Trump Tariff Threat Delays Quebec's Green Energy Bill


trump-tariff-threat-delays-quebec-green-energy-bill

Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Quebec Energy Bill Tariff Delay disrupts Canada-U.S. trade, renewable energy investment, hydroelectric expansion, and clean technology projects, as Trump tariffs on aluminum and steel raise costs, threatening climate targets and green infrastructure timelines.

 

Key Points

A policy pause in Quebec from U.S. tariff threats, disrupting clean investment, hydro expansion, and climate targets.

✅ Tariff risk inflates aluminum and steel project costs.

✅ Quebec delays clean energy legislation amid trade uncertainty.

✅ Hydroelectric reliance complicates emissions reduction timelines.

 

The Trump administration's tariff threat has had a significant impact on Quebec's energy sector, with tariff threats boosting support for projects even as the uncertainty resulted in the delay of a critical energy bill. Originally introduced to streamline energy development and tackle climate change, the bill was meant to help transition Quebec towards greener alternatives while fostering economic growth. However, the U.S. threat to impose tariffs on Canadian goods, including energy products, introduced a wave of uncertainty that led to a pause in the bill's legislative process.

Quebec’s energy bill had ambitious goals of transitioning to renewable sources like wind, solar, and hydroelectric power. It sought to support investments in clean technologies and the expansion of the province's clean energy infrastructure, as the U.S. demand for Canadian green power continues to grow across the border. Moreover, it emphasized the reduction of carbon emissions, an important step towards meeting Quebec's climate targets. At its core, the bill aimed to position the province as a leader in green energy development in Canada and globally.

The interruption caused by President Donald Trump's tariff rhetoric has, however, cast a shadow over the legislation. Tariffs, if enacted, would disproportionately affect Canada's energy exports, with electricity exports at risk under growing tensions, particularly in sectors like aluminum and steel, which are integral to energy infrastructure development. These tariffs could increase the cost of energy-related projects, thereby hindering Quebec's ability to achieve its renewable energy goals and reduce carbon emissions in a timely manner.

The tariff threat was seen as a part of the broader trade tensions between the U.S. and Canada, a continuation of the trade war that had escalated under Trump’s presidency. In this context, the Quebec government was forced to reconsider its legislative priorities, with policymakers citing concerns over the potential long-term consequences on the energy industry, as leaders elsewhere threatened to cut U.S.-bound electricity to exert leverage. With the uncertainty around tariffs and trade relations, the government opted to delay the bill until the geopolitical situation stabilized.

This delay underscores the vulnerability of Quebec’s energy agenda to external pressures. While the provincial government had set its sights on an ambitious green energy future, it now faces significant challenges in ensuring that its projects remain economically viable under the cloud of potential tariffs, even as experts warn against curbing Quebec's exports during the dispute. The delay in the energy bill also reflects broader challenges faced by the Canadian energy sector, which is highly integrated with the U.S. market.

The situation is further complicated by the province's reliance on hydroelectric power, a cornerstone of its energy strategy that supplies markets like New York, where tariffs could spike New York energy prices if cross-border flows are disrupted. While hydroelectric power is a clean and renewable source of energy, there are concerns about the environmental impact of large-scale dams, and these concerns have been growing in recent years. The tariff threat may prompt a reevaluation of Quebec’s energy mix and force the government to balance its environmental goals with economic realities.

The potential imposition of tariffs also raises questions about the future of North American energy cooperation. Historically, Canada and the U.S. have enjoyed a symbiotic energy relationship, with significant energy trade flowing across the border. The energy bill in Quebec was designed with the understanding that cross-border energy trade would continue to thrive. The Trump administration's tariff threat, however, casts doubt on this stability, forcing Quebec lawmakers to reconsider how they proceed with energy policy in a more uncertain trade environment.

Looking forward, Quebec's energy sector will likely need to adjust its strategies to account for the possibility of tariffs, while still pushing for a sustainable energy future, especially if Biden outlook for Canada's energy proves more favorable for the sector in the medium term. It may also open the door for deeper discussions about diversification, both in terms of energy sources and trade partnerships, as Quebec seeks to mitigate the impact of external threats. The delay in the energy bill, though unfortunate, may serve as a wake-up call for Canadian lawmakers to rethink how they balance environmental goals with global trade realities.

Ultimately, the Trump tariff threat highlights the delicate balance between regional energy ambitions and international trade dynamics. For Quebec, the delay in the energy bill could prove to be a pivotal moment in shaping the future of its energy policy.

 

Related News

Related News

Ontario will refurbish Pickering B NGS

Pickering nuclear refurbishment will modernize Ontario's Candu reactors at Pickering B, sustaining 2,000 MW of clean electricity, aiding net-zero goals, and aligning with Ontario Power Generation plans and Canadian Nuclear Safety Commission reviews.

 

Key Points

An 11-year overhaul of Pickering B Candu reactors to extend life, keep 2,000 MW online, and back Ontario net-zero grid.

✅ 11-year project; 11,000 annual jobs; $19.4B GDP impact.

✅ Refurbishes four Pickering B Candu units; maintains 2,000 MW.

✅ Requires Canadian Nuclear Safety Commission license approvals.

 

The Ontario government has announced its intention to pursue a Pickering refurbishment at the venerable nuclear power station, which has been operational for over fifty years. This move could extend the facility's life by another 30 years.

This decision is timely, as Ontario anticipates a significant surge in electricity demand and a growing electricity supply gap in the forthcoming years. Additionally, all provinces are grappling with new federal mandates for clean electricity, necessitating future power plants to achieve net-zero carbon emissions.

Todd Smith, the Energy Minister, is expected to endorse Ontario Power Generation's proposal for the plant's overhaul, as per a preliminary version of a government press release.

The renovation will focus on four Candu reactors, known collectively as Pickering B, which were originally commissioned in the early 1980s. This upgrade is projected to continue delivering 2,000 megawatts of power, equivalent to the current output of these units.

According to the press release, the project will span 11 years, create approximately 11,000 annual jobs, and contribute $19.4 billion to Ontario's GDP. However, the total budget for the project remains unspecified.

The project follows the ongoing refurbishment of four units at the nearby Darlington nuclear station, which is more than halfway completed with a budget of $12.8 billion.

The proposal awaits the Canadian Nuclear Safety Commission's approval, and officials face extension request timing considerations before key deadlines.

The Commission is also reviewing a prior request from OPG to extend the operational license of the existing Pickering B units until 2026. This extension would allow the plant to safely continue operating until the commencement of its renovation, pending approval.

 

Ontario's Ambitious Nuclear Strategy

The announcement regarding Pickering is part of Ontario's broader clean energy plan for an unprecedented expansion of nuclear power in Canada.

Last summer, the province announced its intention to nearly double the output at Bruce Power, currently the world's largest nuclear generating station.

Additionally, Ontario revealed SMR plans to construct three more alongside the existing project at Darlington. These reactors are expected to supply enough electricity to power around 1.2 million homes.

Discussions about revitalizing the Pickering facility began in 2022, after the station had been slated to close as planned amid debate, with Ontario Power Generation submitting a feasibility report to the government last summer.

The Ford government emphasized the necessity of this nuclear expansion to meet the increasing electricity demands anticipated from the auto sector's shift to electric vehicles, the steel industry's move away from coal-fired furnaces, and the growing population in Ontario.

Ontario's capability to attract major international car manufacturers like Volkswagen and Stellantis to produce electric vehicles and batteries is partly attributed to the fact that 90% of the province's electricity comes from non-fossil fuel sources.

 

Related News

View more

B.C. Hydro adds more vehicle charging stations across southern B.C.

BC Hydro EV Charging Stations expand provincewide with DC fast chargers, 80% in 30 minutes at 35 c/kWh, easing range anxiety across Vancouver, Vancouver Island, Coquihalla Highway, East Kootenay, between Kamloops and Prince George.

 

Key Points

Public DC fast-charging network across B.C. enabling 80% charge in 30 minutes to cut EV range anxiety.

✅ 28 new stations added; 30 launched in 2016

✅ 35 c/kWh; about $3.50 per tank equivalent

✅ Coverage: Vancouver, Island, Coquihalla, East Kootenay

 

B.C. Hydro is expanding its network of electric vehicle charging stations.

The Crown utility says 28 new stations complete the second phase of its fast-charging network and are in addition to the 30 stations opened in 2016.

Thirteen of the stations are in Metro Vancouver, seven are on Vancouver Island, including one at the Pacific Rim Visitor Centre near Tofino, another is in Campbell River, and two have opened on the Coquihalla segment of B.C.'s Electric Highway at the Britton Creek rest area.

A further six stations are located throughout the East Kootenay and B.C. Hydro says the next phase of its program will connect drivers travelling between Kamloops and Prince George, while stations in Prince Rupert are also being planned.

BC Hydro has also opened a fast charging site in Lillooet, illustrating expansion into smaller communities.

Hydro spokeswoman Mora Scott says the stations can charge an electric vehicle to 80 per cent in just 30 minutes, at a cost of 35 cents per kilowatt hour.

Mora Scott says that translates to roughly $3.50 for the equivalent of a full tank of gas in the average four-cylinder car.

“The number of electric vehicles on B.C. roads is increasing, there’s currently around 9,000 across the province, and we actually expect that number to rise to 300,000 by 2030,” Scott says in a news release.

In partnership with municipalities, regional districts and several businesses, B.C. Hydro has been installing charging stations throughout the province since 2012 with support from the provincial and federal governments and programs such as EV charger rebates available to residents.

Scott says the utility wants to ensure the stations are placed where drivers need them so charging options are available provincewide.

“One big thing that we know drivers of electric vehicles worry about is the concept called range anxiety, that the stations aren’t going to be where they need them,” she says.

Several models of electric vehicle are now capable of travelling up to 500 kilometres on a single charge, says Scott.

BC Hydro president Chris O’Riley says the new charging sites will encourage electric vehicle drivers to explore B.C. this summer.

 

Related News

View more

Europe Is Losing Nuclear Power Just When It Really Needs Energy

Europe's Nuclear Energy Policy shapes responses to the energy crisis, soaring gas prices, EU taxonomy rules, net-zero goals, renewables integration, baseload security, SMRs, and Russia-Ukraine geopolitics, exposing cultural, financial, and environmental divides.

 

Key Points

A policy guiding nuclear exits or expansion to balance energy security, net-zero goals, costs, and EU taxonomy.

✅ Divergent national stances: phase-outs vs. new builds

✅ Costs, delays, and waste challenge large reactors

✅ SMRs, renewables, and gas shape net-zero pathways

 

As the Fukushima disaster unfolded in Japan in 2011, then-German Chancellor Angela Merkel made a dramatic decision that delighted her country’s anti-nuclear movement: all reactors would be ditched.

What couldn’t have been predicted was that Europe would find itself mired in one of the worst energy crises in its history. A decade later, the continent’s biggest economy has shut down almost all its capacity already. The rest will be switched off at the end of 2022 — at the worst possible time.

Wholesale power prices are more than four times what they were at the start of the coronavirus pandemic. Governments are having to take emergency action to support domestic and industrial consumers faced with crippling bills, which could rise higher if the tension over Ukraine escalates. The crunch has not only exposed Europe’s supply vulnerabilities, but also the entrenched cultural and political divisions over the nuclear industry and a failure to forge a collective vision. 

Other regions meanwhile are cracking on, challenging the idea that nuclear power is in decline worldwide. China is moving fast on nuclear to try to clean up its air quality. Its suite of reactors is on track to surpass that of the U.S., the world’s largest, by as soon as the middle of this decade. Russia is moving forward with new stations at home and has more than 20 reactors confirmed or planned for export construction, according to the World Nuclear Association.

“I don’t think we’re ever going to see consensus across Europe with regards to the continued running of existing assets, let alone the construction of new ones,” said Peter Osbaldstone, research director for power and renewables at Wood Mackenzie Group Ltd. in the U.K. “It’s such a massive polarizer of opinions that national energy policy is required in strength over a sustained period to support new nuclear investment.” 

France, Europe’s most prolific nuclear energy producer, is promising an atomic renaissance as its output becomes less reliable. Britain plans to replace aging plants in the quest for cleaner, more reliable energy sources. The Netherlands wants to add more capacity, Poland also is seeking to join the nuclear club, and Finland is starting to produce electricity later this month from its first new plant in four decades. 

Belgium and Spain, meanwhile, are following Germany’s lead in abandoning nuclear, albeit on different timeframes. Austria rejected it in a referendum in 1978.

Nuclear power is seen by its proponents as vital to reaching net-zero targets worldwide. Once built, reactors supply low-carbon electricity all the time, unlike intermittent wind or solar.

Plants, though, take a decade or more to construct at best and the risk is high of running over time and over budget. Finland’s new Olkiluoto-3 unit is coming on line after a 12-year delay and billions of euros in financial overruns. 

Then there’s the waste, which stays hazardous for 100,000 years. For those reasons European Union members are still quarreling over whether nuclear even counts as sustainable.

Electorates are also split. Polling by YouGov Plc published in December found that Danes, Germans and Italians were far more nuclear-skeptic than the French, British or Spanish. 

“It comes down to politics,” said Vince Zabielski, partner at New York-based law firm Pillsbury Winthrop Shaw Pittman LLP, who was a nuclear engineer for 15 years. “Everything political ebbs and flows, but when the lights start going off people have a completely different perspective.”

 

What’s Behind Europe’s Skyrocketing Energy Prices

Indeed, there’s a risk of rolling blackouts this winter. Supply concerns plaguing Europe have sent gas and electricity prices to record levels and inflation has ballooned. There’s also mounting tension with Russia over a possible invasion of Ukraine, which could lead to disrupted supplies of gas. All this is strengthening the argument that Europe needs to reduce its dependence on international sources of gas.

Europe will need to invest 500 billion euros ($568 billion) in nuclear over the next 30 years to meet growing demand for electricity and achieve its carbon reduction targets, according to Thierry Breton, the EU’s internal market commissioner. His comments come after the bloc unveiled plans last month to allow certain natural gas and nuclear energy projects to be classified as sustainable investments. 

“Nuclear power is a very long-term investment and investors need some kind of guarantee that it will generate a payoff,” said Elina Brutschin at the International Institute for Applied Systems Analysis. In order to survive in liberalized economies like the EU, the technology needs policy support to help protect investors, she said.

That already looks like a tall order. The European Commission has been told by a key expert group that the labeling risks raising greenhouse gas emissions and undermining the bloc’s reputation as a bastion for environmentally friendly finance.

Austria has threatened to sue the European Commission over attempts to label atomic energy as green. The nation previously attempted a legal challenge, when the U.K. was still an EU member, to stop the construction of Electricite de France SA’s Hinkley Point C plant, in the west of England. It has also commenced litigation against new Russia-backed projects in neighboring Hungary.

Germany, which has missed its carbon emissions targets for the past two years, has been criticized by some environmentalists and climate scientists for shutting down a supply of clean power at the worst time, despite arguments for a nuclear option for climate policy. Its final three reactors will be halted this year. Yet that was never going to be reversed with the Greens part of the new coalition government. 

The contribution of renewables in Germany has almost tripled since the year before Fukushima, and was 42% of supply last year. That’s a drop from 46% from the year before and means the country’s new government will have to install some 3 gigawatts of renewables — equivalent to the generating capacity of three nuclear reactors — every year this decade to hit the country's 80% goal.

“Other countries don’t have this strong political background that goes back to three decades of anti-nuclear protests,” said Manuel Koehler, managing director of Aurora Energy Research Ltd., a company analyzing power markets and founded by Oxford University academics. 

At the heart of the issue is that countries with a history of nuclear weapons will be more likely to use the fuel for power generation. They will also have built an industry and jobs in civil engineering around that.

Germany’s Greens grew out of anti-nuclear protest movements against the stationing of U.S. nuclear missiles in West Germany. The 1986 Chernobyl meltdown, which sent plumes of radioactive fallout wafting over parts of western Europe, helped galvanize the broader population. Nuclear phase-out plans were originally laid out in 2002, but were put on hold by the country's conservative governments. The 2011 Fukushima meltdowns reinvigorated public debate, ultimately prompting Merkel to implement them.

It’s not easy to undo that commitment, said Mark Hibbs, a Bonn, Germany-based nuclear analyst at Carnegie Endowment for International Peace, or to envision any resurgence of nuclear in Germany soon: “These are strategic decisions, that have been taken long in advance.”

In France, President Emmanuel Macron is about to embark on a renewed embrace of nuclear power, even as a Franco-German nuclear dispute complicates the debate. The nation produces about two-thirds of its power from reactors and is the biggest exporter of electricity in Europe. Notably, that includes anti-nuclear Germany and Austria.

EDF, the world’s biggest nuclear plant operator, is urging the French government to support construction of six new large-scale reactors at an estimated cost of about 50 billion euros. The first of them would start generating in 2035.

But even France has faced setbacks. Development of new projects has been put on hold after years of technical issues at the Flamanville-3 project in Normandy. The plant is now scheduled to be completed next year. 

In the U.K., Business Secretary Kwasi Kwarteng said that the global gas price crisis underscores the need for more home-generated clean power. By 2024, five of Britain’s eight plants will be shuttered because they are too old. Hinkley Point C is due to be finished in 2026 and the government will make a final decision on another station before an election due in 2024. 

One solution is to build small modular reactors, or SMRs, which are quicker to construct and cheaper. The U.S. is at the forefront of efforts to design smaller nuclear systems with plans also underway in the U.K. and France. Yet they too have faced delays. SMR designs have existed for decades though face the same challenging economic metrics and safety and security regulations of big plants.

The trouble, as ever, is time. “Any investment decisions you make now aren’t going to come to fruition until the 2030s,” said Osbaldstone, the research director at Wood Mackenzie. “Nuclear isn’t an answer to the current energy crisis.”

 

Related News

View more

How Bitcoin's vast energy use could burst its bubble

Bitcoin Energy Consumption drives debate on blockchain mining, proof-of-work, carbon footprint, and emissions, with CCAF estimates in terawatt hours highlighting electricity demand, fossil fuel reliance, and sustainability concerns for data centers and cryptocurrency networks.

 

Key Points

Electricity used by Bitcoin proof-of-work mining, often fossil-fueled, estimated by CCAF in terawatt hours.

✅ CCAF: 40-445 TWh, central estimate ~130 TWh

✅ ~66% of mining electricity sourced from fossil fuels

✅ Proof-of-work increases hash rate, energy, and emissions

 

The University of Cambridge Centre for Alternative Finance (CCAF) studies the burgeoning business of cryptocurrencies.

It calculates that Bitcoin's total energy consumption is somewhere between 40 and 445 annualised terawatt hours (TWh), with a central estimate of about 130 terawatt hours.

The UK's electricity consumption is a little over 300 TWh a year, while Argentina uses around the same amount of power as the CCAF's best guess for Bitcoin, as countries like New Zealand's electricity future are debated to balance demand.

And the electricity the Bitcoin miners use overwhelmingly comes from polluting sources, with the U.S. grid not 100% renewable underscoring broader energy mix challenges worldwide.

The CCAF team surveys the people who manage the Bitcoin network around the world on their energy use and found that about two-thirds of it is from fossil fuels, and some regions are weighing curbs like Russia's proposed mining ban amid electricity deficits.

Huge computing power - and therefore energy use - is built into the way the blockchain technology that underpins the cryptocurrency has been designed.

It relies on a vast decentralised network of computers.

These are the so-called Bitcoin "miners" who enable new Bitcoins to be created, but also independently verify and record every transaction made in the currency.

In fact, the Bitcoins are the reward miners get for maintaining this record accurately.

It works like a lottery that runs every 10 minutes, explains Gina Pieters, an economics professor at the University of Chicago and a research fellow with the CCAF team.

Data processing centres around the world, including hotspots such as Iceland's mining strain, race to compile and submit this record of transactions in a way that is acceptable to the system.

They also have to guess a random number.

The first to submit the record and the correct number wins the prize - this becomes the next block in the blockchain.

Estimates for bitcoin's electricity consumption
At the moment, they are rewarded with six-and-a-quarter Bitcoins, valued at about $50,000 each.

As soon as one lottery is over, a new number is generated, and the whole process starts again.

The higher the price, says Prof Pieters, the more miners want to get into the game, and utilities like BC Hydro suspending new crypto connections highlight grid pressures.

"They want to get that revenue," she tells me, "and that's what's going to encourage them to introduce more and more powerful machines in order to guess this random number, and therefore you will see an increase in energy consumption," she says.

And there is another factor that drives Bitcoin's increasing energy consumption.

The software ensures it always takes 10 minutes for the puzzle to be solved, so if the number of miners is increasing, the puzzle gets harder and the more computing power needs to be thrown at it.

Bitcoin is therefore actually designed to encourage increased computing effort.

The idea is that the more computers that compete to maintain the blockchain, the safer it becomes, because anyone who might want to try and undermine the currency must control and operate at least as much computing power as the rest of the miners put together.

What this means is that, as Bitcoin gets more valuable, the computing effort expended on creating and maintaining it - and therefore the energy consumed - inevitably increases.

We can track how much effort miners are making to create the currency.

They are currently reckoned to be making 160 quintillion calculations every second - that's 160,000,000,000,000,000,000, in case you were wondering.

And this vast computational effort is the cryptocurrency's Achilles heel, says Alex de Vries, the founder of the Digiconomist website and an expert on Bitcoin.

All the millions of trillions of calculations it takes to keep the system running aren't really doing any useful work.

"They're computations that serve no other purpose," says de Vries, "they're just immediately discarded again. Right now we're using a whole lot of energy to produce those calculations, but also the majority of that is sourced from fossil energy, and clean energy's 'dirty secret' complicates substitution."

The vast effort it requires also makes Bitcoin inherently difficult to scale, he argues.

"If Bitcoin were to be adopted as a global reserve currency," he speculates, "the Bitcoin price will probably be in the millions, and those miners will have more money than the entire [US] Federal budget to spend on electricity."

"We'd have to double our global energy production," he says with a laugh, even as some argue cheap abundant electricity is getting closer to reality today. "For Bitcoin."

He says it also limits the number of transactions the system can process to about five per second.

This doesn't make for a useful currency, he argues.

Rising price of bitcoin graphic
And that view is echoed by many eminent figures in finance and economics.

The two essential features of a successful currency are that it is an effective form of exchange and a stable store of value, says Ken Rogoff, a professor of economics at Harvard University in Cambridge, Massachusetts, and a former chief economist at the International Monetary Fund (IMF).

He says Bitcoin is neither.

"The fact is, it's not really used much in the legal economy now. Yes, one rich person sells it to another, but that's not a final use. And without that it really doesn't have a long-term future."

What he is saying is that Bitcoin exists almost exclusively as a vehicle for speculation.

So, I want to know: is the bubble about to burst?

"That's my guess," says Prof Rogoff and pauses.

"But I really couldn't tell you when."

 

Related News

View more

Quebec Hit by Widespread Power Outages Following Severe Windstorm

Quebec Windstorm 2025 disrupted Montreal and surrounding regions, triggering power outages, Hydro-Québec repairs, fallen trees, infrastructure damage, and transport delays, while emergency response and community resilience accelerated restoration and recovery efforts across the province.

 

Key Points

A severe April 29 windstorm with 100 km/h gusts caused outages, damage, and emergency recovery across Quebec.

✅ Gusts exceeded 100 km/h across Montreal and nearby regions

✅ Hydro-Québec restored power; crews cleared debris and lines

✅ Communities shared resources, shelters, and volunteer support

 

A powerful windstorm swept across Quebec on April 29, 2025, leaving tens of thousands of residents without electricity and causing significant damage to infrastructure. The storm's intensity disrupted daily life, leading to widespread outages across the province, fallen trees, and transportation delays.

Storm's Impact

The windstorm, characterized by gusts exceeding 100 km/h, struck various regions of Quebec, including Montreal and its surrounding areas. Hydro-Québec reported extensive power outages affecting numerous customers. The storm's ferocity led to the uprooting of trees, downing of power lines, and significant damage to buildings and vehicles.

Response and Recovery Efforts

In the aftermath, emergency services and utility companies mobilized to restore power and clear debris. Hydro-Québec crews worked tirelessly, much like Sudbury Hydro teams did in Ontario, to repair damaged infrastructure, while municipal authorities coordinated efforts to ensure public safety and facilitate the restoration process. Despite these efforts, some areas experienced prolonged outages, highlighting the storm's severity.

Community Resilience

Residents demonstrated remarkable resilience during the crisis. Many communities came together to support one another, as seen when Toronto neighborhoods rallied during lingering outages, sharing resources and providing assistance to those in need. Local shelters were set up to offer warmth and supplies to displaced individuals, and volunteers played a crucial role in the recovery process.

Lessons Learned

The storm underscored the importance of preparedness and infrastructure resilience, including vulnerabilities highlighted by a recent manhole fire affecting Hydro-Québec customers. In response, discussions have been initiated regarding the strengthening of power grids and the implementation of more robust emergency response strategies to mitigate the impact of future natural disasters.

As Quebec continues to recover, the collective efforts of its residents and emergency services serve as a testament to the province's strength and unity, even as similar strong-wind outages affect other regions, in the face of adversity.

 

Related News

View more

When did BC Hydro really know about Site C dam stability issues? Utilities watchdog wants to know

BC Utilities Commission Site C Dam Questions press BC Hydro on geotechnical risks, stability issues, cost overruns, oversight gaps, seeking transparency for ratepayers and clarity on contracts, mitigation, and the powerhouse and spillway foundations.

 

Key Points

Inquiry seeking explanations from BC Hydro on geotechnical risks, costs, timelines and oversight for Site C.

✅ Timeline of studies, monitoring, and mitigation actions

✅ Rationale for contracts, costs, and right bank construction

✅ Implications for ratepayers, oversight, and project stability

 

The watchdog B.C. Utilities Commission has sent BC Hydro 70 questions about the troubled Site C dam, asking when geotechnical risks were first identified and when the project’s assurance board was first made aware of potential issues related to the dam’s stability. 

“I think they’ve come to the conclusion — but they don’t say it — that there’s been a cover-up by BC Hydro and by the government of British Columbia,” former BC Hydro CEO Marc Eliesen told The Narwhal. 

On Oct. 21, The Narwhal reported that two top B.C. civil servants, including the senior bureaucrat who prepares Site C dam documents for cabinet, knew in May 2019 that the project faced serious geotechnical problems due to its “weak foundation” and the stability of the dam was “a significant risk.” 

Get The Narwhal in your inbox!
People always tell us they love our newsletter. Find out yourself with a weekly dose of our ad‑free, independent journalism

“They [the civil servants] would have reported to their ministers and to the government in general,” said Eliesen, who is among 18 prominent Canadians calling for a halt to Site C work until an independent team of experts can determine if the geotechnical problems can be resolved and at what cost.  

“It’s disingenuous for Premier [John] Horgan to try to suggest, ‘Well, I just found out about it recently.’ If that’s the case, he should fire the public servants who are representing the province.” 

The public only found out about significant issues with the Site C dam at the end of July, when BC Hydro released overdue reports saying the project faces unknown cost overruns, schedule delays and, even as it achieved a transmission line milestone earlier, such profound geotechnical troubles that its overall health is classified as ‘red,’ meaning it is in serious trouble. 

“The geotechnical challenges have been there all these years.”

The Site C dam is the largest publicly funded infrastructure project in B.C.’s history. If completed, it will flood 128 kilometres of the Peace River and its tributaries, forcing families from their homes and destroying Indigenous gravesites, hundreds of protected archeological sites, some of Canada’s best farmland and habitat for more than 100 species vulnerable to extinction.

Eliesen said geotechnical risks were a key reason BC Hydro’s board of directors rejected the project in the early 1990s, when he was at the helm of BC Hydro.

“The geotechnical challenges have been there all these years,” said Eliesen, who is also the former Chair and CEO of Ontario Hydro, where Ontario First Nations have urged intervention on a critical electricity line, the former Chair of Manitoba Hydro and the former Chair and CEO of the Manitoba Energy Authority.

Elsewhere, a Manitoba Hydro line to Minnesota has faced potential delays, highlighting broader grid planning challenges.

The B.C. Utilities Commission is an independent watchdog that makes sure ratepayers — including BC Hydro customers — receive safe and reliable energy services, as utilities adapt to climate change risks, “at fair rates.”

The commission’s questions to BC Hydro include 14 about the “foundational enhancements” BC Hydro now says are necessary to shore up the Site C dam, powerhouse and spillways. 

The commission is asking BC Hydro to provide a timeline and overview of all geotechnical engineering studies and monitoring activities for the powerhouse, spillway and dam core areas, and to explain what specific risk management and mitigation practices were put into effect once risks were identified.

The commission also wants to know why construction activities continued on the right bank of the Peace River, where the powerhouse would be located, “after geotechnical risks materialized.” 

It’s asking if geotechnical risks played a role in BC Hydro’s decision in March “to suspend or not resume work” on any components of the generating station and spillways.

The commission also wants BC Hydro to provide an itemized breakdown of a $690 million increase in the main civil works contract — held by Spain’s Acciona S.A. and the South Korean multinational conglomerate Samsung C&T Corp. — and to explain the rationale for awarding a no-bid contract to an unnamed First Nation and if other parties were made aware of that contract. 

Peace River Jewels of the Peace Site C The Narwhal
Islands in the Peace River, known as the ‘jewels of the Peace’ will be destroyed for fill for the Site C dam or will be submerged underwater by the dam’s reservoir, a loss that opponents are sharing with northerners in community discussions. Photo: Byron Dueck

B.C. Utilities Commission chair and CEO David Morton said it’s not the first time the commission has requested additional information after receiving BC Hydro’s quarterly progress reports on the Site C dam. 

“Our staff reads them to make sure they understand them and if there’s anything in then that’s not clear we go then we do go through this, we call it the IR — information request — process,” Morton said in an interview.

“There are things reported in here that we felt required a little more clarity, and we needed a little more understanding of them, so that’s why we asked the questions.”

The questions were sent to BC Hydro on Oct. 23, the day before the provincial election, but Morton said the commission is extraordinarily busy this year and that’s just a coincidence. 

“Our resources are fairly strained. It would have been nice if it could have been done faster, it would be nice if everything could be done faster.” 

“These questions are not politically motivated,” Morton said. “They’re not political questions. There’s no reason not to issue them when they’re ready.”

The commission has asked BC Hydro to respond by Nov. 19.

Read more: Top B.C. government officials knew Site C dam was in serious trouble over a year ago: FOI docs

Morton said the independent commission’s jurisdiction is limited because the B.C. government removed it from oversight of the project. 

The commission, which would normally determine if a large dam like the Site C project is in the public’s financial interest, first examined BC Hydro’s proposal to build the dam in the early 1980s.

After almost two years of hearings, including testimony under oath, the commission concluded B.C. did not need the electricity. It found the Site C dam would have negative social and environmental impacts and said geothermal power should be investigated to meet future energy needs. 

The project was revived in 2010 by the BC Liberal government, which touted energy from the Site C dam as a potential source of electricity for California and a way to supply B.C.’s future LNG industry with cheap power.

Not willing to countenance another rejection from the utilities commission, the government changed the law, stripping the commission of oversight for the project. The NDP government, which came to power in 2017, chose not to restore that oversight.

“The approval of the project was exempt from our oversight,” Morton said. “We can’t come along and say ‘there’s something we don’t like about what you’re doing, we’re going to stop construction.’ We’re not in that position and that’s not the focus of these questions.” 

But the commission still retains oversight for the cost of construction once the project is complete, Morton said. 

“The cost of construction has to be recovered in [hydro] rates. That means BC Hydro will need our approval to recover their construction cost in rates, and those are not insignificant amounts, more than $10.7 billion, in all likelihood.” 

In order to recover the cost from ratepayers, the commission needs to be satisfied BC Hydro didn’t spend more money than necessary on the project, Morton said. 

“As you can imagine, that’s not a straight forward review to do after the fact, after a 10-year construction project or whatever it ends up being … so we’re using these quarterly reports as an opportunity to try to stay on top of it and to flag any areas where we think there may be areas we need to look into in the future.”

The price tag for the Site C dam was $10.7 billion before BC Hydro’s announcement at the end of July — a leap from $6.6 billion when the project was first announced in 2010 and $8.8 billion when construction began in 2015. 

Eliesen said the utilities commission should have been asking tough questions about the Site C dam far earlier. 

“They’ve been remiss in their due diligence activities … They should have been quicker in raising questions with BC Hydro, rather than allowing BC Hydro to be exceptionally late in submitting their reports.” 

BC Hydro is late in filing another Site C quarterly report, covering the period from April 1 to June 30. 

The quarterly reports provide the B.C. public with rare glimpses of a project that international hydro expert Harvey Elwin described as being more secretive than any hydro project he has encountered in five decades working on large dams around the world, including in China.

Read more: Site C dam secrecy ‘extraordinary’, international hydro construction expert tells court proceeding

Morton said the commission could have ordered regular reporting for the Site C project if it had its previous oversight capability.

“Then we would have had the ability to follow up and ultimately order any delinquent reports to be filed. In this circumstance, they are being filed voluntarily. They can file it as late as they choose. We don’t have any jurisdiction.” 

In addition to the six dozen questions, the commission has also filed confidential questions with BC Hydro. Morton said confidential information could include things such as competitive bid information. “BC Hydro itself may be under a confidentiality agreement not to disclose it.” 

With oversight, the commission would also have been able to drill down into specific project elements,  Morton said. 

“We would have wanted to ensure that the construction followed what was approved. BC Hydro wouldn’t have the ability to make significant changes to the design and nature of the project as they went along.”

BC Hydro has been criticized for changing the design of the Site C dam to an L-shape, which Eliesen said “has never been done anywhere in the world for an earthen dam.” 

Morton said an empowered commission could have opted to hold a public hearing about the design change and engage its own technical consultants, as it did in 2017 when the new NDP government asked it to conduct a fast-tracked review of the project’s economics. 

 

Construction Site C Dam
A recent report by a U.S. energy economist found cancelling the Site C dam project would save BC Hydro customers an initial $116 million a year, with increasing savings growing over time. Photo: Garth Lenz / The Narwhal

The commission’s final report found the dam could cost more than $12 billion, that BC Hydro had a historical pattern of overestimating energy demand and that the same amount of energy could be produced by a suite of renewables, including wind and proposed pumped storage such as the Meaford project, for $8.8 billion or less. 

The NDP government, under pressure from construction trade unions, opted to continue the project, refusing to disclose key financial information related to its decision. 

When the geotechnical problems were revealed in July, the government announced the appointment of former deputy finance minister Peter Milburn as a special Site C project advisor who will work with BC Hydro and the Site C project assurance board to examine the project and provide the government with independent advice.

Eliesen said BC Hydro and the B.C. government should never have allowed the recent diversion of the Peace River to take place given the tremendous geotechnical challenges the project faces and its unknown cost and schedule for completion. 

“It’s a disgrace and scandalous,” he said. “You can halt the river diversion, but you’ve got another four or five years left in construction of the dam. What are you going to do about all the cement you’ve poured if you’ve got stability problems?”

He said it’s counter-productive to continue with advice “from the same people who have been wrong, wrong, wrong,” without calling in independent global experts to examine the geotechnical problems. 

“If you stop construction, whether it takes three or six months, that’s the time that’s required in order to give yourself a comfort level. But continuing to do what you’ve been doing is not the right course. You should have to sit back.”

Eliesen said it reminded him of the Pete Seeger song Waist Deep in the Big Muddy, which tells the story of a captain ordering his troops to keep slogging through a river because they will soon be on dry ground. After the captain drowns, the troops turn around.

“It’s a reflection of the fact that if you don’t look at what’s new, you just keep on doing what you’ve been doing in the past and that, unfortunately, is what’s happening here in this province with this project.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified