Greening hospital operations

By Information Management


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
When it comes to environmentalism in health care, any push to "green" operations is driven as much by the folding kind of green as the leafy variety. It's not that hospital executives are opposed to becoming better environmental stewards. Few are immune to the issue.

Many of those who have made strides toward reducing energy consumption, however, candidly concede their primary motivator was trimming expenses - not softening their carbon footprint. The leaders driving energy reduction programs, electronics recycling and modernized building design are just as likely to wear a suit to work as Birkenstocks. Yet these leaders are keenly aware of the challenges facing health care - which, after the food industry, is the nation's second largest energy user.

While they may be aimed primarily at reducing the utility bill, many local initiatives do have positive impact on the environment. Trimming energy consumption is often the low hanging environmental fruit for hospitals. A culprit in energy consumption is usually the I.T. department. And the CFO is likely to be the leader in trimming the electric bill there and elsewhere.

Yet hospitals have many other venues through which they can become more responsible corporate citizens. Electronics recycling is one. Eliminating paper records is another with direct ramifications for I.T. Beyond that, some hospitals are looking at building design and even food consumption as part of their greening effort.

It's about time, some say. "Health care disproportionately impacts climate change," asserts Gina Pugliese, vice president of the Safety Institute run by Premier Inc., a San Diego-based hospital alliance and group purchasing organization.

Pugliese heads an effort called SPHERE, short for "Securing Proven Healthcare Energy Reduction for the Ecosystem." The cornerstone of the project is an online energy auction service that Premier offers its 200 health system owners.

And for some Premier members, the online auction has proven to be an innovative use of I.T. that results in direct savings - if not indirect benefit to the environment. "We are not opposed to green initiatives, but our primary focus is saving money," says Vince Pryor, CFO at 350-bed Ingalls Health System, Harvey, Ill. "We developed a strategy to do both, by becoming partially green and saving a fair amount of dollars."

Last fall, Ingalls served as a guinea pig for SPHERE's "reverse energy auction," an online service designed to put competitive bidding into the picture for a hospital's natural gas and electrical needs. Like most hospitals, Ingalls is a major energy consumer, spending some $2 million annually on electricity and $1.8 million annually on gas. By participating in the reverse auction, Ingalls shaved some $375,000 off its projected electricity costs over a three-year period and another $465,000 over 17 months off its gas prices.

In addition to reducing its bill compared to historical levels, its three-year electrical contract with Texas-based Pepco includes a small portion of electricity - 5% of the total capacity - from green sources, such as wind or solar power, notes Harold Richards, director of materials management.

It may not seem like much, but Richards points out that by diverting just a small portion of its electrical power from traditional "brown" sources such as a coal, Ingalls is keeping more than 3,400 tons of carbon dioxide out of the atmosphere. "It's equal to about 430 homes," he says.

To participate in the auction, Ingalls sent a request for proposals to eight electrical utilities. Thanks to Illinois' deregulation of electrical suppliers, customers like Ingalls do not have to depend on one local utility company. Yet, in the pre-online auction era, getting a competitive bid was not easy, Richards says. "We would sit with a couple of brokers and try to get the best deal," he recalls.

In the reverse auction, the suppliers already knew Ingalls' electrical power needs. The hospital provided 17 options on which the suppliers could bid. These options broke down the hospital's energy needs over multiple time periods, from two to five years, with varying percentages of green and brown energy. Once the auction started, the suppliers began submitting competitive quotes on the proposals, with Ingalls' executives watching the numbers on a large monitor. "It was like e-Bay," Pryor says. "A lot of hospital executives came in to watch," Richards adds.

In the end, Pepco bid down the number, providing the hospital with the best deal at a three-year price point. Its bid, for example, for a 95/5 brown/green ratio beat other suppliers' bids for 100% brown. Thus, Ingalls was able to get a better price for its electricity and reduce its carbon footprint to boot.

"The challenge is to balance the additional cost of being more green versus the lower reimbursements we are getting," Pryor says. "Green initiatives can be more costly if you are not selective."

Going green, no doubt, is very difficult for health care organizations. Green electricity sources are still in their infancy. Moreover, hospitals face ever-increasing demands for electricity.

Take OSF Healthcare System. The Peoria, Ill.-based delivery system operates seven hospitals across two states in addition to its 160 clinics. Its annual electricity consumption is approximately 195 million kilowatt hours, says Edward McKenzie, corporate plant operations manager. Add 6.5 million therms (a unit of natural gas) to the yearly energy consumption, and you've got a big utility bill.

One of the biggest users of energy is the I.T. department, McKenzie says. "I.T. does not have a good reputation" when it comes to energy savings, he says. Its data centers have voracious energy appetites. And running the servers and laptops needed to sustain 12,000 employees only adds to the demand. "Anything you can do to reduce energy consumption is what we look at," McKenzie says.

The challenge, he adds, is keeping up with the increased energy needs of server racks. "They have gone from 10 to 20 to 35 kilowatts per rack per hour to run," he says. "It generates a tremendous amount of heat."

OSF is using the latest in building design technology to stem the tide. Its new data center in North Peoria, for example, will have a "free cooling" system. It will use naturally chilled air from outside to help maintain an appropriate temperature inside. And Ingalls also is upgrading its HVAC technology throughout the system, particularly when it builds new facilities. "We use the LEED guidelines," McKenzie says, referencing the building design standards advocated by the U.S. Green Building Council.

Its Leadership in Energy and Environmental Design Green Building Rating System provides standards for environmentally sustainable construction. Before OSF adopts any LEED standards, however, it analyzes the technology for its return, McKenzie says.

OSF Healthcare is replacing its legacy electrical chillers with more modern technology, he adds. The newer chillers are far more energy efficient, a major plus in keeping the hospital temperate and avoiding a boiler room in the data center. In fact, one modern chiller may only cost $35,000 annually to operate, compared to its $50,000 predecessor. Moreover, the modern chiller does not use ozone-depleting refrigerants, McKenzie notes.

CIOs are not oblivious to the energy demand created by their department. Lior Blik, acting CIO at Hoboken (N.J.) Medical Center, transitioned in 2007 to a "virtual server" environment in part to drive down operating costs. Rather than having a dedicated server for each application, the virtual infrastructure enables Hoboken to run multiple applications on fewer servers. His department maintains an armament of nearly 70 servers, but would have required 100 under the old set-up. "The electrical bill is down 25%," says Blik, who is CEO of NITConnect, a New York-based consulting company.

Hoboken's next big project will be digitizing its paper records. The hospital spends some $750,000 annually on paper alone, including specialized carbon forms, he says. Eliminating the paper, he adds, can only help the environment.

Other areas figure into hospitals' green-supportive projects. Cook Children's Healthcare Network, Fort Worth, Texas, for example, redirected its electronics recycling program about one year ago. To keep old computers out of landfill, Cook Children's sells the equipment to its staff. But the labor required to cleanse the computers of confidential data, store the computers and maintain the inventory proved overwhelming, says Michael Zachary, interim director of operations in the information systems department. "The amount of time needed was a distraction," he says.

Cook Children's turned to a local company, Grand Prairie, Texas-based Argus Connection Inc., to handle the device cleansing. Argus picks up used equipment each month, documents the inventory, removes confidential data and recycles any equipment not suitable for re-sale to the staff. Proper recycling of electronics is a must, says Zachary, who points to reports that many used U.S. computers wind up as third-world landfill. Cook Children's also offers free electronics recycling to employees who tote in old televisions or cell phones.

The unstated irony in all these projects is that the modern hospital is perhaps among the most environmentally unfriendly settings around. That's the viewpoint of Kathy Gerwig, vice president of workplace safety and environmental stewardship officer for Kaiser Permanente, an Oakland-based delivery system than encompasses a health plan and more than 30 hospitals across nine states.

Kaiser's taking a multi-pronged approach to becoming a greener organization, she says. It wants to reduce its greenhouse gas emissions and ensure safety in the use and destruction of chemicals. The program includes eliminating vinyl, an almost ubiquitous substance found in older hospitals. Its manufacture and destruction can be highly toxic, Gerwig says.

As it retrofits old hospitals and builds new ones, Kaiser is turning to rubber flooring to replace the vinyl. Rubber, Gerwig says, is the new environmental standard for hospital flooring. "It is not environmentally benign, but it has a longer lifespan and does not require chemical cleaning," she observes. In addition, Kaiser is promoting locally grown and organic produce by hosting farmers' markets at most of its hospitals. In some underserved areas, they provide the only source of fresh produce, Gerwig says.

When it comes to thinking green, health care executives also need to think big, Gerwig says. "People understand the cost benefits around energy savings, but they don't make the direct link to people's health," provided by a healthy care-giving environment, she says. "There is only so much you can do in the doctor's office. People also need a healthy place to live and work."

Related News

Alberta set to retire coal power by 2023, ahead of 2030 provincial deadline

Alberta coal phaseout accelerates as utilities convert to natural gas, cutting emissions under TIER regulations and deploying hydrogen-ready, carbon capture capable plants, alongside new solar projects in a competitive, deregulated electricity market.

 

Key Points

A provincewide shift from coal to natural gas and renewables, cutting power emissions years ahead of the 2030 target.

✅ Capital Power, TransAlta converting coal units to gas

✅ TIER pricing drives efficiency, carbon capture readiness

✅ Hydrogen-ready turbines, solar projects boost renewables

 

Alberta is set to meet its goal to eliminate coal-fired electricity production years earlier than its 2030 target, amid a broader shift to cleaner energy in the province, thanks to recently announced utility conversion projects.

Capital Power Corp.’s plan to spend nearly $1 billion to switch two coal-fired power units west of Edmonton to natural gas, and stop using coal entirely by 2023, was welcomed by both the province and the Pembina Institute environmental think-tank.

In 2014, 55 per cent of Alberta’s electricity was produced from 18 coal-fired generators. The Alberta government announced in 2015 it would eliminate emissions from coal-fired electricity generation by 2030.

Dale Nally, associate minister of Natural Gas and Electricity, said Friday that decisions by Capital Power and other utilities to abandon coal will be good for the environment and demonstrates investor confidence in Alberta’s deregulated electricity market, where the power price cap has come under scrutiny.

He credited the government’s Technology Innovation and Emissions Reduction (TIER) regulations, which put a price on industrial greenhouse gas emissions, as a key factor in motivating the conversions.

“Capital Power’s transition to gas is a great example of how private industry is responding effectively to TIER, as it transitions these facilities to become carbon capture and hydrogen ready, which will drive future emissions reductions,” Nally said in an email.

Capital Power said direct carbon dioxide emissions at its Genesee power facility near Edmonton will be about 3.4 million tonnes per year lower than 2019 emission levels when the project is complete.

It says the natural gas combined cycle units it’s installing will be the most efficient in Canada, adding they will be capable of running on 30 per cent hydrogen initially, with the option to run on 95 per cent hydrogen in future with minor investments.

In November, Calgary-based TransAlta Corp. said it will end operations at its Highvale thermal coal mine west of Edmonton by the end of 2021 as it switches to natural gas at all of its operated coal-fired plants in Canada four years earlier than previously planned.

The Highvale surface coal mine is the largest in Canada, and has been in operation on the south shore of Wabamun Lake in Parkland County since 1970.

The moves by the two utilities and rival Atco Ltd., which announced three years ago it would convert to gas at all of its plants by this year, mean significant emissions reduction and better health for Albertans, said Binnu Jeyakumar, director of clean energy for Pembina.

“Alberta’s early coal phaseout is also a great lesson in good policy-making done in collaboration with industry and civil society,” she said.

“As we continue with this transformation of our electricity sector, it is paramount that efforts to support impacted workers and communities are undertaken.”

She added the growing cost-competitiveness of renewable energy, such as wind power, makes coal plant retirements possible, applauding Capital Power’s plans to increase its investments in solar power.

In Ontario, clean power policy remains a focus as the province evaluates its energy mix.

The company announced it would go ahead with its 75-megawatt Enchant Solar power project in southern Alberta, investing between $90 million and $100 million, and that it has signed a 25-year power purchase agreement with a Canadian company for its 40.5-MW Strathmore Solar project now under construction east of Calgary.
 

 

Related News

View more

Sycamore Energy taking Manitoba Hydro to court, alleging it 'badly mismanaged' Solar Energy Program

Sycamore Energy Manitoba Hydro Lawsuit centers on alleged mismanagement of the solar rebate incentive program, project delays, inspection backlogs, and alleged customer interference, impacting renewable energy installations, contractors, and clean power investment across Manitoba.

 

Key Points

Claim alleging mismanagement of Manitoba's solar rebate, delays, and inducing customers to switch installers.

✅ Lawsuit alleges mismanaged solar rebate incentive program

✅ Delays in inspections left hundreds of projects incomplete

✅ Claims Hydro urged customers to switch installers for rebates

 

Sycamore Energy filed a statement of claim Monday in Manitoba Court of Queens Bench against Manitoba Hydro saying it badly mismanaged its Solar Energy Program, a dispute that comes as Canada's solar progress faces criticism nationwide.

The claim also noted the crown corporation caused significant financial and reputational damage to Sycamore Energy, echoing disputes like Ontario wind cancellation costs seen elsewhere.

The statement of claim says Manitoba Hydro was telling customers to find other companies to complete solar panel installations, even as Nova Scotia's solar charge debate has unfolded.

'I'm still waiting': dozens of Manitoba solar system installations in the queue under expired incentive program
This all comes after a pilot project was launched in the province in April 2016, which would allow people to apply for a rebate under the incentive program, while Saskatchewan adjusted solar credits in parallel, and the project would cover about 25 per cent of the installation costs.

The project ended in April 2018, but hundreds of approved projects had yet to be finished.

According to Manitoba Hydro, in November there were 252 approved projects awaiting completion by more than one contractor, and Sycamore Energy said it had about 100 of those projects, a dynamic seen as New England's solar growth strains grid upgrades in other regions.

At the time Sycamore Energy COO, Alex Stuart, blamed Manitoba Hydro for the delays, stating it took too long to get inspections after solar systems were installed.

Scott Powell, Manitoba Hydro’s director of corporate communications, said in November he disagreed with Sycamore Energy’s comments, even as Ontario moves to reintroduce renewables elsewhere.

In a news release, the company said it sold more installations under Manitoba Hydro’s Solar Energy Program compared to other companies and it was instrumental in helping set up standards for the program.

“Manitoba Hydro mismanaged the solar rebate program from the beginning. In the end, they targeted our company unfairly and unlawfully by inducing our customers to break their contracts with us. Manitoba Hydro told our customers they could get an extension to their rebate but only if they switched to different installers,” said Justin Phillips, CEO of Sycamore Energy in a news release.

“We would much rather be installing clean, effective solar power projects for our customers right now. The last thing we want to do is to be suing Manitoba Hydro, but we feel we have no choice. Their actions have cost us millions in lost business. They’ve also cost the province jobs, millions in private investment and a positive way forward to help combat climate change.”

Manitoba Hydro now has 20 days to respond to the action, and a recent Cornwall wind-farm ruling underscores the stakes.

When asked for a response from CTV News, a spokesperson for the Crown corporation said it hadn’t yet been made aware of the suit.

“If a statement of claim is filed and served, we’ll file a statement of defence in due course. As this matter is now apparently before the courts, we have no further comment,” the spokesperson said.

None of these allegations have been proven in court.

 

Related News

View more

IEA: Asia set to use half of world's electricity by 2025

Asia Electricity Consumption 2025 highlights an IEA forecast of surging global power demand led by China, lagging access in Africa, rising renewables and nuclear output, stable emissions, and weather-dependent grids needing flexibility and electrification.

 

Key Points

An IEA forecast that Asia will use half of global power by 2025, led by China, as renewables and nuclear drive supply.

✅ Asia to use half of global electricity; China leads growth

✅ Africa just 3% consumption despite rapid population growth

✅ Renewables, nuclear expand; grids must boost flexibility

 

Asia will for the first time use half of the world’s electricity by 2025, even as global power demand keeps rising and Africa continues to consume far less than its share of the global population, according to a new forecast released Wednesday by the International Energy Agency.

Much of Asia’s electricity use will be in China, a nation of 1.4 billion people whose China's electricity sector is seeing shifts as its share of global consumption will rise from a quarter in 2015 to a third by the middle of this decade, the Paris-based body said.

“China will be consuming more electricity than the European Union, United States and India combined,” said Keisuke Sadamori, the IEA’s director of energy markets and security.

By contrast, Africa — home to almost a fifth of world’s nearly 8 billion inhabitants — will account for just 3% of global electricity consumption in 2025.

“This and the rapidly growing population mean there is still a massive need for increased electrification in Africa,” said Sadamori.

The IEA’s annual report predicts that low-emissions sources will account for much of the growth in global electricity supply over the coming three years, including nuclear power and renewables such as wind and solar. This will prevent a significant rise in greenhouse gas emissions from the power sector, it said.

Scientists say sharp cuts in all sources of emissions are needed as soon as possible to keep average global temperatures from rising 1.5 degrees Celsius (2.7 Fahrenheit) above pre-industrial levels. That target, laid down in the 2015 Paris climate accord, appears increasingly doubtful as temperatures have already increased by more than 1.1 C since the reference period.

One hope for meeting the goal is a wholesale shift away from fossil fuels such as coal, gas and oil toward low-carbon sources of energy. But while some regions are reducing their use of coal and gas for electricity production, in others, soaring electricity and coal use are increasing, the IEA said.

The 134-page also report warned that surging electricity demand and supply are becoming increasingly weather dependent, a problem it urged policymakers to address.

“In addition to drought in Europe, there were heat waves in India (last year),” said Sadamori. “Similarly, central and eastern China were hit by heatwaves and drought. The United States, where electricity sales projections continue to fall, also saw severe winter storms in December, and all those events put massive strain on the power systems of these regions.”

“As the clean energy transition gathers pace, the impact of weather events on electricity demand will intensify due to the increased electrification of heating, while the share of weather-dependent renewables poised to eclipse coal will continue to grow in the generation mix,” the IEA said. “In such a world, increasing the flexibility of power systems while ensuring security of supply and resilience of networks will be crucial.”

 

Related News

View more

Ontario Energy Board prohibiting electricity shutoffs during latest stay-at-home order

OEB Disconnection Ban shields Ontario residential customers under the stay-at-home order, pausing electricity distributor shutoffs for non-payment and linking COVID-19 Energy Assistance Program credits for small businesses, charities, and overdue utility bills.

 

Key Points

A pause on electricity shutoff notices during Ontario's stay-at-home order, with COVID-19 bill credits for customers.

✅ Distributors cannot issue residential disconnection notices.

✅ Applies through the stay-at-home order timeline.

✅ CEAP credits: $750 residential; $1,500 small biz and charities.

 

With Ontario now into the third province-wide lockdown, the Ontario Energy Board (OEB) has promised residents won't have to worry about their power being shut off.

On April 8, the Province issued the third stay-at-home order in the last 13 months which is scheduled to last for 28 days until at least May 6, as electricity rates and policies continue to shift.

On April 30, the annual winter disconnection ban is set to expire, meaning electricity distributors like Hydro One would normally be permitted to issue disconnection notices for non-payment as early as 14 days before the end of the ban.

However, the OEB has announced changes for electricity consumers that prohibit electricity distributors from issuing disconnection notices to residential customers for the entirety of the stay-at-home order.

Additionally, the COVID-19 Energy Assistance Program is available for residential, small business, and registered charity customers who have overdue amounts on their electricity or gas bills as a result of the pandemic, complementing support for electric bills introduced during COVID-19, and the fixed COVID-19 hydro rate that helped stabilize costs.

Those who meet these criteria are eligible for credits up to a maximum of $750 for residential customers and $1,500 for small businesses and charities, alongside earlier moves to set an off-peak price to ease costs.

 

Related News

View more

IAEA reactor simulators get more use during Covid-19 lockdown

IAEA Nuclear Reactor Simulators enable virtual nuclear power plant training on IPWR/PWR systems, load-following operations, baseload dynamics, and turbine coupling, supporting advanced reactor education, flexible grid integration, and low-carbon electricity skills development during remote learning.

 

Key Points

IAEA Nuclear Reactor Simulators are tools for training on reactor operations, safety, and flexible power management.

✅ Simulates IPWR/PWR systems with real-time parameter visualization.

✅ Practices load-following, baseload, and grid flexibility scenarios.

✅ Supports remote training on safety, controls, and turbine coupling.

 

Students and professionals in the nuclear field are making use of learning opportunities during lockdown made necessary by the Covid-19 pandemic, drawing on IAEA low-carbon electricity lessons for the future.

Requests to use the International Atomic Energy Agency’s (IAEA’s) basic principle nuclear reactor simulators have risen sharply in recent weeks, IAEA said on 1 May, as India takes steps to get nuclear back on track. New users will have the opportunity to learn more about operating them.

“This suite of nuclear power plant simulators is part of the IAEA education and training programmes on technology development of advanced reactors worldwide. [It] can be accessed upon request by interested parties from around the world,” said Stefano Monti, head of the IAEA’s Nuclear Power Technology Development Section.

Simulators include several features to help users understand fundamental concepts behind the behaviour of nuclear plants and their reactors. They also provide an overview of how various plant systems and components work to power turbines and produce low-carbon electricity, while illustrating roles beyond electricity as well.

In the integral pressurised water reactor (IPWR) simulator, for instance, a type of advanced nuclear power design, users can navigate through several screens, each containing information allowing them to adjust certain variables. One provides a summary of reactor parameters such as primary pressure, flow and temperature. Another view lays out the status of the reactor core.

The “Systems” screen provides a visual overview of how the plant’s main systems, including the reactor and turbines, work together. On the “Controls” screen, users can adjust values which affect reactor performance and power output.

This simulator provides insight into how the IPWR works, and also allows users to see how the changes they make to plant variables alter the plant’s operation. Operators can also perform manoeuvres similar to those that would take place in the course of real plant operations e.g. in load following mode.

“Currently, most nuclear plants operate in ‘baseload’ mode, continually generating electricity at their maximum capacity. However, there is a trend of countries, aligned with green industrial revolution strategies, moving toward hybrid energy systems which incorporate nuclear together with a diverse mix of renewable energy sources. A greater need for flexible operations is emerging, and many advanced power plants offer standard features for load following,” said Gerardo Martinez-Guridi, an IAEA nuclear engineer who specialises in water-cooled reactor technology.

Prospective nuclear engineers need to understand the dynamics of the consequences of reducing a reactor’s power output, for example, especially in the context of next-generation nuclear systems and emerging grids, and simulators can help students visualise these processes, he noted.

“Many reactor variables change when the power output is adjusted, and it is useful to see how this occurs in real-time,” said Chirayu Batra, an IAEA nuclear engineer, who will lead the webinar on 12 May.

“Users will know that the operation is complete once the various parameters have stabilised at their new values.”

Observing and comparing the parameter changes helps users know what to expect during a real power manoeuvre, he added.

 

Related News

View more

Turning thermal energy into electricity

Near-Field Thermophotovoltaics captures radiated energy across a nanoscale gap, using thin-film photovoltaic cells and indium gallium arsenide to boost power density and efficiency, enabling compact Army portable power from emitters via radiative heat transfer.

 

Key Points

A nanoscale TPV method capturing near-field photons for higher power density at lower emitter temperatures.

✅ Nanoscale gap boosts radiative transfer and usable photon flux

✅ Thin-film InGaAs cells recycle sub-band-gap photons via reflector

✅ Achieved ~5 kW/m2 power density with higher efficiency

 

With the addition of sensors and enhanced communication tools, providing lightweight, portable power has become even more challenging, with concepts such as power from falling snow illustrating how diverse new energy-harvesting approaches are. Army-funded research demonstrated a new approach to turning thermal energy into electricity that could provide compact and efficient power for Soldiers on future battlefields.

Hot objects radiate light in the form of photons into their surroundings. The emitted photons can be captured by a photovoltaic cell and converted to useful electric energy. This approach to energy conversion is called far-field thermophotovoltaics, or FF-TPVs, and has been under development for many years; however, it suffers from low power density and therefore requires high operating temperatures of the emitter.

The research, conducted at the University of Michigan and published in Nature Communications, demonstrates a new approach, where the separation between the emitter and the photovoltaic cell is reduced to the nanoscale, enabling much greater power output than what is possible with FF-TPVs for the same emitter temperature.

This approach, which enables capture of energy that is otherwise trapped in the near-field of the emitter is called near-field thermophotovoltaics or NF-TPV and uses custom-built photovoltaic cells and emitter designs ideal for near-field operating conditions, alongside emerging smart solar inverters that help manage conversion and delivery.

This technique exhibited a power density almost an order of magnitude higher than that for the best-reported near-field-TPV systems, while also operating at six-times higher efficiency, paving the way for future near-field-TPV applications, including remote microgrid deployments in extreme environments, according to Dr. Edgar Meyhofer, professor of mechanical engineering, University of Michigan.

"The Army uses large amounts of power during deployments and battlefield operations and must be carried by the Soldier or a weight constrained system," said Dr. Mike Waits, U.S. Army Combat Capabilities Development Command's Army Research Laboratory. "If successful, in the future near-field-TPVs could serve as more compact and higher efficiency power sources for Soldiers as these devices can function at lower operating temperatures than conventional TPVs."

The efficiency of a TPV device is characterized by how much of the total energy transfer between the emitter and the photovoltaic cell is used to excite the electron-hole pairs in the photovoltaic cell, where insights from near-light-speed conduction research help contextualize performance limits in semiconductors. While increasing the temperature of the emitter increases the number of photons above the band-gap of the cell, the number of sub band-gap photons that can heat up the photovoltaic cell need to be minimized.

"This was achieved by fabricating thin-film TPV cells with ultra-flat surfaces, and with a metal back reflector," said Dr. Stephen Forrest, professor of electrical and computer engineering, University of Michigan. "The photons above the band-gap of the cell are efficiently absorbed in the micron-thick semiconductor, while those below the band-gap are reflected back to the silicon emitter and recycled."

The team grew thin-film indium gallium arsenide photovoltaic cells on thick semiconductor substrates, and then peeled off the very thin semiconductor active region of the cell and transferred it to a silicon substrate, informing potential interfaces with home battery systems for distributed use.

All these innovations in device design and experimental approach resulted in a novel near-field TPV system that could complement distributed resources in virtual power plants for resilient operations.

"The team has achieved a record ~5 kW/m2 power output, which is an order of magnitude larger than systems previously reported in the literature," said Dr. Pramod Reddy, professor of mechanical engineering, University of Michigan.

Researchers also performed state-of-the-art theoretical calculations to estimate the performance of the photovoltaic cell at each temperature and gap size, informing hybrid designs with backup fuel cell solutions that extend battery life, and showed good agreement between the experiments and computational predictions.

"This current demonstration meets theoretical predictions of radiative heat transfer at the nanoscale, and directly shows the potential for developing future near-field TPV devices for Army applications in power and energy, communication and sensors," said Dr. Pani Varanasi, program manager, DEVCOM ARL that funded this work.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.