students conducted by Universum USA, a Philadelphia research company; and a BusinessWeek poll of the employers themselves.

PSEG is one of New Jersey's largest employers, and its leader is one of the energy industry's most vocal workforce development advocates.

"Being able to attract talent is becoming increasingly important as Baby Boomers retire," said Ralph Izzo, chairman, president and CEO of PSEG.

Izzo is also chair of the Center for Energy Workforce Development (CEWD). A 2007 CEWD Workforce Survey report found that the aging workforce represents a significant challenge to the energy industry, which faces the prospect of losing roughly half of its workforce at a time when growing demands for electricity coupled with a growing population and economy are fueling demand for workers.

The report says that nearly 40% of line-worker jobs may need to be filled by the year 2012 and that roughly 46% of engineering jobs may be vacant by the same year.

That makes efforts to recruit and retain workers more important than ever before.

"We are working hard on becoming an industry and a company where people want to work," Izzo said. "At PSEG we are focused on attracting talented people who share our values and reflect the communities we serve. We understand the importance of providing training, tuition reimbursement, developmental opportunities, and a good work/life balance. That makes PSEG a good place for a career, not just a job." "The success we have enjoyed for over a century is a direct reflection of the quality of our employees," Izzo added. "And there is no doubt that it is they who are the primary determinant of our future prospects." Public Service Enterprise Group (PSEG) is a publicly traded diversified energy company with annual revenues of more than $12 billion, and three principal subsidiaries: PSEG Power, PSEG Energy Holdings, and Public Service Electric and Gas Company (PSE&G). PSEG Power, one of the largest independent power producers in the U.S. has three main subsidiaries: PSEG Fossil, PSEG Nuclear, and PSEG Energy Resources & Trade. PSEG Energy Holdings has two main unregulated energy-related businesses: PSEG Global and PSEG Resources.

Related News

Volkswagen's German Plant Closures

VW Germany Plant Closures For EV Shift signal a strategic realignment toward electric vehicles, sustainability, and zero-emission mobility, optimizing manufacturing, cutting ICE capacity, boosting battery production, retraining workers, and aligning with the Accelerate decarbonization strategy.

 

Key Points

VW is shuttering German plants to cut ICE costs and scale EV output, advancing sustainability and competitiveness.

✅ Streamlines operations; reallocates capital to EV platforms and batteries.

✅ Cuts ICE output, lowers emissions, and boosts clean manufacturing capacity.

✅ Retrains workforce amid closures; invests in software and charging tech.

 

Volkswagen (VW), one of the world’s largest automakers, is undergoing a significant transformation with the announcement of plant closures in Germany. As reported by The Guardian, this strategic shift is part of VW’s broader move towards prioritizing electric vehicles (EVs) and adapting to the evolving automotive market as EVs reach an inflection point globally. The decision highlights the company’s commitment to sustainability and innovation amid a rapidly changing industry landscape.

Strategic Plant Closures

Volkswagen’s decision to close several of its plants in Germany marks a pivotal moment in the company's history. These closures are part of a broader strategy to streamline operations, reduce costs, and focus on the production of electric vehicles. The move reflects VW’s response to the growing demand for EVs and the need to transition from traditional internal combustion engine (ICE) vehicles to cleaner, more sustainable alternatives.

The affected plants, which have been key components of VW’s manufacturing network, will cease production as the company reallocates resources and investments towards its electric vehicle programs. This realignment is aimed at improving operational efficiency and ensuring that VW remains competitive in a market that is increasingly oriented towards electric mobility.

A Shift Towards Electric Vehicles

The closures are closely linked to Volkswagen’s strategic shift towards electric vehicles. The automotive industry is undergoing a profound transformation as governments and consumers place greater emphasis on sustainability and reducing carbon emissions. Volkswagen has recognized this shift and is investing heavily in the development and production of EVs as part of its "Accelerate" strategy, anticipating widespread EV adoption within a decade across key markets.

The company’s commitment to electric vehicles is evident in its plans to launch a range of new electric models and increase production capacity for EVs. Volkswagen aims to become a leader in the electric mobility sector by leveraging its technological expertise and scale to drive innovation and expand its EV offerings.

Economic and Environmental Implications

The closure of VW’s German plants carries both economic and environmental implications. Economically, the move will impact the workforce and local economies dependent on these manufacturing sites. Volkswagen has indicated that it will work on providing support and retraining opportunities for affected employees, as the EV aftermarket evolves and reshapes service needs, but the transition will still pose challenges for workers and their communities.

Environmentally, the shift towards electric vehicles represents a significant positive development. Electric vehicles produce zero tailpipe emissions, which aligns with global efforts to combat climate change and reduce air pollution. By focusing on EV production, Volkswagen is contributing to the reduction of greenhouse gas emissions and supporting the transition to a more sustainable transportation system.

Challenges and Opportunities

While the transition to electric vehicles presents opportunities, it also comes with challenges. Volkswagen will need to manage the complexities of closing and repurposing its existing plants while ramping up production at new or upgraded facilities dedicated to EVs. This transition requires substantial investment in new technologies, infrastructure, and training, including battery supply strategies that influence manufacturing footprints, to ensure a smooth shift from traditional automotive manufacturing.

Additionally, Volkswagen faces competition from other automakers that are also investing heavily in electric vehicles, including Daimler's electrification plan outlining the scope of its transition. To maintain its competitive edge, VW must continue to innovate and offer attractive, high-performance electric models that meet consumer expectations.

Future Outlook

Looking ahead, Volkswagen’s focus on electric vehicles aligns with broader industry trends and regulatory pressures. Governments worldwide are implementing stricter emissions regulations and providing incentives for EV adoption, although Germany's plan to end EV subsidies has sparked debate domestically, creating a favorable environment for companies that are committed to sustainability and clean technology.

Volkswagen’s investment in electric vehicles and its strategic realignment reflect a proactive approach to addressing these trends. The company’s ability to navigate the challenges associated with plant closures and the transition to electric mobility will be critical, especially as Europe's EV slump tests demand signals, in determining its success in the evolving automotive landscape.

Conclusion

Volkswagen’s decision to close several plants in Germany and focus on electric vehicle production represents a significant shift in the company’s strategy. While the closures present challenges, they also highlight Volkswagen’s commitment to sustainability and its response to the growing demand for cleaner transportation solutions. By investing in electric vehicles and adapting its operations, Volkswagen aims to lead the way in the transition to a more sustainable automotive future. As the company moves forward, its ability to effectively manage this transition will be crucial in shaping its role in the global automotive market.

 

Related News

View more

The CIB and private sector partners to invest $1.7 billion in Lake Erie Connector

Lake Erie Connector Investment advances a 1,000 MW HVDC transmission link connecting Ontario to the PJM Interconnection, enhancing grid reliability, clean power trade, and GHG reductions through a public-private partnership led by CIB and ITC.

 

Key Points

A $1.7B public-private HVDC project linking Ontario and PJM to boost reliability, cut GHGs, and enable clean power trade.

✅ 1,000 MW, 117 km HVDC link between Ontario and PJM

✅ $655M CIB and $1.05B private financing, ITC to own-operate

✅ Cuts system costs, boosts reliability, reduces GHG emissions

 

The Canada Infrastructure Bank (CIB) and ITC Investment Holdings (ITC) have signed an agreement in principle to invest $1.7 billion in the Lake Erie Connector project.

Under the terms of the agreement, the CIB will invest up to $655 million or up to 40% of the project cost. ITC, a subsidiary of Fortis Inc., and private sector lenders will invest up to $1.05 billion, the balance of the project's capital cost.

The CIB and ITC Investment Holdings signed an agreement in principle to invest $1.7B in the Lake Erie Connector project.

The Lake Erie Connector is a proposed 117 kilometre underwater transmission line connecting Ontario with the PJM Interconnection, the largest electricity market in North America, and aligns with broader regional efforts such as the Maine transmission line to import Quebec hydro to strengthen cross-border interconnections.

The 1,000 megawatt, high-voltage direct current connection will help lower electricity costs for customers in Ontario and improve the reliability and security of Ontario's energy grid, complementing emerging solutions like battery storage across the province. The Lake Erie Connector will reduce greenhouse gas emissions and be a source of low-carbon electricity in the Ontario and U.S. electricity markets.

During construction, the Lake Erie Connector is expected to create 383 jobs per year and drive more than $300 million in economic activity, and complements major clean manufacturing investments like a $1.6 billion battery plant in the Niagara Region that supports the EV supply chain. Over its life, the project will provide 845 permanent jobs and economic benefits by boosting Ontario's GDP by $8.8 billion.

The project will also help Ontario to optimize its current infrastructure, avoid costs associated with existing production curtailments or shutdowns. It can leverage existing generation capacity and transmission lines to support electricity demand, alongside new resources such as the largest battery storage project planned for southwestern Ontario.

ITC continues its discussions with First Nations communities and is working towards meaningful participation in the near term and as the project moves forward to financial close.

The CIB anticipates financial close late in 2021, pending final project transmission agreements, with construction commencing soon after. ITC will own the transmission line and be responsible for all aspects of design, engineering, construction, operations and maintenance.

ITC acquired the Lake Erie Connector project in August 2014 and it has received all necessary regulatory and permitting approvals, including a U.S. Presidential Permit and approval from the Canada Energy Regulator.

This is the CIB's first investment commitment in a transmission project and another example of the CIB's momentum to quickly implement its $10B Growth Plan, amid broader investments in green energy solutions in British Columbia that support clean growth.

 

Endorsements

This project will allow Ontario to export its clean, non-emitting power to one of the largest power markets in the world and, as a result, benefit Canadians economically while also significantly contributing to greenhouse gas emissions reductions in the PJM market. The project allows Ontario to better manage peak capacity and meet future reliability needs in a more sustainable way. This is a true win-win for both Canada and the U.S., both economically and environmentally.
Ehren Cory, CEO, Canada Infrastructure Bank

The Lake Erie Connector has tremendous potential to generate customer savings, help achieve shared carbon reduction goals, and increase electricity system reliability and flexibility. We look forward to working with the CIB, provincial and federal governments to support a more affordable, customer-focused system for Ontarians. 
Jon Jipping, EVP & COO, ITC Investment Holdings Inc., a subsidiary of Canadian-based Fortis Inc. 

We are encouraged by this recent announcement by the Canada Infrastructure Bank. Mississaugas of the Credit First Nation has an interest in projects within our historic treaty lands that have environmental benefits and that offer economic participation for our community.
Chief Stacey Laforme, Mississaugas of the Credit First Nation

While our evaluation of the project continues, we recognize this project can contribute to the economic resilience of our Shareholder, the Mississaugas of the Credit First Nation. Subject to the successful conclusion of our collaborative efforts with ITC, we look forward to our involvement in building the necessary infrastructure that enable Ontario's economic engine.
Leonard Rickard, CEO, Mississaugas of the Credit Business Corporation

The Lake Erie Connector demonstrates the advantages of public-private partnerships to develop critical infrastructure that delivers greater value to Ontarians. Connecting Ontario's electricity grid to the PJM electricity market will bring significant, tangible benefits to our province. This new connection will create high-quality jobs, improve system flexibility, and allow Ontario to export more excess electricity to promote cost-savings for Ontario's electricity consumers.
Greg Rickford, Minister of Energy, Northern Development and Mines, Minister of Indigenous Affairs

With the US pledging to achieve a carbon-free electrical grid by 2035, Canada has an opportunity to export clean power, helping to reduce emissions, maximizing clean power use and making electricity more affordable for Canadians. The Lake Erie Connector is a perfect example of that. The Canada Infrastructure Bank's investment will give Ontario direct access to North America's largest electricity market - 13 states and D.C. This is part of our infrastructure plan to create jobs across the country, tackle climate change, and increase Canada's competitiveness in the clean economy, alongside innovation programs like the Hydrogen Innovation Fund that foster clean technology.


Quick Facts

  • The Lake Erie Connector is a 1,000 megawatt, 117 kilometre long underwater transmission line connecting Ontario and Pennsylvania.
  • The PJM Interconnection is a regional transmission organization coordinating the movement of wholesale electricity in all or parts of Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee, Virginia, West Virginia and the District of Columbia.
  • The project will help to reduce electricity system costs for customers in Ontario, and aligns with ongoing consultations on industrial electricity pricing and programs, while helping to support future capacity needs.
  • The CIB is mandated to invest CAD $35 billion and attract private sector investment into new revenue-generating infrastructure projects that are in the public interest and support Canadian economic growth.
  • The investment commitment is subject to final due diligence and approval by the CIB's Board.

 

Related News

View more

Hydropower Plants to Support Solar and Wind Energy

Solar-Wind-Water West Africa integrates hydropower with solar and wind to boost grid flexibility, clean electricity, and decarbonization, leveraging the West African Power Pool and climate data modeling reported in Nature Sustainability.

 

Key Points

A strategy using hydropower to balance solar and wind, enabling reliable, low-carbon electricity across West Africa.

✅ Hydropower dispatch covers solar and wind shortfalls.

✅ Regional interconnection via West African Power Pool.

✅ Cuts CO2 versus gas while limiting new dam projects.

 

Hydropower plants can support solar and wind power, rather unpredictable by nature, in a climate-friendly manner. A new study in the scientific journal Nature Sustainability has now mapped the potential for such "solar-wind-water" strategies for West Africa: an important region where the power sector is still under development, amid IEA investment needs for universal access, and where generation capacity and power grids will be greatly expanded in the coming years. "Countries in West Africa therefore now have the opportunity to plan this expansion according to strategies that rely on modern, climate-friendly energy generation," says Sebastian Sterl, energy and climate scientist at Vrije Universiteit Brussel and KU Leuven and lead author of the study. "A completely different situation from Europe, where power supply has been dependent on polluting power plants for many decades - which many countries now want to rid themselves of."

Solar and wind power generation is increasing worldwide and becoming cheaper and cheaper. This helps to keep climate targets in sight, but also poses challenges. For instance, critics often argue that these energy sources are too unpredictable and variable to be part of a reliable electricity mix on a large scale, though combining multiple resources can enhance project performance.

"Indeed, our electricity systems will have to become much more flexible if we are to feed large amounts of solar and wind power into the grid. Flexibility is currently mostly provided by gas power plants. Unfortunately, these cause a lot of CO2 emissions," says Sebastian Sterl, energy and climate expert at Vrije Universiteit Brussel (VUB) and KU Leuven. "But in many countries, hydropower plants can be a fossil fuel-free alternative to support solar and wind energy. After all, hydropower plants can be dispatched at times when insufficient solar and wind power is available."

The research team, composed of experts from VUB, KU Leuven, the International Renewable Energy Agency (IRENA), and Climate Analytics, designed a new computer model for their study, running on detailed water, weather and climate data. They used this model to investigate how renewable power sources in West Africa could be exploited as effectively as possible for a reliable power supply, even without large-scale storage, in line with World Bank support for wind in developing countries. All this without losing sight of the environmental impact of large hydropower plants.

"This is far from trivial to calculate," says Prof. Wim Thiery, climate scientist at the VUB, who was also involved in the study. "Hydroelectric power stations in West Africa depend on the monsoon; in the dry season they run on their reserves. Both sun and wind, as well as power requirements, have their own typical hourly, daily and seasonal patterns. Solar, wind and hydropower all vary from year to year and may be impacted by climate change, including projections that wind resources shift southward in coming years. In addition, their potential is spatially very unevenly distributed."

West African Power Pool

The study demonstrates that it will be particularly important to create a "West African Power Pool", a regional interconnection of national power grids to serve as a path to universal electricity access across the region. Countries with a tropical climate, such as Ghana and the Ivory Coast, typically have a lot of potential for hydropower and quite high solar radiation, but hardly any wind. The drier and more desert-like countries, such as Senegal and Niger, hardly have any opportunities for hydropower, but receive more sunlight and more wind. The potential for reliable, clean power generation based on solar and wind power, supported by flexibly dispatched hydropower, increases by more than 30% when countries can share their potential regionally, the researchers discovered.

All measures taken together would allow roughly 60% of the current electricity demand in West Africa to be met with complementary renewable sources, despite concerns about slow greening of Africa's electricity, of which roughly half would be solar and wind power and the other half hydropower - without the need for large-scale battery or other storage plants. According to the study, within a few years, the cost of solar and wind power generation in West Africa is also expected to drop to such an extent that the proposed solar-wind-water strategies will provide cheaper electricity than gas-fired power plants, which currently still account for more than half of all electricity supply in West Africa.

Better ecological footprint

Hydropower plants can have a considerable negative impact on local ecology. In many developing countries, piles of controversial plans for new hydropower plants have been proposed. The study can help to make future investments in hydropower more sustainable. "By using existing and planned hydropower plants as optimally as possible to massively support solar and wind energy, one can at the same time make certain new dams superfluous," says Sterl. "This way two birds can be caught with one stone. Simultaneously, one avoids CO2 emissions from gas-fired power stations and the environmental impact of hydropower overexploitation."

Global relevance

The methods developed for the study are easily transferable to other regions, and the research has worldwide relevance, as shown by a US 80% study on high variable renewable shares. Sterl: "Nearly all regions with a lot of hydropower, or hydropower potential, could use it to compensate shortfalls in solar and wind power." Various European countries, with Norway at the front, have shown increased interest in recent years to deploy their hydropower to support solar and wind power in EU countries. Exporting Norwegian hydropower during times when other countries undergo solar and wind power shortfalls, the European energy transition can be advanced.

 

Related News

View more

France and Germany arm wrestle over EU electricity reform

EU Electricity Market Reform CFDs seek stable prices via contracts for difference, balancing renewables and nuclear, shielding consumers, and boosting competitiveness as France and Germany clash over scope, grid expansion, and hydrogen production.

 

Key Points

EU framework using contracts for difference to stabilize power prices, support renewables and nuclear, and protect users.

✅ Guarantees strike prices for new low-carbon generation

✅ Balances consumer protection with industrial competitiveness

✅ Disputed scope: nuclear inclusion, grids, hydrogen eligibility

 

Despite record temperatures this October, Europe is slowly shifting towards winter - its second since the Ukraine war started and prompted Russia to cut gas supplies to the continent amid an energy crisis that has reshaped policy.

After prices surged last winter, when gas and electricity bills “nearly doubled in all EU capitals”, the EU decided to take emergency measures to limit prices.

In March, the European Commission proposed a reform to revamp the electricity market “to boost renewables, better protect consumers and enhance industrial competitiveness”.

However, France and Germany are struggling to find a compromise as rolling back prices is tougher than it appears and the clock is ticking as European energy ministers prepare to meet on 17 October in Luxembourg.


The controversy around CFDs
At the heart of the issue are contracts for difference (CFDs).

By providing a guaranteed price for electricity, CFDs aim to support investment in renewable energy projects.

France - having 56 nuclear reactors - is lobbying for nuclear energy to be included in the CFDs, but this has caught the withering eye of Germany.

Berlin suspects Paris of wanting an exception that would give its industry a competitive advantage and plead that it should only apply to new investments.


France wants ‘to regain control of the price’
The disagreement is at the heart of the bilateral talks in Hamburg, which started on Monday, between the French and German governments.

French President Emmanuel Macron promised “to regain control of the price of electricity, at the French and European level” and outlined a new pricing scheme in a speech at the end of September.

As gas electricity is much more expensive than nuclear electricity, France might be tempted to switch to a national system rather than a European one after a deal with EDF on prices to be more competitive economically.

However, France is "confident" that it will reach an agreement with Germany on electricity market reforms, Macron said on Friday.

Siding with France are other pro-nuclear countries such as Hungary, the Czech Republic and Poland, while Germany can count on the support of Austria, Luxembourg, Belgium and Italy amid opposition from nine EU countries to treating market reforms as a price fix.

But even if a last-minute agreement is reached, the two countries’ struggles over energy are creeping into all current European negotiations on the subject.

Germany wants a massive extension of electricity grids on the continent so that it can import energy; France is banking on energy sovereignty and national production.

France wants to be able to use nuclear energy to produce clean hydrogen, while Germany is reluctant, and so on.

 

Related News

View more

COVID-19: Daily electricity demand dips 15% globally, says report

COVID-19 Impact on Electricity Demand, per IEA data, shows 15% global load drop from lockdowns, with residential use up, industrial and service sectors down; fossil fuel generation fell as renewables and photovoltaics gained share.

 

Key Points

An overview of how lockdowns cut global power demand, boosted residential use, and increased the renewable share.

✅ IEA review shows at least 15% dip in daily global electricity load

✅ Lockdowns cut commercial and industrial demand; homes used more

✅ Fossil fuels fell as renewables and PV generation gained share

 

The daily demand for electricity dipped at least 15 per cent across the globe, according to Global Energy Review 2020: The impacts of the COVID-19 crisis on global energy demand and CO2 emissions, a report published by the International Energy Agency (IEA) in April 2020, even as global power demand surged above pre-pandemic levels.

The report collated data from 30 countries, including India and China, that showed partial and full lockdown measures adopted by them were responsible for this decrease.

Full lockdowns in countries — including France, Italy, India, Spain, the United Kingdom where daily demand fell about 10% and the midwest region of the United States (US) — reduced this demand for electricity.

 

Reduction in electricity demand after lockdown measures (weather corrected)


 

Source: Global Energy Review 2020: The impacts of the COVID-19 crisis on global energy demand and CO2 emissions, IEA


Drivers of the fall

There was, however, a spike in residential demand for electricity as a result of people staying and working from home. This increase in residential demand, though, was not enough to compensate for reduced demand from industrial and commercial operations.

The extent of reduction depended not only on the duration and stringency of the lockdown, but also on the nature of the economy of the countries — predominantly service- or industry-based — the IEA report said.

A higher decline in electricity demand was noted in countries where the service sector — including retail, hospitality, education, tourism — was dominant, compared to countries that had industrial economies.

The US, for example — where industry forms only 20 per cent of the economy — saw larger reductions in electricity demand, compared to China, where power demand dropped as the industry accounts for more than 60 per cent of the economy.

Italy — the worst-affected country from COVID-19 — saw a decline greater than 25 per cent when compared to figures from last year, even as power demand held firm in parts of Europe during later lockdowns.

The report said the shutting down of the hospitality and tourism sectors in the country — major components of the Italian economy — were said to have had a higher impact, than any other factor, for this fall.

 

Reduced fossil fuel dependency

Almost all of the reduction in demand was reportedly because of the shutting down of fossil fuel-based power generation, according to the report. Instead, the share of electricity supply from renewables in the entire portfolio of energy sources, increased during the pandemic, reflecting low-carbon electricity lessons observed during COVID-19.

This was due to a natural increase in wind and photovoltaic power generation compared to 2019 along with a drop in overall electricity demand that forced electricity producers from non-renewable sources to decrease their supplies, before surging electricity demand began to strain power systems worldwide.

The Power System Operation Corporation of India also reported that electricity production from coal — India’s primary source of electricity — fell by 32.2 per cent to 1.91 billion units (kilowatt-hours) per day, in line with India's electricity demand decline reported during the pandemic, compared to the 2019 levels.

 

Related News

View more

Pandemic has already cost Hydro-Québec $130 million, CEO says

Hydro-Que9bec 2020 Profit Outlook faces COVID-19 headwinds as revenue drops, U.S. Northeast export demand weakens, and clean-energy infrastructure plans shift toward domestic investments, energy efficiency, EV charging stations, and grid upgrades to stabilize net income.

 

Key Points

A forecast of COVID-19 revenue declines, weaker U.S. exports, and a shift to energy efficiency and grid upgrades.

✅ Q1 profit fell 14%; net income $1.53B vs $1.77B

✅ Exports to U.S. Northeast weaker; revenue off ~$130M Mar-Jun

✅ Strategy: energy efficiency, EV charging, grid, dam upgrades

 

Hydro-Québec expects the coronavirus pandemic to chop “hundreds of millions of dollars” off 2020 profits, its new chief executive officer said.

COVID-19 has depressed revenue by about $130 million between March and June, Sophie Brochu said Monday, as residential electricity use rose even while overall consumption dropped. Shrinking electricity exports to the U.S. northeast are poised to compound the shortfall, she said.

“What we’re living through is not small. The impacts are real,” Brochu said on a conference call with reporters, noting that utilities such as Hydro One supported Ontario's COVID-19 response at the height of the pandemic. “I’m not talking about a billion. I’m talking about hundreds of millions. We have no idea how quickly the economy will restart. As we approach the fall we will have a better view.”

Hydro-Québec last month reported a 14-per-cent drop in first-quarter profit and warned full-year results would fall short of targets as the COVID-19 crisis weighs on power demand. Net income in the quarter was $1.53 billion compared with $1.77 billion a year ago, the company said.

Canada’s biggest electricity producer had earlier been targeting 2020 profit of between $2.8 billion and $3 billion, according to its current strategic plan and corporate structure currently in place.

The first quarter was the utility’s last under former CEO Eric Martel, who left to take over at jetmaker Bombardier Inc. Brochu, who previously ran Énergir, replaced him April 6.

To boost exports over time, Brochu said Hydro-Québec will look to strengthen ties with neighbours such as Ontario, where the Hydro One CEO is working to repair relations with government and investors, and the U.S. The CEO said she’s heartened by New York Governor Andrew Cuomo’s call last month for new power lines from Canada and upstate to promote clean energy.

“This is a clear, encouraging signal that must express itself through very concrete negotiations,” she said. “The United States is our backyard. This is true for Ontario, where key system staff lockdowns were even contemplated, and the Atlantic provinces as well. This is our ecosystem, and we intend to build on our footprint, on the relationships that we have.”

Though stricter environmental hurdles make it more complicated to get power lines built today than a decade ago, the CEO insists it’s still possible to sell electricity to neighbouring U.S. states.

“Is it more difficult today to build energy projects? The answer is yes,” she said. “Does this clog up the U.S. northeast market? Not at all. I believe this federation of ecosystems is very promising.”

In the meantime, Hydro-Québec is planning to speed up investments at home — for example, by building new charging stations that will be needed to serve a growing fleet of electric cars. The utility will also upgrade some of its Montreal-area facilities, as well as its massive dams on the Manicouagan River, Brochu said. The investments will result in additional capacity.

“Today we need to put water in the pump of Quebec, so we will concentrate our human and financial efforts here,” she said. “We are needed in Quebec.” 

Hydro-Québec is stepping up efforts to promote energy efficiency among its customer base, amid retroactive billing concerns, which Brochu said could postpone the need to build large dams.

“We have to move towards ‘no-regret moves.’ What’s a no-regret move? It’s energy efficiency,” Brochu said earlier Monday during a presentation to the Chamber of Commerce of Metropolitan Montreal, noting that Ontario debated peak rate relief for self-isolating customers. “This is healthy, it’s fundamental and it will contribute to Quebec’s economic rebound by lowering energy costs.”

Brochu also pledged to build a more diverse workforce after the company said last week that 8.2 per cent of staff belong to “visible and ethnic” minorities.

“This can be improved on,” she said. “What I’m expressing today is my determination, and that of the management team, to move the needle.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.