Biomass plant planned for unused paper mill

By Industrial Info Resources


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
An unused paper mill is set to become Scotlands latest biomass project as the Brusselsheadquartered, European division of International Paper Company has announced plans to build a £60 million US $91 million greenenergy centre.

The energy project will entail construction of a 17megawatt MW biomassfired plant at the former Inverurie paper mill in Aberdeenshire, which was shut down by International Paper in March 2009, resulting in the loss of 371 jobs. The plant will also host an integrated woodpelleting plant that can process 250,000 tonnes of locally sourced timber every year.

The news comes as the UK government announced that it will not increase financial support under the Renewables Obligation Certificate ROC scheme for the cofiring of biomass and energy crops with combined heat and power CHP. Following a sixweek consultation, the Department of Energy and Climate Change DECC has concluded that the cofiring of biomass with CHP will remain at 1.5 ROCs per megawatthour.

International Paper will work with Integrated Energy Systems International, a consortium of companies that will be responsible for building the power and pelleting plants. Detailed plans will be submitted in the coming months, with the aim of getting full planning permission before the end of the year. The pelleting plant can be built within 10 months, while 24 months have been allocated for construction of the biomassfired plant.

We are pleased to have reached this important stage in the proposed reindustrialization of our former mill site that has the potential to create new manufacturing jobs in the locality, said Eric Chartrain, International Papers vice president of European papers. Our agreement suggests that detailed plans will be presented to the appropriate authorities, seeking a determination by the end of the year.

Scotlands First Minister Alex Salmond welcomed the development. It was a great pleasure to be able to sign this agreement. I pay tribute to the months of hard work which has gone on behind the scenes between International Paper and their partners in the reindustrialization project, which has taken us to this point.

The mill closure, coming as it did in the deepest recession for nearly 70 years, could hardly have come at a worse time. The aim has always been to put the mill site back to an industrial use, and today marks a key milestone in that journey. With the building of a woodpelleting plant and the commitment to install over 30 MW of multifuel biomass generating power, at least 50 permanent jobs will be created onsite, with a further 100 jobs created in support of the ventures offsite.

In February, RWE npower renewables, part of German energy company RWE AG awarded the key contracts for Scotlands largest proposed biomass power plant, the £200 million US $304 million CHP plant at Markinch in Fife. Metso and Norways Aker Solutions will be responsible for the 155MW facility, which will up and running by the end of 2012.

Related News

Electric Ferries Power Up B.C. with CIB Help

BC Ferries Electrification accelerates zero-emission vessels, Canada Infrastructure Bank financing, and fast charging infrastructure to cut greenhouse gas emissions, lower operating costs, and reduce noise across British Columbia's Island-class routes.

 

Key Points

BC Ferries Electrification is the plan to deploy zero-emission ferries and charging, funded by CIB, to reduce emissions.

✅ $75M CIB loan funds four electric ferries and chargers

✅ Cuts 9,000 tonnes CO2e annually on short Island-class routes

✅ Quieter service, lower operating costs, and redeployed hybrids

 

British Columbia is taking a significant step towards a cleaner transportation future with the electrification of its ferry fleet. BC Ferries, the province's ferry operator, has secured a $75 million loan from the Canada Infrastructure Bank (CIB) to fund the purchase of four zero-emission ferries and the necessary charging infrastructure to support them.

This marks a turning point for BC Ferries, which currently operates a fleet reliant on diesel fuel. The new Island-class electric ferries will be deployed on shorter routes, replacing existing hybrid ships on those routes. These hybrid ferries will then be redeployed on routes that haven't yet been converted to electric, maximizing their lifespan and efficiency.

Environmental Benefits

The transition to electric ferries is expected to deliver significant environmental benefits. The new vessels are projected to eliminate an estimated 9,000 tonnes of greenhouse gas emissions annually, and electric ships on the B.C. coast already demonstrate similar gains, contributing to British Columbia's ambitious climate goals. Additionally, the quieter operation of electric ferries will create a more pleasant experience for passengers and reduce noise pollution for nearby communities.

Economic Considerations

The CIB loan plays a crucial role in making this project financially viable. The low-interest rate offered by the CIB will help to keep ferry fares more affordable for passengers. Additionally, the long-term operational costs of electric ferries are expected to be lower than those of diesel-powered vessels, providing economic benefits in the long run.

Challenges and Opportunities

While the electrification of BC Ferries is a positive development, there are some challenges to consider. The upfront costs of electric ferries and charging infrastructure are typically higher than those of traditional options, though projects such as the Kootenay Lake ferry show growing readiness. However, advancements in battery technology are constantly lowering costs, making electric ferries a more cost-effective choice over time.

Moreover, the transition presents opportunities for job creation in the clean energy sector, with complementary initiatives like the hydrogen project broadening demand. The development, construction, and maintenance of electric ferries and charging infrastructure will require skilled workers, potentially creating a new avenue for economic growth in British Columbia.

A Pioneering Example

BC Ferries' electrification initiative sets a strong precedent for other ferry operators worldwide, including Washington State Ferries pursuing hybrid-electric upgrades. This project demonstrates the feasibility and economic viability of transitioning to cleaner marine transportation solutions. As battery technology and charging infrastructure continue to develop, we can expect to see more widespread adoption of electric ferries across the globe.

The collaboration between BC Ferries and the CIB paves the way for a greener future for BC's transportation sector, where efforts like Harbour Air's electric aircraft complement marine electrification. With cleaner air, quieter operation, and a positive impact on climate change, this project is a win for the environment, the economy, and British Columbia as a whole.

 

Related News

View more

Europe's Renewables Are Crowding Out Gas as Coal Phase-Out Slows

EU Renewable Energy Shift is cutting gas dependence as wind and solar expand, reshaping Europe's power mix, curbing emissions, and pressuring coal use amid a supply crisis and rising natural gas prices.

 

Key Points

An EU trend where wind and solar growth reduce gas reliance, curb coal, and lower power-sector emissions.

✅ Wind and solar displace gas in EU power mix

✅ Coal use rises as gas prices surge

✅ Emissions fall, but not fast enough for 1.5 C target

 

The European Union’s renewable energy sources are helping reduce its dependence on natural gas, under the current European electricity pricing framework, that’s still costing the region dearly.

Renewables growth has helped reduce the EU’s dependence on gas, as wind and solar outpaced gas across the bloc last year, which has soared in price since the middle of last year as the region grapples with a supply crisis that’s dealt blows to industries as well as ordinary consumers’ pockets. More than half of new renewable generation since 2019 has replaced gas power, according to a study by London-based climate think tank Ember, with the rest replacing mainly nuclear and coal sources.

“These are moments and paradigm shifts when governments and businesses start taking this much more seriously,” said Charles Moore, the lead author on the study, amid Covid-19 responses accelerating the transition across Europe. “The alternatives are available, they are cheaper, and they are likely to get even cheaper and more competitive. Renewables are now an opportunity, not a cost.”

The high price of gas relative to coal has meant utilities are leaning more on coal as a back-up for renewable generation, as stunted hydro and nuclear output has constrained low-carbon alternatives in parts of Europe, which risks the trajectory of Europe’s phase-out of the dirtiest fossil fuel. Last year, the EU’s coal use jumped disproportionately high relative to the rise in power generation as high gas prices boosted the relative profitability of burning coal instead.


Europe Coal Use Jumps as Costly Gas Turns Firms to Dirty Fuel
EU power generation from renewables reached a record high in 2021 of 547 terawatt-hours last year, accounting for an 11% increase compared to two years before, according to Ember’s Europe Electricity Review. It’s more than doubled in a decade, representing a 157% increase since 2011. 

Gas use declined last year for the second year in a row, as Europe explores storing electricity in gas pipelines to leverage existing infrastructure, reaching a level 8.1% lower than 2019. By contrast, coal use fell just 3.3% in the same period. Put simply, wind and solar did a great job of replacing coal during 2011-2019 but since then renewables have mostly been nudging out gas-fired power stations.

Ember’s Moore warned that the slowing phase-out of coal might require legislation to accelerate. The International Energy Agency recommends OECD countries cease using coal by the end of the decade to ensure alignment with the Paris Agreement target of keeping the world’s temperature increase below 1.5 Celsius, with renewables poised to eclipse coal globally by the mid-2020s lending momentum. 

“Europe can accelerate the phasing out of coal by building more renewable energy and faster,” said Felicia Aminoff,  an energy-transition analyst at BloombergNEF. “Wind and solar have no fuel costs, so as soon as you have made the initial investments to build wind and solar capacity it will start replacing generation that uses any kind of fuel, whether it is coal or gas.”

Overall, EU power sector emissions fell at less than half the rate required to hit that target, Ember’s report said. Spain produced the largest emissions reduction in the last two years, with renewables adding about 25 TWh and gas falling 15 TWh, and in Germany renewables topped coal and nuclear for the first time to support the shift. In contrast, heavy use of coal dragged down the bloc’s climate progress in Poland, where coal use rose about 8 TWh and renewables gained only 4 TWh.

 

Related News

View more

35 arrested in India for stealing electricity

BEST vigilance raid on Wadala electricity theft uncovered a Mumbai power theft racket in Antop Hill and Sangam Nagar, with operators, illegal connections, sub-stations, meter cabins, FIRs, and Rs 72 lakh losses flagged by BEST.

 

Key Points

A BEST operation that nabbed operators stealing power via illegal connections in Wadala, exposing a Rs 72 lakh loss.

✅ 35 suspects booked; key operator identified as David Anthony.

✅ Illegal taps from sub-stations and meter cabins in shanties.

✅ BEST filed FIRs; Session court granted bail to accused.

 

In a raid conducted at Antop Hill in Wadala on Saturday, a total of 35 people were nabbed by the vigilance department for stealing electricity to the tune of Rs 72 lakh, in a case similar to a Montreal power-theft ring bust covered internationally.

It was the second such raid conducted in the past one week, where operators have been nabbed.The cash-strapped BEST is now tightening it's grasp on `operators' who steal electricity from BEST sources and provide it to their own customers on a meagre monthly rent, even as Ontario utilities warn about scams affecting customers elsewhere.

After receiving a tip-off about the theft of electricity in the Sangam Nagar area of Wadala, about 90 personnel of the BEST conducted a raid. After visiting the spots, it was found that illegal connections were made from the sub-station and other electricity boxes of the BEST in the area, underscoring how fragile networks can be amid disruptions such as major outages in London that affected thousands.

According to BEST officials, the residents from the area would come up to the accused, identified as David Anthony, and would pay a fixed amount at the end of every month for unlimited supply of power, a dynamic reminiscent of shutoff-threat scams flagged by Manitoba Hydro, though the circumstances differ. Anthony would with draw power directly from meter cabins and electricity boxes in the area. The wires he connected to these were in turn connected to households who made the arrangement with him. An official from BEST also explained that as soon they reach a location to conduct raids and vehicles of BEST officials are spotted by residents, most of the connections are cut off, which makes it difficult for them to prove the theft case However, on Saturday, BEST officials managed to conduct the raid swiftly and nab 35 people.

All who had illegal connections were named in the complaint and an FIR was registered against them, including Anthony, who himself had illegal connections in his house. They were produced in Session court and given bail, while utilities in other regions resort to hydro disconnections during arrears season. Chief Vigilance Officer of BEST, RJ Singh said, "Most of these are commercial establishments in these shanties, which steal electricity. It is very important to catch hold of the operators as they are the providers and we need to break their backbone."

 

Related News

View more

New Hampshire rejects Quebec-Massachusetts transmission proposal

Northern Pass Project faces rejection by New Hampshire regulators, halting Hydro-Quebec clean energy transmission lines to Massachusetts; Eversource vows appeal as the Site Evaluation Committee cites development concerns and alternative routes through Vermont and Maine.

 

Key Points

A project to transmit Hydro-Quebec power to Massachusetts via New Hampshire, recently rejected by state regulators.

✅ New Hampshire SEC denied the transmission application

✅ Up to 9.45 TWh yearly from Hydro-Quebec to Massachusetts

✅ Eversource plans appeal; alternative routes via Vermont, Maine

 

Regulators in the state of New Hampshire on Thursday rejected a major electricity project being piloted by Quebec’s hydro utility and its American partner, Eversource.

Members of New Hampshire’s Site Evaluation Committee unanimously denied an application for the Northern Pass project a week after the state of Massachusetts green-lit the proposal.

Both states had to accept the project, as the transmission lines were to bring up to 9.45 terawatt hours of electricity per year from Quebec’s hydroelectric plants to Massachusetts as part of Hydro-Quebec’s export bid to New England, through New Hampshire.

The 20-year proposal was to be the biggest export contract in Hydro-Quebec’s history, in a region where Connecticut is leading a market overhaul that could affect pricing, and would generate up to $500 million in annual revenues for the provincial utility.

Hydro-Quebec’s U.S. partner, Eversource, said in a new release it was “shocked and outraged” by the New Hampshire regulators’ decision and suggested it would appeal.

“This decision sends a chilling message to any energy project contemplating development in the Granite State,” said Eversource. “We will be seeking reconsideration of the SEC’s decision, as well as reviewing all options for moving this critical clean energy project forward, including lessons from electricity corridor construction in Maine.”

The New Hampshire Union Leader reported Thursday the seven members of the evaluation committee said the project’s promoters couldn’t demonstrate the proposed energy transport lines wouldn’t interfere with the region’s orderly development.

Hydro-Quebec spokesman Serge Abergel said the decision wasn’t great news but it didn’t put a end to the negotiations between the company and the state of Massachusetts.

The hydro utility had proposed alternatives routes through Vermont and Maine amid a 145-mile transmission line debate over the corridor should the original plan fall through.

“There is a provision included in the process in the advent of an impasse, which allows Massachusetts to go back and choose the next candidate on the list,” Abergel said in an interview. “There are still cards left on the table.”

 

Related News

View more

Utilities see benefits in energy storage, even without mandates

Utility Battery Storage Rankings measure grid-connected capacity, not ownership, highlighting MW, MWh, and watts per customer across PJM, MISO, and California IOUs, featuring Duke Energy, IPL, ancillary services, and frequency regulation benefits.

 

Key Points

Rankings that track energy storage connected to utility grids, comparing MW, MWh, and W/customer rather than ownership.

✅ Ranks by MW, MWh, and watts per customer, not asset ownership

✅ Highlights PJM, MISO cases and California IOUs' deployments

✅ Examples: Duke Energy, IPL, IID; ancillary services, frequency response

 

The rankings do not tally how much energy storage a utility built or owns, but how much was connected to their system. So while IPL built and owns the storage facility in its territory, Duke does not own the 16 MW of storage that connected to its system in 2016. Similarly, while California’s utilities are permitted to own some energy storage assets, they do not necessarily own all the storage facilities connected to their systems.

Measured by energy (MWh), IPL ranked fourth with 20 MWh, and Duke Energy Ohio ranked eighth with 6.1 MWh.

Ranked by energy storage watts per customer, IPL and Duke actually beat the California utilities, ranking fifth and sixth with 42 W/customer and 23 W/customer, respectively.

Duke ready for next step

Given Duke’s plans, including projects in Florida that are moving ahead, the utility is likely to stay high in the rankings and be more of a driving force in development. “Battery technology has matured, and we are ready to take the next step,” Duke spokesman Randy Wheeless told Utility Dive. “We can go to regulators and say this makes economic sense.”

Duke began exploring energy storage in 2012, and until now most of its energy storage efforts were focused on commercial projects in competitive markets where it was possible to earn revenues. Those included its 36 MW Notrees battery storage project developed in partnership with the Department of Energy in 2012 that provides frequency regulation for the Electric Reliability Council of Texas market and two 2 MW storage projects at its retired W.C. Beckjord plant in New Richmond, Ohio, that sells ancillary services into the PJM Interconnection market.

On the regulated side, most of Duke’s storage projects have had “an R&D slant to them,” Wheeless said, but “we are moving beyond the R&D concept in our regulated territory and are looking at storage more as a regulated asset.”

“We have done the demos, and they have proved out,” Wheeless said. Storage may not be ready for prime time everywhere, he said, but in certain locations, especially where it can it can be used to do more than one thing, it can make sense.

Wheeless said Duke would be making “a number of energy storage announcements in the next few months in our regulated states.” He could not provide details on those projects.

More flexible resources
Location can be a determining factor when building a storage facility. For IPL, serving the wholesale market was a driving factor in the rationale to build its 20 MW, 20 MWh storage facility in Indianapolis.

IPL built the project to address a need for more flexible resources in light of “recent changes in our resource mix,” including decreasing coal-fired generation and increasing renewables and natural gas-fired generation, as other regions plan to rely on battery storage to meet rising demand, Joan Soller, IPL’s director of resource planning, told Utility Dive in an email. The storage facility is used to provide primary frequency response necessary for grid stability.

The Harding Street storage facility in May. It was the first energy storage project in the Midcontinent ISO. But the regulatory path in MISO is not as clear as it is in PJM, whereas initiatives such as Ontario storage framework are clarifying participation. In November, IPL with the Federal Energy Regulatory Commission, asking the regulator to find that MISO’s rules for energy storage are deficient and should be revised.

Soller said IPL has “no imminent plans to install energy storage in the future but will continue to monitor battery costs and capabilities as potential resources in future Integrated Resource Plans.”

California legislative and regulatory push

In California, energy storage did not have to wait for regulations to catch up with technology. With legislative and regulatory mandates, including CEC long-duration storage funding announced recently, as a push, California’s IOUs took high places in SEPA’s rankings.

Southern California Edison and San Diego Gas & Electric were first and fourth (63.2 MW and 17.2 MW), respectively, in terms of capacity. SoCal Ed and SDG&E were first and second (104 MWh and 28.4 MWh), respectively, and Pacific Gas and Electric was fifth (17 MWh) in terms of energy.

But a public power utility, the Imperial Irrigation District (IID), ended up high in the rankings – second in capacity (30 MW) and third  in energy (20 MWh) – even though as a public power entity it is not subject to the state’s energy storage mandates.

But while IID was not under state mandate, it had a compelling regulatory reason to build the storage project. It was part of a settlement reached with FERC over a September 2011 outage, IID spokeswoman Marion Champion said.

IID agreed to a $12 million fine as part of the settlement, of which $9 million was applied to physical improvements of IID’s system.

IID ended up building a 30 MW, 20 MWh lithium-ion battery storage system at its El Centro generating station. The system went into service in October 2016 and in May, IID used the system’s 44 MW combined-cycle natural gas turbine at the generating station.

Passing savings to customers
The cost of the storage system was about $31 million, and based on its experience with the El Centro project, Champion said IID plans to add to the existing batteries. “We are continuing to see real savings and are passing those savings on to our customers,” she said.

Champion said the battery system gives IID the ability to provide ancillary services without having to run its larger generation units, such as El Centro Unit 4, at its minimum output. With gas prices at $3.59 per million British thermal units, it costs about $26,880 a day to run Unit 4, she said.

IID’s territory is in southeastern California, an area with a lot of renewable resources. IID is also not part of the California ISO and acts as its own balancing authority. The battery system gives the utility greater operational flexibility, in addition to the ability to use more of the surrounding renewable resources, Champion said.

In May, IID’s board gave the utility’s staff approval to enter into contract negotiations for a 7 MW, 4 MWh expansion of its El Centro storage facility. The negotiations are ongoing, but approval could come in the next couple months, Champion said.

The heart of the issue, though, is “the ability of the battery system to lower costs for our ratepayers,” Champion said. “Our planning section will continue to utilize the battery, and we are looking forward to its expansion,” she said.” I expect it will play an even more important role as we continue to increase our percentage of renewables.”

 

Related News

View more

Air Conditioning Related Power Usage Set To Create Power Shortages In Many States

Texas Power Grid Blackouts loom as ERCOT forecasts record air conditioning load, tight reserve margins, peak demand spikes, and rising natural gas prices; heatwaves could trigger brownouts without added solar, storage, and demand response.

 

Key Points

Texas Power Grid Blackouts are outages when AC-driven peak demand and ERCOT reserves outstrip supply during heatwaves.

✅ ERCOT forecasts record AC load and tight reserve margins.

✅ Coal retirements cut capacity; gas and solar additions lag.

✅ Peak prices, brownouts likely without storage and demand response.

 

U.S. Air conditioning related electricity usage will break records and may cause blackouts across the U.S. and in Texas this summer. Power grid operators are forecasting that electricity supplies will exceed demands during the summer months.

Most of Texas will face severe electricity shortages because of hot temperatures, air conditioning, and a strong economy, with millions at risk of electricity shut-offs during extreme heat, Bill Magness the president of the Electric Reliability Council of Texas (ERCOT) told the Associated Press. Magness thinks the large numbers people moving to Texas for retirement will increase the demand for air conditioning and electricity use. Retired people are more likely to be home during the day when temperatures are high – so they are more likely to turn up the air conditioner.

Around 50% of all electricity in Texas is used for air conditioning and 100% of homes in Texas have air conditioners, Forbes reported. That means just a few hot days can strain the grid and a heatwave can trigger brownouts and blackouts, in a system with more blackouts than other developed countries on average.

The situation was made worse by Vistra Energy’s decision to close more coal-fired power plants last year, The Austin American Statesman reported. The closed plants; Big Brown, Sadow, and Monticello, generated around 4,100 megawatts (4.1 million watts) of electricity, enough generation capacity to power two million homes, The Waco Herald-Tribune reported.

 

Texas Electric Grid Might Not Meet Demand

Texas’s grid has never operated without those plants will make this summer a test of its capacity. Texas only has a 6% reserve of electricity that might fall will because of problems like downed lines or a power plant going offline.

A Vistra subsidiary called Luminant has added around 8,000 megawatts of generation capacity from natural-gas burning plants, The Herald-Tribune reported. Luminant also plans to open a giant solar power plant in Texas to increase grid capacity.

The Texas grid already reached peak capacity in May because of unexpectedly high demand and technical problems that reflect more frequent outages in many states, Houston Public Media reported. Grid capacity fell because portions of the system were offline for maintenance.

Some analysts have suggested starting schools after Labor Day to shift peak August demand, potentially easing stress on the grid.

 

 

Electricity Reserves are Tight in Texas

Electricity reserves will be very tight on hot summer days in Texas this summer, Magness predicted. When the thermometer rises, people crank up the air conditioner which burns more electricity.

The grid operator ERCOT anticipates that Texas will need an additional 1,600 megawatts of electricity this summer, but record-high temperatures can significantly increase the demand. If everything is running correctly, Texas’s grid can produce up to 78,184 megawatts of electricity.

“The margin between absolute peak power usage and available peak supply is tighter than in years past,” Andrew Barlow, a spokesman for Texas’s Public Utility Commission admitted.

Around 90% of Texas’s grid has enough generating capacity, ERCOT estimated. That means 10% of Texas’s power grid lacks sufficient generating capacity which increases the possibility of blackouts.

Even if the electricity supply is adequate electricity prices can go up in Texas because of higher natural gas prices, Forbes reported. Natural gas prices might go up over the summer because of increased electricity demands. Texas uses between 8% and 9% of America’s natural gas supply to generate electricity for air conditioning in the summer.

 

Be Prepared For Blackouts This Summer.

Texas’s problems might affect other regions including neighboring states such as Oklahoma, Arkansas, Louisiana, and New Mexico and parts of Mexico, as lawmakers push to connect Texas’s grid to the rest of the nation to improve resilience because those areas are connected to the same grid. Electricity from states like Colorado might be diverted to Texas in case of power shortages there.

Beyond the U.S., Canadian electricity grids are increasingly exposed to harsh weather that can ripple across markets as well.

Home and business owners can avoid summer blackouts by tapping sources of Off-Grid electricity. The two best sources are backup battery storage and solar panels which can run your home or business if the grid runs dry.

If you have family members with health problems who need air conditioning, or you rely on a business or freelance work that requires electricity for income, backup power is vital. Those who need backup electricity for their business should be able to use the expense of installing it as a tax deduction.

Having backup electricity available might be the only way for Texans to keep cool this summer.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified