Thin-film cells fatten solar market

By Electronic Engineering Times


Arc Flash Training - CSA Z462 Electrical Safety

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
With the political winds starting to blow its way, the solar-cell industry is poised for explosive growth. But advocates for this inexhaustible and nonpolluting energy source still need a few technical breakthroughs and a measure of political stamina.

The latest civic breakthrough was the recent passage of the California Solar Initiative, the largest solar-energy bill in U.S. history. The California Public Utilities Commission's bill establishes an 11-year solar rebate program worth $3.2 billion for new and retrofit installations of solar photovoltaic systems.

On the national level, the House of Representatives recently introduced legislation that would extend solar tax credits, now due to end in 2008, through 2017. Under the plan, residential and commercial installations receive a tax credit of $1,500 per half-kilowatt in power use reduction, among other incentives.

Observers said U.S. interest in solar energy might be catching up with the interest seen in the rest of the world.

"American taxpayers want to invest in technologies that create jobs, reduce emissions, lower our energy bills and keep our energy dollars here in the United States," the Washington-based Solar Energy Industries Association said in a statement praising the bill. That group and other alternative-energy advocates are swarming the halls of Congress to compete for federal largesse, as lawmakers seek to reduce U.S. dependence on foreign oil.

Nonetheless, the 2007 solar-cell market is expected to be virtually a mirror image of last year's: Demand is astronomical, but worldwide growth remains hampered by persistent shortages of the critical polysilicon materials used to make the cells.

One change this year is that thin-film solar cells have arrived and are poised to steal market share from conventional solar-cell products. One thin-film startup, First Solar Inc. (Phoenix), is ramping up at a frenetic pace and claims to have the industry's lowest-cost panels, priced at $2.40/W-up to 45 percent below its rivals.

The Wild West of the booming clean-technology sector boasts no fewer than 40 companies scrambling to develop thin-film cells. Even Sharp Corp., the world's largest solar-cell maker, is entering the fray. Venture capitalists are pouring millions into thin-film solar startups, and a diversity of companies, from Google to Honda, has invested in the sector.

The appeal of thin-film cells is that they require little or no polysilicon, a critical material now in short supply because of spiraling solar-energy demand. Conventional solar cells, which account for 90 percent or more of today's shipments, are manufactured using the polysilicon materials, which constitute 40 to 50 percent of the cost of a conventional photo-voltaic cell. In contrast, thin-film cells use a thin layer of materials formed on a substrate.

For some time, polysilicon shortages have disrupted the supply chain and stunted overall growth rates in the solar-cell market. Piper Jaffray & Co. (Minneapolis) predicts that the sector will see a 22 percent jump in worldwide sales in 2007.

Polysilicon shortages may last until 2008 or longer-a trend that opens the door for thin-film technologies, said Jesse Pichel, an analyst with Piper Jaffray. "We don't expect to see a polysilicon glut for the foreseeable future. However, it's a better situation than in past years, in that we have several new polysilicon plants moving into production," he said.

What this means is that the solar-cell industry is out of balance and under pressure. "The solar-power evolution is in its early stages, and there is no single-point technology," Pichel said. "Polysilicon feedstock prices are rising, and module ASPs are falling 6 percent annually, squeezing margins and limiting capacity."

The solar-energy industry as a whole faces a multitude of challenges. First, the solar-cell market could be overhyped and due for a shakeout.

Many of the companies in the sector are smaller, privately held startups, which face stiff competition from the established, conventional solarcell giants. The latter group includes Evergreen, Kyocera, Mitsubishi, Motech, Sanyo, Sharp, Shell, SunPower and Suntech.

Cost is another issue. Despite breakthroughs, residential solar-energy costs range from 20 to 40 cents/kilowatt-hour on sunny days. That's two to three times more expensive than the current electricity grid, according to market research firm Solarbuzz LLC (San Francisco). (One kilowatt equals the amount of electricity needed to burn a 100-W light bulb for 10 hours, according to the firm.)

The sun is free, but converting its energy into electric power isn't. That requires a new and costly infrastructure from the home to the public utilities.

A household must install a solar-module system on the roof. Power from that system flows to an inverter, which converts and transforms it into usable voltage and alternating current. Some homes could generate sufficient solar power for all their power needs, but many would still need to be connected to the public utility grid because they wouldn't derive sufficient power from the solar installation.

For a typical home, a 3-kW grid-tied solar system costs approximately $17,500 to install after California's rebate (but before any tax incentives), according to Solarbuzz. It takes three to seven years to break even, the firm said.

In general, solar energy is not expected to reach parity or become "grid competitive" without subsidies until 2010, Pichel of Piper Jaffray said.

In many nations, governments must provide subsidies in order to make solar viable for consumers and businesses. For years, Germany and Japan have offered attractive subsidies; not surprisingly, they also lead all other nations in solar adoption. Incentives are also in place in Spain and elsewhere, but the United States lags in such programs.

Some observers believe the tide is turning in solar, thanks to subsidies and technology breakthroughs, including the much-touted thin films. But there are a number of costs and technology trade- offs associated with these new materials.

The polysilicon used in conventional cells is expensive, but the conventional cell structures have proved production-worthy, and they achieve greater power efficiencies than their thin-film counterparts. Thin-film cells have a power efficiency rating of 8 to 14 percent, compared with 14 to 20 percent for conventional products.

Thin-film cells have been in development for decades, but they use exotic materials that are difficult to manufacture with decent volume yields. The most common thin-film materials are amorphous silicon or polycrystalline. They include cadmium telluride and copper indium gallium diselenide, among others.

Only a handful of companies have actually brought the technology into mass production, including First Solar, Mitsubishi and United Solar Ovonic LLC (Auburn Hills, Mich.). Nanosolar Inc., a startup originally funded by Google Inc. in June 2006, announced a $100 million financing package to build the world's largest solar-cell manufacturing facility, in San Jose, Calif. Currently in pilot production in its Palo Alto, Calif., facility, the solar-cell startup is developing a roll-to-roll solar-cell technology.

In December, Honda Motor Co. Ltd. established a subsidiary, Honda Soltec Co. Ltd., that will produce next-generation thin-film solar cells based on a compound of copper, indium, gallium and selenium.

Thin-film products will not displace conventional solar cells at least "in the next decade, but we do expect that they will grow and find markets," said Julie Blunden, vice president of external affairs at SunPower Corp. (San Jose).

"The overall solar-cell market will grow 10 to 20 percent in 2007 and 2008," predicted Subhendu Guha, president and chief operating officer of United Solar Ovonic, a subsidiary of Energy Conversion Devices Inc. "We are growing 50 to 100 percent every year."

United Solar Ovonic claims to be the world's largest manufacturer of triple-junction, amorphous silicon photovoltaic solar panels. "Previously, the question was, 'Can we develop it?' Now, not only can we do it, but we're in production," Guha said.

United plans to nearly triple its output by 2008 and says its panels are cost-competitive. With help from its subsidies in California, the company's solar modules are "getting close to 20 cents per kW-hr," approaching the peak rates of the electricity grid, Guha said.

Another thin-film supplier, First Solar, also is raising eyebrows. "First Solar's modules are the lowest-cost in commercial production today, at about $1.50/W to manufacture-about 45 percent below (the) industry average," according to a recent report from Piper Jaffray. "While emerging lower-cost technologies may exist in the lab, First Solar has a two-year lead in costs and scale."

The company's modules are based on cadmium tellurium technology and require no polysilicon. First Solar reportedly has signed a number of large OEM contracts in Germany, but the company is not expected to turn a profit until 2008.

Not all of the excitement revolves around the startups. In fact, the newcomers are keeping a close eye on the established industry giants, especially Sharp. That company has been expanding its conventional solar-cell capacity, but it is also making a major push into the thin-film arena. Late last year, Sharp rolled out two thin-film solar panels, which are said to achieve a conversion efficiency of 8.5 percent and to deliver 90 W.

The products are based on a tandem cell design, which combines separate amorphous and monocrystalline layers. A key feature is the ability to form the silicon raw materials into a layer only about 2 microns thick on a glass substrate. That thickness - roughly 1/100th that of conventional polysilicon solar cells - reduces overall cost for consumers, Sharp says.

This month, Sharp claimed to have developed a stacked, triple-junction thin-film solar cell for mass production. The triple-junction structure combines two amorphous silicon layers and one microcrystalline silicon layer. The new architecture claims to boost cell conversion efficiency from 11 percent to 13 percent and module conversion efficiency from 8.6 percent to 10 percent. Production of the triple-junction technology is slated to begin at Sharp's Katsuragi plant (Nara Prefecture, Japan) in May.

Despite its developments in thin films, Sharp has not turned its back on conventional solar cells. Last year, the company increased its annual production capacity by 100 MW to meet demand in Japan and abroad. As a result, solar-cell production capacity at the Katsuragi Plant will reach 600 MW per year, the world's highest, according to the firm.

Sharp said it would double its production capacity for solar modules during the coming year at Sharp Manufacturing Co. (Wrexham, North Wales). Capacity will increase from 110 MW to 220 MW annually, which will supply the booming European market.

The U.S. market also is seeing strong growth in both homes and businesses, said Marc Cortez, director of marketing for the Sharp's Solar Energy Solutions Group. "Generally, in the United States, we expect the market to grow," he said. "You will still see growth rates of 20 percent per year."

Related News

Hydro-Quebec shocks cottage owner with $5,300 in retroactive charges

Hydro-Quebec back-billing arises from analogue meter errors and estimated consumption, leading to arrears for electricity usage; disputes over access, payment plans, and potential power diversion reviews can impact cottage owners near Gatineau.

 

Key Points

Hydro-Quebec back-billing recovers underbilled electricity from analogue meter errors or prolonged estimated use.

✅ Triggered by inaccurate analogue meters or missed readings

✅ Based on actual usage versus prior estimated consumption

✅ Payment plans may spread arrears; theft checks may adjust

 

A relaxing lakefront cottage has become a powerful source of stress for an Ottawa woman who Hydro-Quebec is charging $5,300 to cover what it says are years of undercharging for electricity usage.

The utility said an old analogue power meter is to blame for years of inaccurate electricity bills for the summer getaway near Gatineau, Que.

Separate from individual billing issues, Hydro-Quebec has also reported pandemic-related losses earlier this year.

Owner Jan Hodgins does not think she should be held responsible for the mistake, nor does she understand how her usage could have surged over the years.

“I’m very hydro conscious, because I was raised that way. When you left a room, you always turned the light out,” she told CTV Montreal on Wednesday, relating her shock after receiving some hefty bills from Hydro-Quebec on Sept. 22.

Hodgins said she mainly uses the cottage on weekends, does not heat the place when she is not there, and does not use a washer or dryer, to keep her energy footprint as small as possible. She’s owned the cottage for 14 years, during which she says her monthly bill has hovered around $40.

Hydro-Quebec said it has not had an accurate reading of her usage for several years, relying instead on consumption estimates to determine what she pays. The company recently reviewed her energy consumption back to 2014, and found their estimates were not accurate.

“In the past, she was consuming about 10 to 15 kilowatt hours per day. This summer she was more around 40 kilowatt hours per day,” Marc-Antoine Pouliot with Hydro-Quebec told CTV Ottawa.

Hodgins said that means her regular bill will now be more than twice the $200 her neighbours are paying for hydro each month, even with peak hydro rates in place.

Hydro-Quebec said it will correct the bill if its technicians discover that someone is illegally diverting power nearby.

Hodgins said it’s not her fault that technicians did not check her meter in person, and chose to rely on inaccurate estimates. Pouliot argues that reaching her cottage was too difficult.

“There was too much snow. There were conditions during the winter disconnection ban period, and the consequence was that people, our workers, were not able to reach the meter,” he said.

Hydro-Quebec said it is willing to stretch out the debt into monthly payments over a year, which Hodgins said amount to $440 per month on top of her regular bill.

Utilities also caution customers about scammers threatening shutoffs during billing disputes.

“I’m on a fixed income. I don’t have that kind of money. I’m completely distraught,” she said. “I don’t know what I’m going to do.”

 

Related News

View more

Turning thermal energy into electricity

Near-Field Thermophotovoltaics captures radiated energy across a nanoscale gap, using thin-film photovoltaic cells and indium gallium arsenide to boost power density and efficiency, enabling compact Army portable power from emitters via radiative heat transfer.

 

Key Points

A nanoscale TPV method capturing near-field photons for higher power density at lower emitter temperatures.

✅ Nanoscale gap boosts radiative transfer and usable photon flux

✅ Thin-film InGaAs cells recycle sub-band-gap photons via reflector

✅ Achieved ~5 kW/m2 power density with higher efficiency

 

With the addition of sensors and enhanced communication tools, providing lightweight, portable power has become even more challenging, with concepts such as power from falling snow illustrating how diverse new energy-harvesting approaches are. Army-funded research demonstrated a new approach to turning thermal energy into electricity that could provide compact and efficient power for Soldiers on future battlefields.

Hot objects radiate light in the form of photons into their surroundings. The emitted photons can be captured by a photovoltaic cell and converted to useful electric energy. This approach to energy conversion is called far-field thermophotovoltaics, or FF-TPVs, and has been under development for many years; however, it suffers from low power density and therefore requires high operating temperatures of the emitter.

The research, conducted at the University of Michigan and published in Nature Communications, demonstrates a new approach, where the separation between the emitter and the photovoltaic cell is reduced to the nanoscale, enabling much greater power output than what is possible with FF-TPVs for the same emitter temperature.

This approach, which enables capture of energy that is otherwise trapped in the near-field of the emitter is called near-field thermophotovoltaics or NF-TPV and uses custom-built photovoltaic cells and emitter designs ideal for near-field operating conditions, alongside emerging smart solar inverters that help manage conversion and delivery.

This technique exhibited a power density almost an order of magnitude higher than that for the best-reported near-field-TPV systems, while also operating at six-times higher efficiency, paving the way for future near-field-TPV applications, including remote microgrid deployments in extreme environments, according to Dr. Edgar Meyhofer, professor of mechanical engineering, University of Michigan.

"The Army uses large amounts of power during deployments and battlefield operations and must be carried by the Soldier or a weight constrained system," said Dr. Mike Waits, U.S. Army Combat Capabilities Development Command's Army Research Laboratory. "If successful, in the future near-field-TPVs could serve as more compact and higher efficiency power sources for Soldiers as these devices can function at lower operating temperatures than conventional TPVs."

The efficiency of a TPV device is characterized by how much of the total energy transfer between the emitter and the photovoltaic cell is used to excite the electron-hole pairs in the photovoltaic cell, where insights from near-light-speed conduction research help contextualize performance limits in semiconductors. While increasing the temperature of the emitter increases the number of photons above the band-gap of the cell, the number of sub band-gap photons that can heat up the photovoltaic cell need to be minimized.

"This was achieved by fabricating thin-film TPV cells with ultra-flat surfaces, and with a metal back reflector," said Dr. Stephen Forrest, professor of electrical and computer engineering, University of Michigan. "The photons above the band-gap of the cell are efficiently absorbed in the micron-thick semiconductor, while those below the band-gap are reflected back to the silicon emitter and recycled."

The team grew thin-film indium gallium arsenide photovoltaic cells on thick semiconductor substrates, and then peeled off the very thin semiconductor active region of the cell and transferred it to a silicon substrate, informing potential interfaces with home battery systems for distributed use.

All these innovations in device design and experimental approach resulted in a novel near-field TPV system that could complement distributed resources in virtual power plants for resilient operations.

"The team has achieved a record ~5 kW/m2 power output, which is an order of magnitude larger than systems previously reported in the literature," said Dr. Pramod Reddy, professor of mechanical engineering, University of Michigan.

Researchers also performed state-of-the-art theoretical calculations to estimate the performance of the photovoltaic cell at each temperature and gap size, informing hybrid designs with backup fuel cell solutions that extend battery life, and showed good agreement between the experiments and computational predictions.

"This current demonstration meets theoretical predictions of radiative heat transfer at the nanoscale, and directly shows the potential for developing future near-field TPV devices for Army applications in power and energy, communication and sensors," said Dr. Pani Varanasi, program manager, DEVCOM ARL that funded this work.

 

Related News

View more

Former B.C. Hydro CEO earns half a million without working a single day

B.C. Hydro Salary Continuance Payout spotlights executive compensation, severance, and governance at a Crown corporation after a firing, citing financial disclosure reports, Site C dam ties, and a leadership change under a new government.

 

Key Points

Severance-style pay for B.C. Hydro's fired CEO, via salary continuance and disclosed in public filings.

✅ $541,615 total compensation without working days

✅ Salary continuance after NDP firing; financial disclosures

✅ Later named Canada Post interim CEO amid strike

 

Former B.C. Hydro president and chief executive officer Jessica McDonald received a total of $541,615 in compensation during the 2017-2018 fiscal year, a figure that sits amid wider debates over executive pay at utilities such as Hydro One CEO pay at the provincial utility, without having worked a single day for the Crown corporation.

She earned this money under a compensation package after the in-coming New Democratic government of John Horgan fired her, a move comparable to Ontario's decision when the Hydro One CEO and board exit amid share declines. The previous B.C. Liberal government named her president and CEO of B.C. Hydro in 2014, and McDonald was a strong supporter of the controversial Site C dam project now going ahead following a review.

The current New Democratic government placed her on what financial disclosure documents call “salary continuance” effective July 21, 2017 — the day the government announced her departure — at a utility scrutinized in a misled regulator report that raised oversight concerns.

According to financial disclosure statements, McDonald remained on “salary continuance” until Sept. 21 of this year, and the utility has also been assessed in a deferred operating costs report released by the auditor general. During this period, she earned $272,659, a figure that includes benefits, pension and other compensation.

McDonald — who used to be the deputy minister to former premier Gordon Campbell — is now working for Canada Post, which appointed her as interim president and chief executive officer in March, while developments at Manitoba Hydro highlight broader political pressures on Crown utilities.

She started in her new role on April 2, 2018, and now finds herself in the middle of managing a postal carrier strike.

 

Related News

View more

Tube Strikes Disrupt London Economy

London Tube Strikes Economic Impact highlights transport disruption reducing foot traffic, commuter flows, and tourism, squeezing small businesses, hospitality revenue, and citywide growth while business leaders urge negotiations, resolution, and policy responses to stabilize operations.

 

Key Points

Reduced transport options cut foot traffic and sales, straining small businesses and slowing London-wide growth.

✅ Hospitality venues report lower revenue and temporary closures

✅ Commuter and tourism declines reduce daily sales and bookings

✅ Business groups urge swift negotiations to restore services

 

London's economy is facing significant challenges due to ongoing tube strikes, challenges that are compounded by scrutiny of UK energy network profits and broader cost pressures across sectors, with businesses across the city experiencing disruptions that are impacting their operations and bottom lines.

Impact on Small Businesses

Small businesses, particularly those in the hospitality sector, are bearing the brunt of the disruptions caused by the strikes. Many establishments rely on the steady flow of commuters and tourists that the tube system facilitates, while also hoping for measures like temporary electricity bill relief that can ease operating costs during downturns. With reduced transportation options, foot traffic has dwindled, leading to decreased sales and, in some cases, temporary closures.

Economic Consequences

The strikes are not only affecting individual businesses but are also having a ripple effect on the broader economy, a dynamic seen when commercial electricity consumption plummeted in B.C. during the pandemic. The reduced activity in key sectors is contributing to a slowdown in economic growth, echoing periods when BC Hydro demand fell 10% and prompting policy responses such as Ontario electricity rate reductions for businesses, with potential long-term consequences if the disruptions continue.

Calls for Resolution

Business leaders and industry groups are urging for a swift resolution to the strikes. They emphasize the need for dialogue between the involved parties to reach an agreement that minimizes further economic damage and restores normalcy to the city's transportation system.

The ongoing tube strikes in London are causing significant disruptions to the city's economy, particularly affecting small businesses that depend on the efficient movement of people. Immediate action is needed to address the issues, drawing on tools like a subsidized hydro plan used elsewhere to spur recovery, to prevent further economic downturn.

 

Related News

View more

In Europe, A Push For Electricity To Solve The Climate Dilemma

EU Electrification Strategy 2050 outlines shifting transport, buildings, and industry to clean power, accelerating EV adoption, heat pumps, and direct electrification to meet targets, reduce emissions, and replace fossil fuels with renewables and low-carbon grids.

 

Key Points

EU plan to cut emissions 95% by 2050 by electrifying transport, buildings and industry with clean power.

✅ 60% of final energy from electricity by 2050

✅ EVs dominate transport; up to 63% electric share

✅ Heat pumps electrify buildings; industry to 50% direct

 

The European Union has one of the most ambitious carbon emission reduction goals under the global Paris Agreement on climate change – a 95% reduction by 2050.

It seems that everyone has an idea for how to get there. Some are pushing nuclear energy. Others are pushing for a complete phase-out of fossil fuels and a switch to renewables.

Today the European electricity industry came out with their own plan, amid expectations of greater electricity price volatility in Europe in the coming years. A study published today by Eurelectric, the trade body of the European power sector, concludes that the 2050 goal will not be possible without a major shift to electricity in transport, buildings and industry.

The study finds that for the EU to reach its 95% emissions reduction target, electricity needs to cover at least 60 percent of final energy consumption by 2050. This would require a 1.5 percent year-on-year growth of EU electricity use, with evidence that EVs could raise electricity demand significantly in other markets, while at the same time reducing the EU’s overall energy consumption by 1.3 percent per year.

#google#

Transport is one of the areas where electrification can deliver the most benefit, because an electric car causes far less carbon emissions than a conventional vehicle, with e-mobility emerging as a key driver of electricity demand even if that electricity is generated in a fossil fuel power plant.

In the most ambitious scenario presented by the study, up to 63 percent of total final energy consumption in transport will be electric by 2050, and some analyses suggest that mass adoption of electric cars could occur much sooner, further accelerating progress.

Building have big potential as well, according to the study, with 45 to 63 percent of buildings energy consumption could be electric in 2050 by converting to electric heat pumps. Industrial processes could technically be electrified with up to 50 percent direct electrification in 2050, according to the study. The relative competitiveness of electricity against other carbon-neutral fuels will be the critical driver for this shift, but grid carbon intensity differs across markets, such as where fossil fuels still supply a notable share of generation.

 

Related News

View more

Nova Scotia Power says it now generates 30 per cent of its power from renewables

Nova Scotia Power Renewable Energy delivers 30% in 2018, led by wind power, hydroelectric and biomass, with coal and natural gas declining, as Muskrat Falls imports from Labrador target 40% renewables to cut emissions.

 

Key Points

It is the utility's 30% 2018 renewable mix and plan to reach 40% via Muskrat Falls while reducing carbon emissions.

✅ 18% wind, 9% hydro and tidal, 3% biomass in 2018

✅ Coal reliance fell from 76% in 2007 to 52% in 2018

✅ 58% carbon emissions cut from 2005 levels projected by 2030

 

Nova Scotia's private utility says it has hit a new milestone in its delivery of electricity from renewable resources, a trend highlighted by Summerside wind generation in nearby P.E.I.

Nova Scotia Power says 30 per cent of the electricity it produced in 2018 came from renewable sources such as wind power.

The utility says 18 per cent came from wind turbines, nine per cent from hydroelectric and tidal turbines and three per cent by burning biomass.

However, over half of the province's electrical generation still comes from the burning of coal or petroleum coke. Another 13 per cent come from burning natural gas and five per cent from imports, even as U.S. renewable generation hits record shares.

The utility says that since 2007, the province's reliance on coal-fired plants has dropped from 76 per cent of electricity generated to 52 per cent last year, as Prairie renewables growth accelerates nationally.

It says it expects to meet the province's legislated renewable target of 40 per cent in 2020, when it begins accessing hydroelectricity from the Muskrat Falls project in Labrador.

"We have made greener, cleaner energy a priority," utility president and CEO Karen Hutt said in a news release.

"As we continue to achieve new records in renewable electricity, we remain focused on ensuring electricity prices stay predictable and affordable for our customers, including solar customers across the province."

Nova Scotia Power also projects achieving a 58 per cent reduction in carbon emissions from 2005 levels by 2030.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.