Greening hospital operations

By Information Management


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
When it comes to environmentalism in health care, any push to "green" operations is driven as much by the folding kind of green as the leafy variety. It's not that hospital executives are opposed to becoming better environmental stewards. Few are immune to the issue.

Many of those who have made strides toward reducing energy consumption, however, candidly concede their primary motivator was trimming expenses - not softening their carbon footprint. The leaders driving energy reduction programs, electronics recycling and modernized building design are just as likely to wear a suit to work as Birkenstocks. Yet these leaders are keenly aware of the challenges facing health care - which, after the food industry, is the nation's second largest energy user.

While they may be aimed primarily at reducing the utility bill, many local initiatives do have positive impact on the environment. Trimming energy consumption is often the low hanging environmental fruit for hospitals. A culprit in energy consumption is usually the I.T. department. And the CFO is likely to be the leader in trimming the electric bill there and elsewhere.

Yet hospitals have many other venues through which they can become more responsible corporate citizens. Electronics recycling is one. Eliminating paper records is another with direct ramifications for I.T. Beyond that, some hospitals are looking at building design and even food consumption as part of their greening effort.

It's about time, some say. "Health care disproportionately impacts climate change," asserts Gina Pugliese, vice president of the Safety Institute run by Premier Inc., a San Diego-based hospital alliance and group purchasing organization.

Pugliese heads an effort called SPHERE, short for "Securing Proven Healthcare Energy Reduction for the Ecosystem." The cornerstone of the project is an online energy auction service that Premier offers its 200 health system owners.

And for some Premier members, the online auction has proven to be an innovative use of I.T. that results in direct savings - if not indirect benefit to the environment. "We are not opposed to green initiatives, but our primary focus is saving money," says Vince Pryor, CFO at 350-bed Ingalls Health System, Harvey, Ill. "We developed a strategy to do both, by becoming partially green and saving a fair amount of dollars."

Last fall, Ingalls served as a guinea pig for SPHERE's "reverse energy auction," an online service designed to put competitive bidding into the picture for a hospital's natural gas and electrical needs. Like most hospitals, Ingalls is a major energy consumer, spending some $2 million annually on electricity and $1.8 million annually on gas. By participating in the reverse auction, Ingalls shaved some $375,000 off its projected electricity costs over a three-year period and another $465,000 over 17 months off its gas prices.

In addition to reducing its bill compared to historical levels, its three-year electrical contract with Texas-based Pepco includes a small portion of electricity - 5% of the total capacity - from green sources, such as wind or solar power, notes Harold Richards, director of materials management.

It may not seem like much, but Richards points out that by diverting just a small portion of its electrical power from traditional "brown" sources such as a coal, Ingalls is keeping more than 3,400 tons of carbon dioxide out of the atmosphere. "It's equal to about 430 homes," he says.

To participate in the auction, Ingalls sent a request for proposals to eight electrical utilities. Thanks to Illinois' deregulation of electrical suppliers, customers like Ingalls do not have to depend on one local utility company. Yet, in the pre-online auction era, getting a competitive bid was not easy, Richards says. "We would sit with a couple of brokers and try to get the best deal," he recalls.

In the reverse auction, the suppliers already knew Ingalls' electrical power needs. The hospital provided 17 options on which the suppliers could bid. These options broke down the hospital's energy needs over multiple time periods, from two to five years, with varying percentages of green and brown energy. Once the auction started, the suppliers began submitting competitive quotes on the proposals, with Ingalls' executives watching the numbers on a large monitor. "It was like e-Bay," Pryor says. "A lot of hospital executives came in to watch," Richards adds.

In the end, Pepco bid down the number, providing the hospital with the best deal at a three-year price point. Its bid, for example, for a 95/5 brown/green ratio beat other suppliers' bids for 100% brown. Thus, Ingalls was able to get a better price for its electricity and reduce its carbon footprint to boot.

"The challenge is to balance the additional cost of being more green versus the lower reimbursements we are getting," Pryor says. "Green initiatives can be more costly if you are not selective."

Going green, no doubt, is very difficult for health care organizations. Green electricity sources are still in their infancy. Moreover, hospitals face ever-increasing demands for electricity.

Take OSF Healthcare System. The Peoria, Ill.-based delivery system operates seven hospitals across two states in addition to its 160 clinics. Its annual electricity consumption is approximately 195 million kilowatt hours, says Edward McKenzie, corporate plant operations manager. Add 6.5 million therms (a unit of natural gas) to the yearly energy consumption, and you've got a big utility bill.

One of the biggest users of energy is the I.T. department, McKenzie says. "I.T. does not have a good reputation" when it comes to energy savings, he says. Its data centers have voracious energy appetites. And running the servers and laptops needed to sustain 12,000 employees only adds to the demand. "Anything you can do to reduce energy consumption is what we look at," McKenzie says.

The challenge, he adds, is keeping up with the increased energy needs of server racks. "They have gone from 10 to 20 to 35 kilowatts per rack per hour to run," he says. "It generates a tremendous amount of heat."

OSF is using the latest in building design technology to stem the tide. Its new data center in North Peoria, for example, will have a "free cooling" system. It will use naturally chilled air from outside to help maintain an appropriate temperature inside. And Ingalls also is upgrading its HVAC technology throughout the system, particularly when it builds new facilities. "We use the LEED guidelines," McKenzie says, referencing the building design standards advocated by the U.S. Green Building Council.

Its Leadership in Energy and Environmental Design Green Building Rating System provides standards for environmentally sustainable construction. Before OSF adopts any LEED standards, however, it analyzes the technology for its return, McKenzie says.

OSF Healthcare is replacing its legacy electrical chillers with more modern technology, he adds. The newer chillers are far more energy efficient, a major plus in keeping the hospital temperate and avoiding a boiler room in the data center. In fact, one modern chiller may only cost $35,000 annually to operate, compared to its $50,000 predecessor. Moreover, the modern chiller does not use ozone-depleting refrigerants, McKenzie notes.

CIOs are not oblivious to the energy demand created by their department. Lior Blik, acting CIO at Hoboken (N.J.) Medical Center, transitioned in 2007 to a "virtual server" environment in part to drive down operating costs. Rather than having a dedicated server for each application, the virtual infrastructure enables Hoboken to run multiple applications on fewer servers. His department maintains an armament of nearly 70 servers, but would have required 100 under the old set-up. "The electrical bill is down 25%," says Blik, who is CEO of NITConnect, a New York-based consulting company.

Hoboken's next big project will be digitizing its paper records. The hospital spends some $750,000 annually on paper alone, including specialized carbon forms, he says. Eliminating the paper, he adds, can only help the environment.

Other areas figure into hospitals' green-supportive projects. Cook Children's Healthcare Network, Fort Worth, Texas, for example, redirected its electronics recycling program about one year ago. To keep old computers out of landfill, Cook Children's sells the equipment to its staff. But the labor required to cleanse the computers of confidential data, store the computers and maintain the inventory proved overwhelming, says Michael Zachary, interim director of operations in the information systems department. "The amount of time needed was a distraction," he says.

Cook Children's turned to a local company, Grand Prairie, Texas-based Argus Connection Inc., to handle the device cleansing. Argus picks up used equipment each month, documents the inventory, removes confidential data and recycles any equipment not suitable for re-sale to the staff. Proper recycling of electronics is a must, says Zachary, who points to reports that many used U.S. computers wind up as third-world landfill. Cook Children's also offers free electronics recycling to employees who tote in old televisions or cell phones.

The unstated irony in all these projects is that the modern hospital is perhaps among the most environmentally unfriendly settings around. That's the viewpoint of Kathy Gerwig, vice president of workplace safety and environmental stewardship officer for Kaiser Permanente, an Oakland-based delivery system than encompasses a health plan and more than 30 hospitals across nine states.

Kaiser's taking a multi-pronged approach to becoming a greener organization, she says. It wants to reduce its greenhouse gas emissions and ensure safety in the use and destruction of chemicals. The program includes eliminating vinyl, an almost ubiquitous substance found in older hospitals. Its manufacture and destruction can be highly toxic, Gerwig says.

As it retrofits old hospitals and builds new ones, Kaiser is turning to rubber flooring to replace the vinyl. Rubber, Gerwig says, is the new environmental standard for hospital flooring. "It is not environmentally benign, but it has a longer lifespan and does not require chemical cleaning," she observes. In addition, Kaiser is promoting locally grown and organic produce by hosting farmers' markets at most of its hospitals. In some underserved areas, they provide the only source of fresh produce, Gerwig says.

When it comes to thinking green, health care executives also need to think big, Gerwig says. "People understand the cost benefits around energy savings, but they don't make the direct link to people's health," provided by a healthy care-giving environment, she says. "There is only so much you can do in the doctor's office. People also need a healthy place to live and work."

Related News

BC Hydro says province sleeping in, showering less in pandemic

BC Hydro pandemic electricity trends reveal weekend-like energy consumption patterns: later morning demand, earlier evenings, more cooking, streaming on smart TVs, and work-from-home routines, with tips to conserve using laptops and small appliances.

 

Key Points

Weekend-like shifts in power demand from work-from-home routines: later mornings, earlier evenings, and more streaming.

✅ Later morning electricity demand; earlier evening peaks

✅ More cooking and baking; increased streaming after dinner

✅ Conservation tips: laptops, small appliances, smart TVs

 

The latest report on electricity usage in British Columbia reveals the COVID-19 pandemic has created an atmosphere where every day feels like a Saturday, a pattern also reflected in BC electricity demand during peak seasons.

BC Hydro says overall power usage hasn't changed much, but similar Ontario electricity demand shifts suggest regional differences, while Manitoba demand fell more noticeably, and a survey of 500 people shows daily routines have shifted dramatically since mid-March when pandemic-related closures began.

The hydro report says, with nearly 40 per cent of B.C. residents working from home, trends in residential electricity use confirm almost half are sleeping in and eating breakfast later, while about a quarter say they are showering less.

Those patterns more closely resemble what hydro says is typical weekend power consumption, and could influence time-of-use rates as electricity demand occurs later in the morning and earlier in the evening.

The report also finds many people are cooking and baking more than before the pandemic, preparing the evening meal earlier, streaming or viewing more television after dinner even as Ottawa's electricity consumption dipped earlier in the pandemic, and 80 per cent are going to bed later.

Although electricity use is normal for this time of year, hydro says homebound residents can conserve by using laptops instead of desktops, small appliances such as Instant Pots instead of ovens, and streaming movies or TV shows on a smart televisions instead of game consoles, even as Hydro One peak rates continue to shape consumption patterns elsewhere.

 

Related News

View more

Energy crisis: EU outlines possible gas price cap strategies

EU Gas Price Cap Strategies aim to curb inflation during an energy crisis by capping wholesale gas and electricity generation costs, balancing supply and demand, mitigating subsidies, and safeguarding supply security amid Russia-Ukraine shocks.

 

Key Points

Temporary EU measures to cap gas and power prices, curb inflation, manage demand, and protect supply security.

✅ Flexible temporary price limits to secure gas supplies

✅ Framework cap on gas for electricity generation with demand checks

✅ Risk: subsidies, higher demand, and market distortions

 

The European Commission has outlined possible strategies to cap gas prices as the bloc faces a looming energy crisis this winter. 

Member states are divided over the emergency measures designed to pull down soaring inflation amid Russia's war in Ukraine. 

One proposal is a temporary "flexible" limit on gas prices to ensure that Europe can continue to secure enough gas, EU energy commissioner Kadri Simson said on Tuesday. 

Another option could be an EU-wide "framework" for a price cap on gas used to generate electricity, which would be combined with measures to ensure gas demand does not rise as a result, she said.

EU leaders are meeting on Friday to debate gas price cap strategies amid warnings that Europe's energy nightmare could worsen this winter.

Last week, France, Italy, Poland and 12 other EU countries urged the Commission to propose a broader price cap targeting all wholesale gas trade. 

But Germany -- Europe's biggest gas buyer -- and the Netherlands are among those opposing electricity market reforms within the bloc.

Russia has slashed gas deliveries to Europe since its February invasion of Ukraine, with Moscow blaming the cuts on Western sanctions imposed in response to the invasion, as the EU advances a plan to dump Russian energy across the bloc.

Since then, the EU has agreed on emergency laws to fill gas storage and windfall profit levies to raise money to help consumers with bills. 

Price cap critics
One energy analyst told Euronews that an energy price cap was an "unchartered territory" for the European Union. 

The EU's energy sector is largely liberalised and operates under the fundamental rules of supply and demand, making rolling back electricity prices complex in practice.

"My impression is that member states are looking at prices and quantities in isolation and that's difficult because of economics," said Elisabetta Cornago, a senior energy researcher at the Centre for European Reform.

"It's hard to picture such a level of market intervention This is uncharted territory."

The energy price cap would "quickly start costing billions" because it would force governments to continually subsidise the difference between the real market price and the artificially capped price, another expert said. 

"If you are successful and prices are low and you still get gas, consumers will increase their demand: low price means high demand. Especially now that winter is coming," said Bram Claeys, a senior advisor at the Regulatory Assistance Project. 

 

Related News

View more

Ontario government wants new gas plants to boost electricity production

Ontario Gas Plant Expansion aims to boost grid reliability as nuclear refurbishments proceed, using natural gas to meet electricity demand, despite critics urging renewables, energy storage, and efficiency to reduce carbon emissions, protecting investment growth.

 

Key Points

Ontario plan to expand gas plants for reliability during nuclear outages, sparking debate on emissions and clean options.

✅ IESO data: gas share rose from 4% (2017) to 10.4% (2022).

✅ Government cites nuclear refurbishments and demand growth.

✅ Critics propose storage, wind, solar, and efficiency.

 

The Ontario government is preparing to expand gas-fired power plants in Ontario; a move critics say will make the province's electricity system dirtier and could eventually leave taxpayers on the hook.

The province is currently soliciting bids for additional gas-fired electricity generation, which means new gas plants get built, or existing gas plants get expanded. 

It's poised to be Ontario's biggest increase in the gas-fired power supply in more than a decade since the previous Liberal government scrapped two gas plants, in Mississauga and Oakville, at a cost the auditor general pegged at around $1 billion. 

Doug Ford's energy minister, Todd Smith, says Ontario needs gas plants now to help meet an expected surge in demand for electricity as the province faces a supply shortfall in the coming years and to provide power while some units of the province's nuclear stations are down for refurbishment. 

"It's really important to have natural gas as an insurance policy to keep the lights on and provide the reliability that we need," Smith said in an interview. 

"We need natural gas for the short term, especially to get us through these refurbishments."

The portion of Ontario's electricity supply that comes from natural gas matters for the environment and the province's economy. Manufacturing companies increasingly seek clean power that emits as little carbon dioxide as possible. 

The portion of Ontario's electricity supply that comes from natural gas matters for the environment and the province's economy. Manufacturing companies increasingly seek a power supply that emits as little carbon dioxide as possible. 

Increasing the amount of gas-fired generation in the electricity system puts Ontario's ability to attract such investments at risk as it complicates balancing demand and emissions across the grid, says Evan Pivnick, program manager with Clean Energy Canada, a think tank. 

"Building new natural gas (power plants) in Ontario today should be seen as an absolute last resort for meeting our energy needs," said Pivnick in an interview. 

Ontario's electricity system has among the lowest rates of CO2 emissions in North America, with roughly half of the annual supply provided by nuclear power, one-quarter from hydro dams, and one-tenth from wind turbines. 

However, Ontario's gas plants have produced a growing amount of electricity in recent years, despite an early report exploring a gas halt by the minister, and that trend will continue if new gas plants are built. 

In 2017, gas- and oil-fired generation provided just four percent of Ontario's electricity supply, according to figures from the provincial agency that manages the grid, the Independent Electricity System Operator (IESO). 

By 2022, that figure reached 10.4 percent. 

Ontario doesn't need new gas plants to meet the electricity demand, says Bryan Purcell, vice president of policy and programs at The Atmospheric Fund. This agency invests in low-carbon projects in the Greater Toronto and Hamilton Area. 

"We're quite concerned about where Ontario's electric grid is going," said Purcell. "Thankfully, there's still time to adjust course and look at other options." 

According to Purcell and Pivnick, those options to avoid gas could include power storage (in which excess generated energy is stored for later use when electricity demand rises), wind and solar projects, or energy efficiency and conservation programs.

 

Related News

View more

Climate Solution: Use Carbon Dioxide to Generate Electricity

Methane Hydrate CO2 Sequestration uses carbon capture and nitrogen injection to swap gases in seafloor hydrates along the Gulf of Mexico, releasing methane for electricity while storing CO2, according to new simulation research.

 

Key Points

A method injecting CO2 and nitrogen into hydrates to store CO2 while releasing methane for power.

✅ Nitrogen aids CO2-methane swap in hydrate cages, speeding sequestration

✅ Gulf Coast proximity to emitters lowers transport and power costs

✅ Revenue from methane electricity could offset carbon capture

 

The world is quickly realizing it may need to actively pull carbon dioxide out of the atmosphere to stave off the ill effects of climate change. Scientists and engineers have proposed various carbon capture techniques, but most would be extremely expensive—without generating any revenue. No one wants to foot the bill.

One method explored in the past decade might now be a step closer to becoming practical, as a result of a new computer simulation study. The process would involve pumping airborne CO2 down into methane hydrates—large deposits of icy water and methane right under the seafloor, beneath water 500 to 1,000 feet deep—where the gas would be permanently stored, or sequestered. The incoming CO2 would push out the methane, which would be piped to the surface and burned to generate electricity, whether sold locally or via exporters like Hydro-Que9bec to help defray costs, to power the sequestration operation or to bring in revenue to pay for it.

Many methane hydrate deposits exist along the Gulf of Mexico shore and other coastlines. Large power plants and industrial facilities that emit CO2 also line the Gulf Coast, where EPA power plant rules could shape deployment, so one option would be to capture the gas directly from nearby smokestacks, keeping it out of the atmosphere to begin with. And the plants and industries themselves could provide a ready market for the electricity generated.

A methane hydrate is a deposit of frozen, latticelike water molecules. The loose network has many empty, molecular-size pores, or “cages,” that can trap methane molecules rising through cracks in the rock below. The computer simulation shows that pushing out the methane with CO2 is greatly enhanced if a high concentration of nitrogen is also injected, and that the gas swap is a two-step process. (Nitrogen is readily available anywhere, because it makes up 78 percent of the earth’s atmosphere.) In one step the nitrogen enters the cages; this destabilizes the trapped methane, which escapes the cages. In a separate step, the nitrogen helps CO2 crystallize in the emptied cages. The disturbed system “tries to reach a new equilibrium; the balance goes to more CO2 and less methane,” says Kris Darnell, who led the study, published June 27 in the journal Water Resources Research. Darnell recently joined the petroleum engineering software company Novi Labs as a data scientist, after receiving his Ph.D. in geoscience from the University of Texas, where the study was done.

A group of labs, universities and companies had tested the technique in a limited feasibility trial in 2012 on Alaska’s North Slope, where methane hydrates form in sandstone under deep permafrost. They sent CO2 and nitrogen down a pipe into the hydrate. Some CO2 ended up being stored, and some methane was released up the same pipe. That is as far as the experiment was intended to go. “It’s good that Kris [Darnell] could make headway” from that experience, says Ray Boswell at the U.S. Department of Energy’s National Energy Technology Laboratory, who was one of the Alaska experiment leaders but was not involved in the new study. The new simulation also showed that the swap of CO2 for methane is likely to be much more extensive—and to happen quicker—if CO2 enters at one end of a hydrate deposit and methane is collected at a distant end.

The technique is somewhat similar in concept to one investigated in the early 2010s by Steven Bryant and others at the University of Texas. In addition to numerous methane hydrate deposits, the Gulf Coast has large pools of hot, salty brine in sedimentary rock under the coastline. In this system, pumps would send CO2 down into one end of a deposit, which would force brine into a pipe that is placed at the other end and leads back to the surface. There the hot brine would flow through a heat exchanger, where heat could be extracted and used for industrial processes or to generate electricity, supporting projects such as electrified LNG in some markets. The upwelling brine also contains some methane that could be siphoned off and burned. The CO2 dissolves into the underground brine, becomes dense and sinks further belowground, where it theoretically remains.

Either system faces big practical challenges, and building shared CO2 storage hubs to aggregate captured gas is still evolving. One is creating a concentrated flow of CO2; the gas makes up only .04 percent of air, and roughly 10 percent of the smokestack emission from a typical power plant or industrial facility. If an efficient methane hydrate or brine system requires an input that is 90 percent CO2, for example, concentrating the gas will require an enormous amount of energy—making the process very expensive. “But if you only need a 50 percent concentration, that could be more attractive,” says Bryant, who is now a professor of chemical and petroleum engineering at the University of Calgary. “You have to reduce the [CO2] capture cost.”

Another major challenge for the methane hydrate approach is how to collect the freed methane, which could simply seep out of the deposit through numerous cracks and in all directions. “What kind of well [and pipe] structure would you use to grab it?” Bryant asks.

Given these realities, there is little economic incentive today to use methane hydrates for sequestering CO2. But as concentrations rise in the atmosphere and the planet warms further, and as calls for an electric planet intensify, systems that could capture the gas and also provide energy or revenue to run the process might become more viable than techniques that simply pull CO2 from the air and lock it away, offering nothing in return.

 

Related News

View more

Saskatchewan to credit solar panel owners, but not as much as old program did

Saskatchewan Solar Net Metering Program lets rooftop solar users offset at retail rate while earning 7.5 cents/kWh credits for excess energy; rebates are removed, SaskPower balances grid costs with a 100 kW cap.

 

Key Points

An updated SaskPower plan crediting rooftop solar at 7.5 cents/kWh, offsetting usage at retail rate, without rebates.

✅ Excess energy credited at 7.5 cents/kWh

✅ Offsets on-site use at retail electricity rates

✅ Up to 100 kW generation; no program capacity cap

 

Saskatchewan has unveiled a new program that credits electricity customers for generating their own solar power, but it won’t pay as much as an older program did or reimburse them with rebates for their costs to buy and install equipment.

The new net metering program takes effect Nov. 1, and customers will be able to use solar to offset their own power use at the retail rate, similar to UK households' right to sell power in comparable schemes, though program details differ.

But they will only get 7.5 cents per kilowatt hour credit on their bills for excess energy they put back into the grid, as seen in Duke Energy payment changes in other jurisdictions, rather than the 14 cents in the previous program.

Dustin Duncan, the minister responsible for Crown-owned SaskPower, says the utility had to consider the interests of people wanting to use rooftop solar and everyone else who doesn’t have or can’t afford the panels, who he says would have to make up for the lost revenue.

Duncan says the idea is to create a green energy option, with wind power gains highlighting broader competitiveness, while also avoiding passing on more of the cost of the system to people who just cannot afford solar panels of their own.

Customers with solar panels will be allowed to generate up to 100 kilowatts of power against their bills.

“It’s certainly my hope that this is going to provide sustainability for the industry, as illustrated by Alberta's renewable surge creating jobs, that they have a program that they can take forward to their potential customers, while at the same time ensuring that we’re not passing onto customers that don’t have solar panels more cost to upkeep the grid,” Duncan said Tuesday.

Saskatchewan NDP leader Ryan Meili said he believes eliminating the rebate and cutting the excess power credit will kill the province’s solar energy, a concern consistent with lagging solar demand in Canada in recent national reports, he said.

“(Duncan) essentially made it so that any homeowner who wants to put up panels would take up to twice as long to pay it back, which effectively prices everybody in the small part of the solar production industry — the homeowners, the farms, the small businesses, the small towns — out of the market,” Meili said.

The province’s old net metering program hit its 16 megawatt capacity ahead of schedule, forcing the program to shut down, while disputes like the Manitoba Hydro solar lawsuit have raised questions about program management elsewhere. It also had a rebate of 20 per cent of the cost of the system, but that rebate has been discontinued.

The new net metering program won’t have any limit on program capacity, or an end date.

According to Duncan, the old program would have had a net negative impact to SaskPower of about $54 million by 2025, but this program will be much less — between $4 million and $5 million.

Duncan said other provinces either have already or are in the process of moving away from rebates for solar equipment, including Nova Scotia's proposed solar charge and similar reforms, and away from the one-to-one credits for power generation.

 

Related News

View more

B.C. residents and businesses get break on electricity bills for three months

BC Hydro COVID-19 Bill Relief offers pandemic support with bill credits, rate cuts, and deferred payments for residential, small business, and industrial customers across B.C., easing utilities costs during COVID-19 economic hardship.

 

Key Points

COVID-19 bill credits, a rate cut, and deferred payments for eligible B.C. homes, small businesses, and industrial customers.

✅ Non-repayable credits equal to 3 months of average bills.

✅ Small businesses closed can skip bills for three months.

✅ Large industry may defer 50% of electricity costs.

 

B.C. residents who have lost their jobs or had their wages cut will get a three-month break on BC Hydro bills, while small businesses, amid commercial consumption plummets during COVID-19, are also eligible to apply for similar relief.

Premier John Horgan said Wednesday the credit for residential customers will be three times a household’s average monthly bill over the past year and does not have to be repaid as part of the government’s support package during the COVID-19 pandemic, as BC Hydro demand down 10% highlights the wider market pressures.

He said small businesses that are closed will not have to pay their power bills for three months, and in Ontario an Ontario COVID-19 hydro rebate complemented similar relief, and large industrial customers, including those operating mines and pulp mills, can opt to have 50 per cent of their electricity costs deferred, though a deferred costs report warned of long-term liabilities.

BC Hydro rates will be cut for all customers by one per cent as of April 1, a move similar to Ontario 2021 rate reductions that manufacturers supported lower rates at the time, after the B.C. Utilities Commission provided interim approval of an application the utility submitted last August.

Eligible residential customers can apply for bill relief starting next week and small business applications will be accepted as of April 14, while staying alert to BC Hydro scam attempts during this period, with the deadline for both categories set at June 30.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.