Super Grid: a possibility or simply a pipe dream?

By EnergyBiz Insider


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
With all the recent discussion of a national or "super" grid by the federal politicians, it's easy to forget that the idea is not new. In fact, the concept of a wide-area transmission network enabling the trading of high volumes of electricity across vast distances dates back to the 1960s when Europe began unifying its system.

The concept behind the super grid, or mega grid, is simple: the build-out and management of inter-system and cross-national linkages between electric transmission systems, using either conventional or superconducting cables that have both been suggested in various proposals and smaller pilot projects. The benefits include connecting renewable energy generators to distant electricity markets, removing various congestion problems, and improving the ability to handle intermittent energy sources, such as wind and solar, by balancing them across vast regions.

Over the ensuing years, the quest to link distantly located renewable electricity sources — such as hydro, wind and solar — via long-distance transmission lines to other geographic areas consuming the power has evolved and developed to take advantage of advancing technology, such as high voltage direct current.

Steven Pullins, president and chief executive officer of Horizon Energy Group, says the premise for long-distance generation has changed over the past decade. "The premise has moved from moving cheap generation at point A to load centers at point B, to obtaining access to remote renewable energy at point A to load centers at point B."

Renewable resources are the differentiator between the super grid of the past and today's vision, says Richard Lordan, the Electric Power Research Institute's technical director of power delivery and utilization. He says a high-voltage superhighway could support wind integration in three ways: First, it could be used to tie wind farms together, as wind can vary widely from region to region, and a bulk transmission system could smooth out its intermittent nature. Second, it could be used to transmit power from the wind farms to the load centers. Finally, it could reach out and connect to balancing sources such as energy storage plants or demand response centers.

To date, the chief obstacles to any general national transmission grid plan have been the significant cost, as well as local NIMBY opposition to siting new transmission lines. However, with regions more connected now than ever before by regional transmission organizations, and competitive merchant generators now also branching out on competitive merchant transmission lines, the possibility of a workable super grid is within reach. There are hurdles to be conquered first, though, which may still prove difficult without legislation delineating state and federal responsibilities in managing a national super grid.

A super grid is technically feasible, according to Pullins. The question, though, isn't whether it's feasible, but whether it's the best plan. "Just because we can does not mean we should. With the growth of distributed energy resources, local solutions to peak load, and a new drive for conservation and energy efficiency, a super grid for long-distance transmission seems less important in the overall picture. This is a strategic question that our industry has talked around, but not addressed straight on yet."

Lordan feels there are other hurdles, too.

"The challenge will be in how the costs are allocated so that those who benefit pay accordingly. Areas with abundant wind will benefit because they have access to customers for their product, and load centers on the coasts benefit by having access to low-cost, clean power. However, the stakeholders in between may not receive the benefit of low-cost wind. They may only get the high-voltage transmission line crossing through the region."

The federal government seems to be looking seriously at its possibilities. U.S. Secretary of Energy and Nobel laureate Dr. Steven Chu has long been an advocate of a national, high-voltage electricity super grid, and even pitched the idea to Samuel Bodman, George W. Bush's energy secretary, as early as 2005. Chu recently reiterated his interest in a high voltage transmission system, calling it "much more efficient transmission."

North Dakota Sen. Byron Dorgan, chairman of the Senate committee on appropriations' subcommittee on energy and water, has said there is an "absolute need" to connect the United States. Citing planning, siting and pricing as issues: "There needs to be a 'connect America' transmission system and we don't have it. If you don't solve all three of them, it won't work."

Pullins feels a super grid development strategy in the United States will likely be led by the regional transmission organizations and independent system operators. That is because of their particular skills in integrated resource planning. But the primary development, he says, will come from a merchant transmission community.

"There are a couple of reasons for this, but primarily the substantial investment requirement will be beyond the willingness of the investor-owned utilities, municipals and cooperatives to risk," Pullins says. "Hence, merchant transmission companies will be the way the industry manages the large capital project risk. This also separates the inevitable question of who benefits and who pays from the IOUs, municipals, and cooperatives where state and local stakeholders are active."

Almost from the first days of speculation about what the American Recovery and Reinvestment Act might hold for the electricity industry, the concepts of smart grid and super grid have melded in public perception. Indeed, incorporating intelligent control technologies in a super grid may require changes to the status quo.

"A super grid strategy will have to address the nexus of a large renewable penetration and substantial distributed resources reflecting from the distribution level into the transmission operations," Pullins says. "I believe this will require a much more distributed control philosophy than the transmission controls can handle today."

Related News

Energy dashboard: how is electricity generated in Great Britain?

Great Britain electricity generation spans renewables and baseload: wind, solar, nuclear, gas, and biomass, supported by National Grid interconnectors, embedded energy estimates, and BMRS data for dynamic imports and exports across Europe.

 

Key Points

A diverse, weather-driven mix of renewables, gas, nuclear, and imports coordinated by National Grid.

✅ Baseload from nuclear and biomass; intermittent wind and solar

✅ Interconnectors trade zero carbon imports via subsea cables

✅ Data from BMRS and ESO covers embedded energy estimates

 

Great Britain has one of the most diverse ranges of electricity generation in Europe, with everything from windfarms off the coast of Scotland to a nuclear power station in Suffolk tasked with keeping the lights on. The increasing reliance on renewable energy sources, as part of the country’s green ambitions, also means there can be rapid shifts in the main source of electricity generation. On windy days, most electricity generation comes from record wind generation across onshore and offshore windfarms. When conditions are cold and still, gas-fired power stations known as peaking plants are called into action.

The electricity system in Great Britain relies on a combination of “baseload” power – from stable generators such as nuclear and biomass plants – and “intermittent” sources, such as wind and solar farms that need the right weather conditions to feed energy into the grid. National Grid also imports energy from overseas, through subsea cables known as interconnectors that link to France, Belgium, Norway and the Netherlands. They allow companies to trade excess power, such as renewable energy created by the sun, wind and water, between different countries. By 2030 it is hoped that 90% of the energy imported by interconnectors will be from zero carbon energy sources, though low-carbon electricity generation stalled in 2019 for the UK.

The technology behind Great Britain’s power generation has evolved significantly over the last century, and at times wind has been the main source of electricity. The first integrated national grid in the world was formed in 1935 linking seven regions of the UK. In the aftermath of industrialisation, coal provided the vast majority of power, before oil began to play an increasingly important part in the 1950s. In 1956, the world’s first commercial nuclear reactor, Calder Hall 1 at Windscale (later Sellafield), was opened by Queen Elizabeth II. Coal use fell significantly in the 1990s while the use of combined cycle gas turbines grew, and in 2016 wind generated more electricity than coal for the first time. Now a combination of gas, wind, nuclear and biomass provide the bulk of Great Britain’s energy, with smaller sources such as solar and hydroelectric power also used. From October 2024, coal will no longer be used to generate electricity, following coal-free power records set in recent years.

Energy generation data is fetched from the Balancing Mechanism Reporting Service public feed, provided by Elexon – which runs the wholesale energy market – and is updated every five minutes, covering periods when wind led the power mix as well.

Elexon’s data does not include embedded energy, which is unmetered and therefore invisible to Great Britain’s National Grid. Embedded energy comprises all solar energy and wind energy generated from non-metered turbines. To account for these figures we use embedded energy estimates from the National Grid electricity system operator, which are published every 30 minutes.

Import figures refer to the net flow of electricity from the interconnectors with Europe and with Northern Ireland. A positive value represents import into the GB transmission system, while a negative value represents an export.

Hydro figures combine renewable run-of-the-river hydropower and pumped storage.

Biomass figures include Elexon’s “other” category, which comprises coal-to-biomass conversions and biomass combined heat and power plants.

 

Related News

View more

Quebec's electricity ambitions reopen old wounds in Newfoundland and Labrador

Quebec Churchill Falls power deal renewal spotlights Hydro-Que9bec's Labrador hydroelectricity, Churchill River contract extension, Gull Island prospects, and Innu Nation rights, as demand from EV battery manufacturing and the green economy outpaces provincial supply.

 

Key Points

Extending Quebec's low-price Churchill Falls contract to secure Labrador hydro and address Innu Nation rights.

✅ 1969 contract delivers ~30 TWh at very low fixed price.

✅ Newfoundland seeks higher rates, equity, and consultation.

✅ Innu Nation demands benefits, consent, and land remediation.

 

As Quebec prepares to ramp up electricity production to meet its ambitious economic goals, the government is trying to extend a power deal that has caused decades of resentment in Newfoundland and Labrador.

Around 15 per cent of Quebec's electricity comes from the Churchill Falls dam in Labrador, through a deal set to expire in 2041 that is widely seen as unfair. Quebec Premier François Legault not only wants to extend the agreement, he wants another dam on the Churchill River and, for now, has closed the door on nuclear power as an option to help make his province what he has called a "world leader for the green economy."

But renewing that contract "won't be easy," Normand Mousseau, scientific director of the Trottier Energy Institute at Polytechnique Montréal, said in a recent interview. Extending the Churchill Falls deal is not essential to meet Quebec's energy plans, but without it, Mousseau said, "we would have some problems."

The Legault government is enticing global companies, such as manufacturers of electric vehicle batteries, to set up shop in the province and access its hydroelectricity. But demand for Quebec's power has exceeded its supply, and Ontario has chosen not to renew a power-purchase deal with Quebec, limiting the government's vision.

Last month, Quebec's hydro utility released its strategic plan calling for a production increase of 60 terawatt hours by 2035, which represents the installed capacity of three of Hydro-Québec's largest facilities. Churchill Falls produces roughly 30 terawatt hours, and Quebec would need to replace that power if it can't strike a deal to extend the contract, Mousseau said.

If Quebec wants to keep buying power from Churchill Falls, the government is going to have to pay more, said Mousseau, who is also a physics professor at Université de Montréal. "We're paying one-fifth of a cent a kilowatt hour — that's not much," he said.

Under the 1969 contract, Quebec assumed most of the financial risk of building the Churchill Falls dam in exchange for the right to buy power at a fixed price. The deal has generated more than $28 billion for Hydro-Québec; it has returned $2 billion to Newfoundland and Labrador.

That lopsided deal has stoked anti-Quebec sentiment in Newfoundland and Labrador and contributed to nationalist politics, including threats of separation from Canada around a decade and a half ago, when Danny Williams was premier, said Jerry Bannister, a history professor at Dalhousie University.

"We tend to forget what it was like during the Williams era — he hauled down the Canadian flag," Bannister said. "There was a type of angry, combative nationalism which defined energy development. And particularly Muskrat Falls, it was payback, it was revenge."

Power from the Muskrat Falls generating station, also on the Churchill River, would be sold to Nova Scotia instead of Quebec. But that project has suffered technical problems and cost overruns since, and as of June 29, the price of Muskrat Falls had reached $13.5 billion; the province had estimated the total cost would be $7.4 billion when it sanctioned the project in 2012.

Anti-Quebec feelings may have subsided, but Bannister said the Churchill Falls deal continues to influence Newfoundland politics.

In September, Premier Andrew Furey said Legault would have to show him the money(opens in a new tab) to extend th Legault's office said Tuesday that discussions are ongoing, while the Newfoundland and Labrador government said in an emailed statement Thursday that it wants to maximize the value of its "assets and future opportunities" along the Churchill River.

Whatever negotiations are happening, Grand Chief Simon Pokue of the Innu Nation of Labrador(opens in a new tab) said he has been left out of them.

Churchill Falls flooded 6,500 square kilometres of traditional Innu land, Pokue said, adding that in response, the Innu Nation filed a $4 billion lawsuit against Hydro-Québec in 2020, which is ongoing.

"A lot of damage has been done to our lands, our land is flooded and we'll never see it again," Pokue said in a recent interview. "Nobody will ever repair that."

As well, a portion of Muskrat Falls profits was supposed to go to the Innu Nation, but the cost overruns and a refinancing deal between the federal government and Newfoundland and Labrador have limited whatever money they will see.

If Legault wants another dam on the Churchill River, at Gull Island, the Innu Nation needs to be paid the kind of money it was expecting from Muskrat Falls, he said.

"You did it once, but you're not going to do it again," Pokue said. "It's not going to start until we are consulted and involved."

Meanwhile, Quebec may face competition for Churchill Falls power, Mousseau said, with at least one Labrador mining company expressing interest in buying a significant portion of its output — though he added that the dam's capacity could be increased. The low price paid by Quebec has meant there has been little incentive to upgrade the plant's turbines.

As demand for electricity rises across the country, Mousseau said he thinks it would be better for provinces to work together, sharing expertise and costs, for example through NB Power deals to import more Quebec electricity as they look across provincial borders to find the best locations for projects, rather than acting as rivals.

"We need to talk and work with other provinces, and some propose an independent planning body to guide this, but for this you need to build confidence, and there's no confidence from the Newfoundland side with respect to Quebec," he said. "So that's a challenge: how do you work on this relationship that has been broken for 50 years?"e contract, but the two premiers have said little since.

 

Related News

View more

Duke Energy Florida to build its largest battery storage projects yet

Duke Energy Florida battery storage will add 22 MW across Trenton, Cape San Blas and Jennings, improving grid reliability, outage resilience, enabling peak shaving and deferring distribution upgrades to increase efficiency and customer value.

 

Key Points

Three lithium battery projects totaling 22 MW to improve Florida grid reliability, outage resilience and efficiency.

✅ 22 MW across Trenton, Cape San Blas and Jennings sites

✅ Enhances outage resilience and grid reliability

✅ Defers costly distribution upgrades and improves efficiency

 

Duke Energy Florida (DEF) has announced three battery energy storage projects, totaling 22 megawatts, that will improve overall reliability and support critical services during power outages.

Duke Energy, the nation's largest electric utility, unveils its new logo. (PRNewsFoto/Duke Energy) (PRNewsfoto/Duke Energy)

Collectively, the storage facilities will enhance grid operations, increase efficiencies and improve overall reliability for surrounding communities, with virtual power plant programs offering a model for coordinating distributed resources.

They will also provide important backup generation during power outages, a service that is becoming increasingly important with the number and intensity of storms that have recently impacted the state.

As the grid manager and operator, DEF can maximize the versatility of battery energy storage systems (BESS) to include multiple customer and electric system benefits such as balancing energy demand, managing intermittent resources, increasing energy security and deferring traditional power grid upgrades.

These benefits help reduce costs for customers and increase operational efficiencies.

The 11-megawatt (MW) Trenton lithium-based battery facility will be located 30 miles west of Gainesville in Gilchrist County. The energy storage project will continue to improve power reliability using newer technologies.

The 5.5-MW Cape San Blas lithium-based battery facility will be located approximately 40 miles southeast of Panama City in Gulf County. The project will provide additional power capacity to meet our customers' rising energy demand in the area. This project is an economical alternative to replacing distribution equipment necessary to accommodate local load growth.

The 5.5-MW Jennings lithium-based battery facility will be located 1.5 miles south of the Florida-Georgia border in Hamilton County. The project will continue to improve power reliability through energy storage as an alternative solution to installing new and more costly distribution equipment.

Currently the company plans to complete all three projects by the end of 2020.

"These battery projects provide electric system benefits that will help improve local reliability for our customers and provide significant energy services to the power grid," said Catherine Stempien, Duke Energy Florida state president. "Duke Energy Florida will continue to identify opportunities in battery storage technology which will deliver efficiency improvements to our customers."

 

Additional renewables projects

As part of DEF's commitment to renewables, the company is investing an estimated $1 billion to construct or acquire a total of 700 MW of cost-effective solar power facilities and 50 MW of battery storage through 2022.

Duke Energy is leading the industry deployment of battery technology, with SDG&E's Emerald Storage project underscoring broader adoption across the sector today. Last fall, the company and University of South Florida St. Petersburg unveiled a Tesla battery storage system that is connected to a 100-kilowatt (kW) solar array – the first of its kind in Florida.

This solar-battery microgrid system manages the energy captured by the solar array, situated on top of the university's parking garage, and similar low-income housing microgrid financing efforts are expanding access. The solar array was constructed three years ago through a $1 million grant from Duke Energy. The microgrid provides a backup power source during a power outage for the parking garage elevator, lights and electric vehicle charging stations. Click here to learn more.

In addition to expanding its battery storage technology and solar investments, DEF is investing in transportation electrification to support the growing U.S. adoption of electric vehicles (EV), including EV charging infrastructure, 530 EV charging stations and a modernized power grid to deliver the diverse and reliable energy solutions customers want and need.

 

Related News

View more

Solar farm the size of 313 football fields to be built at Edmonton airport

Airport City Solar Edmonton will deliver a 120-megawatt, 627-acre photovoltaic, utility-scale renewable energy project at EIA, creating jobs, attracting foreign investment, and supplying clean power to Fortis Alberta and airport distribution systems.

 

Key Points

A 120 MW, 627-acre photovoltaic solar farm at EIA supplying clean power to Fortis Alberta and airport systems.

✅ 120 MW utility-scale project over 627 acres at EIA

✅ Feeds Fortis Alberta and airport distribution networks

✅ Drives jobs, investment, and regional sustainability

 

A European-based company is proposing to build a solar farm bigger than 300 CFL football fields at Edmonton's international airport, aligning with Alberta's red-hot solar growth seen across the province.

Edmonton International Airport and Alpin Sun are working on an agreement that will see the company develop Airport City Solar, a 627-acre, 120-megawatt solar farm that reflects how renewable power developers combine resources for stronger projects on what is now a canola field on the west side of the airport lands.

The solar farm will be the largest at an airport anywhere in the world, EIA said in a news release Tuesday, in a region that also hosts the largest rooftop solar array at a local producer.

"It's a great opportunity to drive economic development as well as be better for the environment," Myron Keehn, vice-president, commercial development and air service at EIA, told CBC News, even as Alberta faces challenges with solar expansion that require careful planning.

"We're really excited that [Alpin Sun] has chosen Edmonton and the airport to do it. It's a great location. We've got lots of land, we're geographically located north, which is great for us, because it allows us to have great hours of sunlight.

"As everyone knows in Edmonton, you can golf early in the morning or golf late at night in the summertime here. And in wintertime it's great, because of the snow, and the reflective [sunlight] off the snow that creates power as well."

Airport official Myron Keehn says the field behind him will become home to the world's largest solar farm at an airport. (Scott Neufeld/CBC)

The project will "create jobs, provide sustainable solar power for our region and show our dedication to sustainability," Tom Ruth, EIA president and CEO, said in the news release, while complementing initiatives by Ermineskin First Nation to expand Indigenous participation in electricity generation.

Construction is expected to begin in early 2022, as new solar facilities in Alberta demonstrate lower costs than natural gas. The solar farm would be operational by the end of that year, the release said. 

Alpin Sun says the project will bring in $169 million in foreign investment to the Edmonton metro region amid federal green electricity contracts that are boosting market certainty. 

Power generated by Airport City Solar will feed into Fortis Alberta and airport distribution systems.

 

Related News

View more

Octopus Energy Makes Inroads into US Renewables

Octopus Energy US Renewables Investment signals expansion into the US clean energy market, partnering with CIP for solar and battery storage projects to decarbonize the grid, boost resilience, and scale smart grid innovation nationwide.

 

Key Points

Octopus Energy's first US stake in solar and battery storage with CIP to expand clean power and grid resilience.

✅ Partnership with Copenhagen Infrastructure Partners

✅ Portfolio of US solar and battery storage assets

✅ Supports decarbonization, jobs, and grid modernization

 

Octopus Energy, a UK-based renewable energy provider known for its innovative approach to clean energy solutions and the rapid UK offshore wind growth shaping its home market, has announced its first investment in the US renewable energy market. This strategic move marks a significant milestone in Octopus Energy's expansion into international markets and underscores its commitment to accelerating the transition towards sustainable energy practices globally.

Investment Details

Octopus Energy has partnered with Copenhagen Infrastructure Partners (CIP) to acquire a stake in a portfolio of solar and battery storage projects located across the United States. This investment reflects Octopus Energy's strategy to diversify its renewable energy portfolio and capitalize on opportunities in the rapidly growing US solar-plus-storage sector, which is attracting record investment.

Strategic Expansion

By entering the US market, Octopus Energy aims to leverage its expertise in renewable energy technologies and innovative energy solutions, as companies like Omnidian expand their global reach in project services. The partnership with CIP enables Octopus Energy to participate in large-scale renewable projects that contribute to decarbonizing the US energy grid and advancing climate goals.

Commitment to Sustainability

Octopus Energy's investment aligns with its overarching commitment to sustainability and reducing carbon emissions. The portfolio of solar and battery storage projects not only enhances energy resilience but also supports local economies through job creation and infrastructure development, bolstered by new US clean energy manufacturing initiatives nationwide.

Market Opportunities

The US renewable energy market presents vast opportunities for growth, driven by favorable regulatory policies, declining technology costs, and increasing demand for clean energy solutions, with US solar and wind growth accelerating under supportive plans. Octopus Energy's entry into this market positions the company to capitalize on these opportunities and establish a foothold in North America's evolving energy landscape.

Innovation and Impact

Octopus Energy is known for its customer-centric approach and technological innovation in energy services. By integrating smart grid technologies, digital platforms, and consumer-friendly tariffs, Octopus Energy aims to empower customers to participate in the energy transition actively.

Future Prospects

Looking ahead, Octopus Energy plans to expand its presence in the US market and explore additional opportunities in renewable energy development and energy storage, including surging US offshore wind potential in the coming years. The company's strategic investments and partnerships are poised to drive continued growth, innovation, and sustainability across global energy markets.

Conclusion

Octopus Energy's inaugural investment in US renewables underscores its strategic vision to lead the transition towards a sustainable energy future. By partnering with CIP and investing in solar and battery storage projects, Octopus Energy not only strengthens its position in the US market but also reinforces its commitment to advancing clean energy solutions worldwide. As the global energy landscape evolves, including trillion-dollar offshore wind outlook, Octopus Energy remains dedicated to driving positive environmental impact and delivering value to stakeholders through renewable energy innovation and investment.

 

Related News

View more

Canada's Ambitious Electric Vehicle Goals

Canada 2035 Gasoline Car Ban accelerates EV adoption, zero-emission transport, and climate action, with charging infrastructure, rebates, and industry investment supporting net-zero goals while addressing affordability, range anxiety, and consumer acceptance nationwide.

 

Key Points

A federal policy to end new gas car sales by 2035, boosting EV adoption, emissions goals, and charging infrastructure.

✅ Ends new gas car and light-truck sales by 2035

✅ Expands charging infrastructure and grid readiness

✅ Incentives, rebates, and industry investment drive adoption

 

Canada has set its sights on a bold and transformative goal: to ban the sale of new gasoline-powered passenger cars and light-duty trucks by the year 2035. This ambitious target, announced by the federal government, underscores Canada's commitment to combating climate change and accelerating the adoption of electric vehicles (EVs) nationwide, supported by forthcoming EV sales regulations from Ottawa.

The Federal Initiative

Under the leadership of Prime Minister Justin Trudeau, Canada aims to significantly reduce greenhouse gas emissions from the transportation sector, which accounts for a substantial portion of the country's carbon footprint. The initiative aligns with Canada's broader climate objectives, including achieving net-zero emissions by 2050.

Driving Forces Behind the Decision

The decision to phase out internal combustion engine vehicles reflects growing recognition of the urgency to transition towards cleaner transportation alternatives, even as 2019 electricity from fossil fuels still powered a notable share of Canada's grid. Minister of Environment and Climate Change Jonathan Wilkinson emphasizes the environmental benefits of electric vehicles, citing their potential to lower emissions and improve air quality in urban centers across the country.

Challenges and Opportunities

While the move towards electric vehicles presents promising opportunities for reducing emissions, it also poses challenges. Key considerations include infrastructure development, affordability, and consumer acceptance of EV technology, amid EV shortages and wait times that can influence buying decisions. Addressing these hurdles will require coordinated efforts from government, industry stakeholders, and consumers alike.

Industry Response

The automotive industry plays a crucial role in realizing Canada's EV ambitions. Automakers are increasingly investing in electric vehicle production and innovation to meet evolving consumer demand and regulatory requirements, including cross-border Canada-U.S. collaboration on supply chains. The transition offers opportunities for job creation, technological advancement, and economic growth in the clean energy sector.

Provincial Perspectives

Provinces across Canada are pivotal in facilitating the transition to electric vehicles. Some provinces have already implemented incentives such as rebates for EV purchases, charging infrastructure investments, and policy frameworks to support emissions reduction targets, even as Quebec's EV dominance push faces scrutiny from experts. Collaborative efforts between federal and provincial governments are essential in ensuring a cohesive approach to achieving national EV goals.

Consumer Considerations

For consumers, the shift towards electric vehicles represents a paradigm shift in transportation choices. Factors such as range anxiety, charging infrastructure availability, and upfront costs, with one EV cost survey citing price as the main barrier, remain considerations for prospective buyers. Government incentives and subsidies aim to alleviate some of these concerns and promote widespread EV adoption.

Looking Ahead

As Canada navigates towards a future without gasoline-powered vehicles, stakeholders must work together to overcome challenges and capitalize on opportunities presented by the electric vehicle revolution, even as critics of the 2035 mandate question its feasibility. Continued investments in infrastructure, innovation, and consumer education will be critical in paving the way for a sustainable and prosperous automotive industry.

Conclusion

Canada's commitment to phasing out gasoline-powered vehicles by 2035 marks a pivotal moment in the country's climate action agenda. By embracing electric vehicles, Canada aims to lead by example in combatting climate change, fostering innovation, and building a greener future for generations to come. The success of this ambitious initiative hinges on collective efforts to transform the automotive landscape and accelerate towards a sustainable transportation future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified