Electrical Safety Authority Recognizes Eaton Leadership in Worker Safety


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Eaton Electrical Safety Award highlights Ontario Electrical Safety Authority recognition for worker safety, electrical safety compliance, and the I Choose Zero program, honoring Eaton's training, field service practices, and injury prevention across power systems operations.

 

Key Points

Recognition by Ontario's safety authority for Eaton programs to prevent electrical injuries and improve worker safety.

✅ Zero lost time injury goal via I Choose Zero program

✅ Mentor training and ongoing health and safety education

✅ Field service safety practices across power systems

 

Power management company Eaton was honored for its dedication to worker safety by the Ontario Electrical Safety Authority during its annual award program, reflecting broader industry recognition such as the Medicine Hat safety honor seen recently. Eaton’s Electrical Services and Systems team was one of four award recipients commended for its efforts in helping keep Ontario-based workers safe from electrical harm, a priority underscored by a worker electrocution case reported in Ontario. 

“At Eaton, safety comes first. This award recognizes that culture and commitment,” said Steve Boccadoro, senior vice president and general manager, Electrical Canada, at Eaton. “We are proud of our efforts to enhance safety that helped the Eaton Electrical Services and Systems team achieve one million hours without a lost time injury from August 2015 to January 2016, and are pleased to share this award with our employees.” 

The Electrical Safety Authority recognized Eaton’s “I Choose Zero” safety program efforts to achieve the goal of zero lost time due to injuries, align with other national safety awards across the sector, and enhance overall personnel safety in the workplace and at home. Eaton’s electrical safety efforts include mentor training programs, ongoing health and safety education, and its vigorous approach to safety in the field. 

“We have a robust and systematic approach to electrical safety and continue to invest in the education, programs and innovation, alongside federal investments in the electricity workforce, to enhance safety for our employees and customers,” said John Stampfel, vice president and general manager, Electrical Engineering Services and Systems Division, Eaton. “It is our commitment to safety and knowledge of electrical power systems that has enabled our record of successful projects that help to modernize aging electrical systems and build new ones not only in Ontario, but across the Americas.”

Eaton has one of the largest and most experienced teams of power system engineers and field service specialists in the industry, even as the sector works to attract more young Canadians to electricity careers in the years ahead. Eaton's Electrical Engineering Services and Systems team offers a comprehensive portfolio of services tailored for every stage of a power system’s life cycle, whether design, build or support. To learn more, visit www.eaton.com/service. 

Eaton’s electrical business is a global leader with expertise in power distribution and circuit protection; backup power protection; control and automation; lighting and security; structural solutions and wiring devices; solutions for harsh and hazardous environments; and engineering services. Eaton is positioned through its global solutions to answer today’s most critical electrical power management challenges.

Eaton is a power management company with 2015 sales of $20.9 billion. Eaton provides energy-efficient solutions that help our customers effectively manage electrical, hydraulic and mechanical power more efficiently, safely and sustainably. Eaton has approximately 95,000 employees and sells products to customers in more than 175 countries. For more information, visit www.eaton.com.

Related News

Ontario looks to build on electricity deal with Quebec

Ontario-Quebec Electricity Deal explores hydro imports, terawatt hours, electricity costs, greenhouse gas cuts, and baseload impacts, amid debates on Pickering nuclear operations and competitive procurement in Ontario's long-term energy planning.

 

Key Points

A proposed hydro import deal from Quebec, balancing costs, emissions, and reliability for Ontario electricity customers.

✅ Draft 20-year, 8 TWh offer reported by La Presse disputed

✅ Ontario seeks lower costs and GHG cuts versus alternatives

✅ Not a baseload replacement; Pickering closure not planned

 

Ontario is negotiating a possible energy swap agreement to buy electricity from Quebec, but the government is disputing a published report that it is preparing to sign a deal for enough electricity to power a city the size of Ottawa.

La Presse reported Tuesday that it obtained a copy of a draft, 20-year deal that says Ontario would buy eight terawatt hours a year from Quebec – about 6 per cent of Ontario’s consumption – whether the electricity is consumed or not.

Ontario Energy Minister Glenn Thibeault’s office said the province is in discussions to build on an agreement signed last year for Ontario to import up to two terawatt hours of electricity a year from Quebec.

 

But his office released a letter dated late last month to his Quebec counterpart, in which Mr. Thibeault said the offer extended in June was unacceptable because it would increase the average residential electricity bill by $30 a year.

“I am hopeful that your continued support and efforts will help to further discussions between our jurisdictions that could lead to an agreement that is in the best interest of both Ontario and Quebec,” Mr. Thibeault wrote July 27 to Pierre Arcand.

Ontario would prepare a “term sheet” for the next stage of discussions ahead of the two ministers meeting at the Energy and Mines Ministers Conference later this month in New Brunswick, Mr. Thibeault wrote.

Any future agreements with Quebec will have to provide a reduction in Ontario electricity rates compared with other alternatives and demonstrate measurable reductions in greenhouse gas emissions, he wrote.

Progressive Conservative Leader Patrick Brown said Ontario doesn’t need eight terawatt hours of additional power and suggested it means the Liberal government is considering closing power facilities such as the Pickering nuclear plant early.

A senior Energy Ministry official said that is not on the table. The government has said it intends to keep operating two units at Pickering until 2022, and the other four units until 2024.

Even if the Quebec offer had been accepted, the energy official said, that power wouldn’t have replaced any of Ontario’s baseload power because it couldn’t have been counted on 24 hours a day, 365 days a year.

The Society of Energy Professionals said Mr. Thibeault was right to reject the deal, but called on him to release the Long-Term Energy Plan – which was supposed to be out this spring – before continuing negotiations.

Some commentators have argued for broader reforms to address Ontario's hydro system challenges, urging policymakers to review all options as negotiations proceed.

The Ontario Energy Association said the reported deal would run counter to the government’s stated energy objectives amid concerns over electricity prices in the province.

“Ontarians will not get the benefit of competition to ensure it is the best of all possible options for the province, and companies who have invested in Ontario and have employees here will not get the opportunity to provide alternatives,” president and chief executive Vince Brescia said in a statement. “Competitive processes should be used for any new significant system capacity in Ontario.”

The Association of Power Producers of Ontario said it is concerned the government is even considering deals that would “threaten to undercut a competitive marketplace and long-term planning.”

“Ontario already has a surplus of energy, so it’s very difficult to see how this deal or any other sole-source deal with Quebec could benefit the province and its ratepayers,” association president and CEO David Butters said in a statement.

The Ontario Waterpower Association also said such a deal with Quebec would “present a significant challenge to continued investment in waterpower in Ontario.”

 

Related News

View more

U.S. Nonprofit Invests $250M in Electric Trucks for California Ports

California Ports Electric Truck Leasing accelerates zero-emission logistics, cutting diesel pollution at Los Angeles and Long Beach. A $250 million nonprofit plan funds heavy-duty EVs and charging infrastructure to improve air quality and community health.

 

Key Points

A nonprofit's $250M plan to lease EV trucks at LA/Long Beach ports to cut diesel emissions and improve air quality.

✅ $250M lease program for heavy-duty EVs at LA/Long Beach ports

✅ Cuts diesel emissions; improves air quality in nearby communities

✅ Requires robust charging infrastructure and OEM partnerships

 

In a significant move towards sustainable transportation, a prominent U.S. nonprofit has announced plans to invest $250 million in leasing electric trucks for operations at California ports. This initiative aims to reduce air pollution and promote greener logistics, responding to the urgent need for environmentally friendly solutions in the transportation sector.

Addressing Environmental Concerns

California’s ports, particularly the Port of Los Angeles and the Port of Long Beach, are among the busiest in the United States. However, they also contribute significantly to air pollution due to the heavy reliance on diesel trucks for cargo transport. These ports are essential for the economy, facilitating trade and commerce, but the environmental toll is considerable. Diesel emissions are linked to respiratory issues and other health problems in nearby communities, which often bear the brunt of pollution.

The nonprofit's investment in electric trucks is a critical step towards mitigating these environmental challenges. By transitioning to electric vehicles (EVs), the project aims to significantly cut emissions from port operations, contributing to California's broader goals of reducing greenhouse gas emissions and improving air quality.

The Scale of the Initiative

This ambitious initiative involves leasing a fleet of electric trucks that will operate within the ports and surrounding areas. The $250 million investment is expected to facilitate the acquisition of hundreds of electric vehicles, which will replace conventional diesel trucks used for cargo transport. This fleet will help demonstrate the viability and effectiveness of electric trucks in heavy-duty applications, paving the way for broader adoption.

The plan includes partnerships with established electric truck manufacturers, such as the Volvo VNR Electric platform, and local logistics companies to ensure seamless integration of these vehicles into existing operations. By collaborating with industry leaders, the initiative seeks to establish a model that can be replicated in other major logistics hubs across the country.

Economic and Community Benefits

The introduction of electric trucks is expected to yield multiple benefits, not only in terms of environmental impact but also economically. As these trucks begin operations, and as other fleets adopt electric mail trucks, they will create jobs within the green technology sector, from manufacturing to maintenance and charging infrastructure development. The project is anticipated to stimulate local economies, providing new opportunities in communities that have historically been disadvantaged by pollution.

Moreover, the initiative is poised to enhance public health. By reducing diesel emissions, the nonprofit aims to improve air quality for residents living near the ports, and emerging research links EV adoption to fewer asthma-related ER visits in local communities. This could lead to decreased healthcare costs associated with pollution-related illnesses, benefiting both the community and the healthcare system.

Challenges Ahead

While the initiative is promising, challenges remain. The successful implementation of electric trucks at scale requires a robust charging infrastructure capable of supporting the significant power needs of a large fleet. Additionally, the transition from diesel to electric vehicles involves significant upfront costs, even with leasing arrangements. Ensuring that logistics companies can manage these costs effectively will be crucial for the project's success.

Furthermore, electric trucks currently face limitations in terms of range and payload capacity compared to their diesel counterparts. Continued advancements in battery technology and infrastructure development will be necessary to fully realize the potential of electric vehicles in heavy-duty applications.

The Bigger Picture

This investment in electric trucks aligns with broader national and global efforts to combat climate change. As governments and organizations commit to reducing carbon emissions, initiatives like this one represent crucial steps toward achieving sustainability goals, and ports worldwide are also piloting complementary technologies like hydrogen-powered cranes to decarbonize cargo handling.

California has set ambitious targets for reducing greenhouse gas emissions, including a mandate for all new trucks to be zero-emission by 2045. The nonprofit’s investment not only supports these goals, amid ongoing debates over funding priorities in the state, but also serves as a pilot program that could inform future policies and investments in clean transportation.

The $250 million investment in electric trucks for California ports marks a significant milestone in the push for sustainable transportation solutions. By addressing the urgent need for cleaner logistics, this initiative stands to benefit the environment, public health, and the economy. As the project unfolds, it will be closely watched as a potential model for similar efforts across the country and beyond, with developments such as the all-electric berth at London Gateway illustrating parallel advances, highlighting the critical intersection of innovation, sustainability, and community well-being in the modern logistics landscape.

 

Related News

View more

The Rise of Data Centers in Alberta

Alberta Data Centers fuel the digital economy with cloud computing, AI, and streaming, leveraging renewable energy and low-cost power; yet grid capacity, sustainability, efficient cooling, and regulatory frameworks remain critical considerations for reliable growth.

 

Key Points

Alberta facilities for cloud, AI, and digital services, balancing energy demand, renewable power, and grid reliability.

✅ Low electricity costs and renewables attract hyperscale builds

✅ Grid upgrades needed to meet rising, 24/7 workloads and cooling

✅ Workforce training aligns with IT, HVAC, and electrical roles

 

As Alberta continues to evolve its energy landscape, the recent surge in data center projects is making headlines. With companies investing heavily in this sector, Alberta is positioning itself as a key player in the digital economy. This trend, however, brings both opportunities and challenges that need careful consideration.

The Digital Economy Boom

Data centers are essential for supporting the growing demands of the digital economy, which includes everything from cloud computing to streaming services and artificial intelligence. As businesses increasingly rely on digital infrastructure, the need for reliable and efficient data centers has skyrocketed. Alberta has become an attractive destination for these facilities due to its relatively low electricity costs, abundant renewable energy resources, and favorable regulatory environment, according to a 2023 clean grids outlook that highlighted the province.

The influx of major tech companies establishing data centers in Alberta not only promises job creation but also contributes to the provincial economy. With investments pouring in, local businesses may see increased opportunities for partnerships, supplies, and services, ultimately benefiting the broader economic landscape, though proposed market changes could influence procurement and siting decisions.

Energy Demand and Infrastructure

While the growth of data centers can drive economic benefits, it also raises important questions about energy demand and infrastructure capacity, questions that have intensified since Kenney-era electricity changes in the sector. Data centers are energy-intensive, often requiring significant amounts of electricity to operate and cool their servers. As these facilities multiply, they will place additional pressure on Alberta's power grid.

The province has made strides in transitioning to renewable energy sources, with a defined path to clean electricity that aligns well with the goals of many data center operators seeking to reduce their carbon footprint. However, the challenge lies in ensuring that the electricity grid can meet the increasing demand without compromising reliability. The integration of more renewable energy into the grid requires careful planning and investment in infrastructure to handle variable supply and maintain a stable energy flow.

Environmental Concerns

The environmental implications of expanding data centers are also a point of concern. While many tech companies prioritize sustainability and aim for carbon neutrality, the reality is that increased energy consumption can contribute to greenhouse gas emissions if not managed properly, especially when regional export restrictions constrain low-carbon power flows. Alberta’s reliance on fossil fuels for a significant portion of its energy supply raises questions about how these data centers will impact the province's climate goals.

To address these concerns, there is a need for policies that encourage the use of renewable energy sources specifically for data center operations. Incentives for companies to invest in green technologies, such as energy-efficient cooling systems or on-site renewable energy generation, could help mitigate the environmental impact.

Workforce Development

Another critical aspect of this data center boom is the potential for job creation. Data centers require a range of skilled workers, from IT professionals to engineers and maintenance staff. However, there is a pressing need for workforce development initiatives to ensure that Albertans are equipped with the necessary skills to fill these roles.

Educational institutions and training programs must adapt to the changing demands of the job market. Collaborations between tech companies and local colleges can foster specialized training programs that prepare workers for careers in this evolving sector. By investing in workforce development, Alberta can maximize the benefits of data center growth while ensuring that its residents are prepared for the jobs of the future.

The Future of Alberta's Data Center Landscape

Looking ahead, Alberta’s data center landscape is poised for continued growth. The province's commitment to diversifying its economy, coupled with its abundant energy resources, makes it an appealing choice for tech companies. However, as the industry expands, careful consideration must be given to energy management, environmental impact, and workforce readiness, especially as Alberta changes how it produces and pays for electricity.

Regulatory frameworks will play a crucial role in shaping the future of data centers in Alberta, as the province pursues a market overhaul that could affect costs and reliability. Policymakers will need to balance the interests of businesses, environmental concerns, and the need for a reliable energy supply. By creating a supportive environment for innovation while addressing these challenges, Alberta can emerge as a leader in the digital economy.

The rise of data centers in Alberta marks an exciting chapter in the province's economic evolution. With the potential for job creation, technological advancement, and economic diversification, the opportunities are significant. However, it is essential to navigate the associated challenges thoughtfully. By prioritizing sustainability, infrastructure investment, and workforce development, Alberta can harness the full potential of this burgeoning sector, positioning itself as a key player in the global digital landscape.

 

Related News

View more

Illinois electric utility publishes online map of potential solar capacity

ComEd Hosting Capacity Map helps Illinois communities assess photovoltaic capacity, distributed energy resources, interconnection limits, and grid planning needs, guiding developers and policymakers on siting solar, net metering feasibility, and RPS-aligned deployment by circuit.

 

Key Points

An online tool showing circuit-level DER capacity, PV limits, and interconnection readiness across ComEd.

✅ Circuit-level estimates of solar hosting capacity

✅ Guides siting, interconnection, and net metering

✅ Supports RPS goals with grid planning insights

 

As the Illinois solar market grows from the Future Energy Jobs Act, the largest utility in the state has posted a planning tool to identify potential PV capacity in their service territory. ComEd, a Northern Illinois subsidiary of Exelon, has a hosting capacity website for its communities indicating how much photovoltaic capacity can be sited in given areas, based on the existing electrical infrastructure, as utilities pilot virtual power plant programs that leverage distributed resources.

According to ComEd’s description, “Hosting Capacity is an estimate of the amount of DER [distributed energy resources] that may be accommodated under current configurations at the overall circuit level without significant system upgrades to address adverse impacts to power quality or reliability.” This website will enable developers and local decision makers to estimate how much solar could be installed by township, sections and fractions of sections as small as ½ mile by ½ mile and to gauge EV charging impacts with NREL's projection tool for distribution planning. The map sections indicate potential capacity by AC kilowatts with a link to to ComEd’s recently upgraded Interconnection and Net Metering homepage.

The Hosting Map can provide insight into how much solar can be installed in which locations in order to help solar reach a significant portion of the Illinois Renewable Portfolio Standard (RPS) of 25% electricity from renewable sources by 2025, and to plan for transportation electrification as EV charging infrastructure scales across utility territories. For example, the 18 sections of Oak Park Township capacity range from 612 to 909 kW, and total 13,260 kW of photovoltaic power. That could potentially generate around 20 million kWh, and policy actions such as the CPUC-approved PG&E EV program illustrate how electrification initiatives may influence future demand. Oak Park, according to the PlanItGreen Report Card, a joint project of the Oak Park River Forest Community Foundation and Seven Generations Ahead, uses about 325 million kWh.

Based on ComEd’s Hosting Capacity, Oak Park could generate about 6% of its electricity from solar power located within its borders. Going significantly beyond this amount would likely require a combination of upgrades by ComEd’s infrastructure, potentially higher interconnection costs and deployment of technologies like energy storage solutions. What this does indicate is that a densely populated community like Oak Park would most likely have to get the majority of its solar and renewable electricity from outside its boundaries to reach the statewide RPS goal of 25%. The Hosting Capacity Map shows a considerable disparity among communities in ½ mile by ½ mile sections with some able to host only 100-200 kWs to some with capacities of over 3,000 kW.

 

Related News

View more

After alert on Russian hacking, a renewed focus on protecting U.S. power grid

U.S. Power Grid Cybersecurity combats DHS-FBI flagged threats to energy infrastructure, with PJM Interconnection using ICS/SCADA segmentation, phishing defenses, incident response, and resilience exercises against Russia-linked attacks and pipeline intrusions.

 

Key Points

Strategies, controls, and training that protect U.S. electric infrastructure from cyber threats and disruptions.

✅ ICS/SCADA network segmentation and zero-trust architecture

✅ Employee phishing drills and incident response playbooks

✅ DOE-led grid exercises and threat intelligence sharing

 

The joint alert from the FBI and Department of Homeland Security last month warning that Russia was hacking into critical U.S. energy infrastructure, as outlined in six essential reads on Russian hacks from recent coverage, came as no surprise to the nation’s largest grid operator, PJM Interconnection.

“You will never stop people from trying to get into your systems. That isn’t even something we try to do.” said PJM Chief Information Officer, Tom O’Brien. “People will always try to get into your systems. The question is, what controls do you have to not allow them to penetrate? And how do you respond in the event they actually do get into your system?”

PJM is the regional transmission organization for 65 million people, covering 13 states, including Pennsylvania, and Washington D.C.

On a rainy day in early April, about 10 people were working inside PJM’s main control center, outside Philadelphia, closely monitoring floor-to-ceiling digital displays showing real-time information from the electric power sector throughout PJM’s territory in the mid-Atlantic and parts of the midwest, amid reports that hackers accessed control rooms at U.S. utilities.

#google#

Donnie Bielak, a reliability engineering manager, was overseeing things from his office, perched one floor up.

“This is a very large, orchestrated effort that goes unnoticed most of the time,” Bielak said. “That’s a good thing.”

But the industry certainly did take notice in late 2015 and early 2016, when hackers successfully disrupted power to the Ukrainian grid. The outages lasted a few hours and affected about 225,000 customers. It was the first publicly-known case of a cyber attack causing major disruptions to a power grid. It was widely blamed on Russia.

One of the many lessons of the Ukraine attacks was a reminder to people who work on critical infrastructure to keep an eye out for odd communications.

“A very large percentage of entry points to attacks are coming through emails,” O’Brien said. “That’s why PJM, as well as many others, have aggressive phishing campaigns. We’re training our employees.”

O’Brien doesn’t want to get into specifics about how PJM deals with cyber threats. But one common way to limit exposure is by having separate systems: For example, industrial controls in a power plant are not connected to corporate business networks, a separation underscored after breaches at U.S. power plants prompted reviews across the sector.

Since 2011, North American grid operators and government agencies have also done large, security exercises every two years. Thousands of people practice how they’d respond to a coordinated physical or cyber event, including rising substation attacks that highlight resilience gaps.

So far, nothing like that has happened in the U.S. It’s possible, but not likely, according to Robert M. Lee, a former military intelligence analyst, who runs the industrial cybersecurity firm Dragos.

“The more complex the system, the harder it is to have a scalable attack,” said Lee, who co-authored a report analyzing the Ukraine attacks. “If you wanted to take out a power generation station– that isn’t the most complex thing. Let’s say you cause an hour of outage. But now you want to cause two months of outages? That’s an exponential increase in effort required.”

For example, he said, it would very difficult for hackers to knock out power to the entire east coast for a long time. But briefly disrupting a major city is easier. That’s the sort of thing that keeps him up at night.

“I worry about an adversary getting into, maybe, Washington D.C.’s portion of the grid, taking down power for 30 minutes,” he said.

The Department of Energy is creating a new office focused on cybersecurity and emergency response, following the U.S. government’s condemnation of power grid hacking by Russia.

Deterrence may be one reason why there has not yet been a major attack on the U.S. grid, said John MacWilliams, a former senior DOE official who’s now a fellow at Columbia University’s Center on Global Energy Policy.

“That’s obviously an act of war,” he said. “We have the capability of responding either through cyber mechanisms or kinetic military.”

In the meantime, small-scale incidents keep happening.

This spring, another cyber attack targeted natural gas pipelines. Four companies shut down their computer systems, just in case, but they say no service was disrupted.

 

Related News

View more

Federal government spends $11.8M for smart grid technology in Sault Ste. Marie

Sault Ste. Marie Smart Grid Investment upgrades PUC Distribution infrastructure with federal funding, clean energy tech, outage reduction, customer insights, and reliability gains, creating 140 jobs and attracting industry to a resilient, efficient grid.

 

Key Points

A federally funded PUC Distribution project to modernize the citywide grid, cut outages, boost efficiency, and create jobs.

✅ $11.8M federal funding to PUC Distribution

✅ Citywide smart grid cuts outages and energy loss

✅ 140 jobs; attracts clean tech and industry

 

PUC Distribution Inc. in Sault Ste. Marie is receiving $11.8 million from the federal government to invest in infrastructure, as utilities nationwide have faced pandemic-related losses that underscore the need for resilient systems.

The MP for the riding, Terry Sheehan, made the announcement on Monday.

The money will go to the utility's smart grid project, where technologies like a centralized SCADA system can enhance situational awareness and control.

"This smart grid project offers a glimpse into our clean energy future and represents a new wave of economic activity for the region," Sheehan said.

"Along with job creation, new industries will be attracted to a modern grid, supported by stable electricity pricing that helps competitiveness, all while helping the environment."

His office says the investment will allow the utility to reduce outages, provide more information to customers to help make smarter electricity use choices, aligned with Ontario's energy-efficiency programs that encourage conservation, and offer more services.

"This is an innovative project that makes Sault Ste. Marie a leader," mayor Christian Provenzano said.

"We will be the first city in our country to implement a community-wide smart grid. Once it is complete, the smart grid will make our energy infrastructure more reliable, reduce energy loss and lead to a more innovative economy for our community."

The project will also create 140 new jobs.

"As a community-focused utility, we are always looking for innovative ways to help our customers save money amid concerns about hydro disconnections during winter, and reduce their carbon footprint," Rob Brewster, president and CEO of PUC Distribution said.

"The investment the government has made in our community will not only help modernize our city's electrical distribution system [as] once the project is complete, Sault Ste. Marie will have access to an electricity grid that can handle the growing demands of a city in the 21st century."

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.