Most planned U.S. battery storage additions in next three years to be paired with solar


us energy storage

NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

U.S. Solar-Plus-Storage Growth 2021-2024 highlights rising battery storage co-location with solar PV, grid flexibility, RTO/ISO market signals, and ITC incentives, enabling peak shaving, firming renewable output, and reliable night-time power.

 

Key Points

Summary of U.S. plans pairing battery storage with solar PV, guided by RTO/ISO markets, grid needs, and ITC policy.

✅ 9.4 GW (63%) co-located with solar PV by 2024

✅ 97% of standalone capacity sited in RTO/ISO regions

✅ ITC improves project economics and grid services revenue

 

Of the 14.5 gigawatts (GW) of battery storage power capacity planned to come online amid anticipated growth in solar and storage in the United States from 2021 to 2024, 9.4 GW (63%) will be co-located with a solar photovoltaic (PV) solar-plus-storage power plant, based on data reported to us and published in our Annual Electric Generator Report. Another 1.3 GW of battery storage will be co-located at sites with wind turbines or fossil fuel-fired generators, such as natural gas-fired plants. The remaining 4.0 GW of planned battery storage will be located at standalone sites.

Historically, most U.S. battery systems have been located at standalone sites. Of the 1.5 GW of operating battery storage capacity in the United States at the end of 2020, 71% was standalone, and 29% was located onsite with other power generators.

Most standalone battery energy storage sites have been planned or built in power markets that are governed by regional transmission organizations (RTOs) and independent system operators (ISOs). RTOs and ISOs can enforce standard market rules that lay out clear revenue streams for energy storage projects in their regions, which promotes the deployment of battery storage systems. Of the utility-scale pipeline battery systems announced to come online from 2021 to 2024, 97% of the standalone battery capacity and 60% of the co-located battery capacity are in RTO/ISO regions.

Over 90% of the planned battery storage capacity outside of RTO and ISO regions will be co-located with a solar PV plant. At some solar PV co-located plants, the batteries can charge directly from the onsite solar generator when electricity demand and prices are low. They can then discharge electricity to the grid when peak demand is higher or when solar generation is unavailable, such as at night.

Although factors such as cloud cover can affect solar generation output, solar generators, now the number three renewable source in the U.S., in particular can effectively pair with battery storage because of their relatively regular daily generation patterns. This predictability works well with battery systems because battery systems are limited in how long they can discharge their power capacity before needing to recharge. If paired with a wind turbine, for example, a battery system could go days before having the opportunity to fully recharge.

Another advantage of pairing batteries with renewable generators is the ability to take advantage of tax incentives such as the Investment Tax Credit (ITC), which is available for solar projects, and other favorable government plans supporting deployment.

 

Related News

Related News

Renewables Poised to Eclipse Coal in Global Power Generation by 2025

IEA Electricity 2024 Renewables Outlook projects renewable energy surpassing coal in global electricity generation by early 2025, with nuclear power rebounding, clean energy expansion, electrification, and grid upgrades cutting emissions and decarbonizing power systems.

 

Key Points

IEA forecast: renewables beat coal by 2025, nuclear rebounds, speeding cleaner power and deeper emissions cuts by 2026.

✅ Renewables surpass coal by 2025; nuclear output hits records by 2025-2026.

✅ Power demand grows 3.4% avg to 2026 via EVs, data centers, electrification.

✅ Gas displaces coal; grids need investment; drought and supply chains pose risks.

 

The International Energy Agency's latest Electricity 2024 report predicts that renewable energy sources will surpass coal in global electricity generation by early 2025, reaching over one-third of the world's total power output. Additionally, nuclear power is expected to achieve record production levels by 2025, recovering from recent downturns and reflecting low-carbon electricity lessons from the COVID-19 period.

By 2026, the report estimates that renewables and nuclear will jointly contribute to nearly half of the global power generation, up from less than 40 percent in 2023. This shift is crucial as the United Nations emphasizes the transition to clean energy, with Asia to use half of electricity by 2025 highlighting the scale of the challenge, as a key factor in limiting global warming to 1.5 degrees Celsius above preindustrial levels.

IEA Executive Director Fatih Birol highlighted the promising trends of renewables, led by affordable solar power and the resurgence of nuclear power, as key factors covering almost all demand growth over the next three years.

At the COP28 climate summit in Dubai, participants agreed on a plan for phasing out fossil fuels and committed to tripling renewable capacity by 2030. This shift in the electricity mix is expected to reduce emissions from the power sector, which is currently the largest source of carbon dioxide emissions worldwide.

Despite a modest 2.2 percent growth in global electricity demand in 2023, an acceleration to an average annual increase of 3.4 percent is projected from 2024 to 2026. This surge in electricity demand is driven by factors like home and business electrification, the proliferation of electric vehicles, and industrial expansion.

Significant growth in electricity usage from data centers worldwide is anticipated, potentially doubling between 2022 and 2026, as global power demand has surged above pre-pandemic levels. Regulatory updates and technological advancements are essential to manage this energy consumption increase effectively.

Emissions from the electricity sector are expected to decrease following a 1 percent rise in 2023, with a more than 2 percent reduction projected in 2024 and continued declines in subsequent years. This reduced carbon intensity in electricity generation will enhance the emissions savings from electrifying cars and appliances.

Natural gas-fired power is predicted to see a modest increase over the next three years, primarily replacing coal power. While Europe has witnessed sharp declines in gas power, EU wind and solar beat gas last year, growth in the United States, Asia, Africa, and the Middle East is expected due to available liquefied natural gas supplies.

By 2026, fossil fuels are forecasted to account for 54 percent of global generation, dropping below 60 percent for the first time in over five decades. The U.S. is anticipated to boost renewable generation by approximately 10 percent annually between 2024 and 2026, surpassing coal generation in 2024.

The report warns of potential risks to clean energy trends, including droughts impacting hydropower, extreme weather affecting electricity reliability, and supply chain interruptions threatening new renewable and nuclear projects, and a generation mix sensitive to policies and gas prices that could shift trajectories.

Keisuke Sadamori, IEA’s director of energy markets and security, underscores the need for continued investment in grid infrastructure to integrate incoming renewable energy and sustain the power sector's trajectory towards emissions reduction goals.

 

 

Related News

View more

Can food waste be turned into green hydrogen to produce electricity?

Food Waste to Green Hydrogen uses biological production to create clean energy, enabling waste-to-energy, decarbonization, and renewable hydrogen for electricity, industrial processes, and transport fuels, developed at Purdue University Northwest with Purdue Research Foundation licensing.

 

Key Points

A biological process converting food waste into renewable hydrogen for clean energy, electricity, industry, and transport.

✅ Enables rapid, scalable waste-to-hydrogen deployment

✅ Supports grid power, industrial heat, and mobility fuels

✅ Backed by patents, DOE grants, and licensing deals

 

West Lafayette, Indiana-based Purdue Research Foundation recently completed a licensing agreement with an international energy company – the name of which was not disclosed – for the commercialization of a new process discovered at Purdue University Northwest (PNW) for the biological production of green hydrogen from food waste. A second licensing agreement with a company in Indiana is under negotiation.


Food waste into green hydrogen
Researchers say that this new process, which uses food waste to biologically produce hydrogen, can be used as a clean energy source for producing electricity, as well as for chemical and industrial processes like green steel production or as a transportation fuel.

Robert Kramer, professor of physics at PNW and principal investigator for the research, says that more than 30% of all food, amounting to $48 billion, is wasted in the United States each year. That waste could be used to create hydrogen, a sustainable energy source alongside municipal solid waste power options. When hydrogen is combusted, the only byproduct is water vapor.

The developed process has a high production rate and can be implemented quickly to support large H2 energy systems in practice. The process is robust, reliable, and economically viable for local energy production and processes.

The research team has received five grants from the US Department of Energy and the Purdue Research Foundation totaling around $800,000 over the last eight years to develop the science and technology that led to this process, much like advances in advanced nuclear reactors drive clean energy innovation.

Two patents have been issued, and a third patent is currently in the final stages of approval. Over the next nine months, a scale-up test will be conducted, reflecting how power-to-gas storage can integrate with existing infrastructure. Based upon test results, it is anticipated that construction could start on the first commercial prototype within a year.

Last week, a facility designed to turn non-recyclable plastics into green hydrogen was approved in the UK, as other innovations like the seawater power concept progress globally. It is the second facility of its kind there.

 

Related News

View more

China's electric carmakers make their move on Europe

Chinese EV Makers in Europe target the EU market with electric SUVs, battery swapping, competitive pricing, and subsidies, led by NIO, Xpeng, MG, and BYD, starting in Norway amid Europe's zero-emissions push.

 

Key Points

Chinese EV makers expanding into EU markets with tech, pricing, and lean retail to gain share.

✅ Early launches in Norway leverage EV incentives

✅ Compete via battery swapping, OTA tech, and price

✅ Mix of importers, online sales, and lean dealerships

 

China's electric carmakers are darting into Europe, hoping to catch traditional auto giants cold and seize a slice of a market supercharged by the continent's EV transition towards zero emissions.

Nio Inc (NIO.N), among a small group of challengers, launches its ES8 electric SUV in Oslo on Thursday - the first foray outside China for a company that is virtually unheard of in Europe even though it's valued at about $57 billion.

Other brands unfamiliar to many Europeans that have started selling or plan to sell cars on the continent include Aiways, BYD's (002594.SZ) Tang, SAIC's (600104.SS) MG, Dongfeng's VOYAH, and Great Wall's (601633.SS) ORA.

Yet Europe, a crowded, competitive car market dominated by famous brands, has proved elusive for Chinese carmakers in the past. They made strategic slips and also contended with a perception that China, long associated with cheap mass-production, could not compete on quality.

Indeed, Nio Chief Executive William Li told Reuters he foresees a long road to success in a mature market where it is "very difficult to be successful".

Chinese carmakers may need up to a decade to "gain a firm foothold" in Europe, the billionaire entrepreneur said - a forecast echoed by He Xiaopeng, CEO of electric vehicle (EV) maker Xpeng (9868.HK) who told Reuters his company needs 10 years "to lay a good foundation" on the continent.

These new players, many of which have only ever made electric vehicles, believe they have a window of opportunity to finally crack the lucrative market.

While electric car sales in the European Union more than doubled last year and jumped 130% in the first half of this year, even as threats to the EV boom persist, traditional manufacturers are still gradually shifting their large vehicle ranges over to electric and have yet to flood the thirsty market with models.

"The market is not that busy yet, if you compare it with combustion-engine models where each of the major carmakers has a whole range of vehicles," said Alexander Klose, who heads the foreign operations of Chinese electric vehicle maker Aiways.

"That is where we think we have an opportunity," he added on a drive around Munich in a U5, a crossover SUV on sale in Germany, the Netherlands, Belgium and France, where new EV rules are aimed at discouraging purchases of Chinese models.

The U5 starts at 30,000 euros ($35,000) in Germany - below the average new car price and most local EV prices - before factoring in 9,000 euros in EV subsidies, though France's EV incentives have tightened for Chinese models - and comes in just four colours and two trim levels to minimize costs.

'GERMAN PEOPLE BUY GERMAN CARS'
As Chinese carmakers gear up to enter Europe, they are trying out different business models, from relying on importers, low-cost retail options or building up more traditional dealerships.

The new reality that top Western carmakers like BMW (BMWG.DE) and Tesla Inc (TSLA.O) now produce cars in technological powerhouse China, where the EV market is intensely competitive, has likely undermined past perceptions of low quality workmanship - though they can be hard to shake.

Antje Levers, a teacher who lives in western Germany near the Dutch border, and her husband owned a diesel Chevrolet Orlando but wanted a greener option. They bought an Aiways U5 last year after plenty of research to fend off criticism for not buying local, and loves its handling and low running costs.

She said people had told her: "You can't buy a Chinese car, they're plastic and cheap and do not support German jobs." But she feels that is no longer true in a global car industry where you find German auto parts in Chinese cars and vice versa.

"German people buy German cars, so to buy a Chinese car you need to have a little courage," the 47-year-old added. "Sometimes you just have to be open for new things."

NIO LANDS IN NORWAY WITH NOMI
Nio launches its ES8 electric SUV alongside a NIO House - part-showroom, part-cafe and workspace for customers in the capital of Norway, a country that's also the initial base for Xpeng.

Norwegian state support for EVs has put the country at the forefront of the shift to electric. It makes sense as a European entry point because customers are used to electric vehicles so only have to be sold on an unknown Chinese brand, said Christina Bu, secretary general of the Norwegian EV Association.

"If you go to another European country you may struggle to sell both," said Bu, adding that her organisation has talked extensively with a number of Chinese EV makers keen to learn market specifics and consumer culture before launching there.

She is uncertain, though, how consumers will react to Nio's approach of swapping out batteries for customers rather than stopping to charge them, a contrast to other EV battery strategies in the industry, or the carmaker's strategy of leasing rather than selling batteries to customers.

"But where the Chinese are really at the forefront is the technology," she added, referring in particular to Nomi, the digital assistant in the dashboard of Nio's cars.

NEWCOMERS' STRATEGIES DIVERGE
One size does not fit all. While Nio and Xpeng have been hiring staff building up their organizations in Norway, SAIC's MG works through a car importer to sell cars in a handful of European markets.

Aiways is trying an lower-cost approach to selling cars in Europe, though Klose says it varies by market.

In Germany, for instance, the company sells its cars through Euronics, an association of independent electronics retailers, rather than building traditional dealerships.

It aims to sell across the EU by next year and to enter the U.S. market by 2023, said Klose, a former Volvo and Ford executive.

Past failed attempts by Chinese carmakers to conquer Europe are unlikely to hurt Chinese EV makers today, as consumers have grown accustomed to electronics coming from China, he added.

Such failures included Brilliance in 2007, whose vehicle received one out of five stars in a German car crash test, damaging the brand.

"The fact there are more Chinese carmakers entering the market will also help us, as it will make Chinese brands more accepted by consumers," Klose said.

Selling cars to Europeans is a "tough business, especially if your product isn't well known," said Arnie Richters, chairman of Brussels-based industry group Platform for Electromobility.

"But if they bring a lot of innovation they have a lot of opportunity."

 

Related News

View more

Sales Of Electric Cars Top 20% In California, Led By Tesla

California EV Sales 2023 show rising BEV market share, strong Tesla Model Y and Model 3 demand, hybrid growth, and ICE decline, per CNCDA Q3 data, underscoring California auto trends and ZEV policy momentum.

 

Key Points

BEVs hit 21.5% YTD in 2023 (22.3% in Q3); 35.4% with hybrids, as ICE share fell and Tesla led the California market.

✅ BEVs 21.5% YTD; 22.3% in Q3 per CNCDA data

✅ Tesla Model Y, Model 3 dominate; 62.9% BEV share

✅ ICE share down to 64.6%; hybrids lift to 35.4% YTD

 

The California New Car Dealers Association (CNCDA) reported on November 1, 2023, that sales of battery electric cars accounted for 21.5% of new car sales in the Golden State during the first 9 months of the year and 22.3% in the third quarter. At the end of Q3 in 2022, sales of electric cars stood at 16.4%. In 2021, that number was 9.1%. So, despite all the weeping and wailing and gnashing of teeth lately about green new car wreck warnings in some coverage, the news is pretty good, at least in California.

When hybrid and hydrogen fuel cell vehicles are included in the calculations, the figure jumps up 35.4% for all vehicles sold year to date in California. Not surprisingly this means EVs still trail gas cars in the state, with the CNCDA reporting ICE market share (including gasoline and diesel vehicles) was 64.6% so far this year, down from 71.6% in 2022 and 88.4% in 2018.

California is known as the vanguard for automotive trends in the country, with shifts in preferences and government policy eventually spreading to the rest of the country. While the state’s share of electric cars exceeds one fifth of all vehicles sold year to date, the figure for the US as a whole stands at 7.4%, with EV sales momentum into 2024 continuing nationwide. California has banned the sale of gas-powered vehicles starting in 2035, and its push toward electrification will require a much bigger grid to support charging, although the steady increase in the sale of electric cars suggests that ban may never need to be implemented as people embrace the EV revolution.

Not surprisingly, when digging deeper into the sales data, the Tesla Model Y and Model 3 dominate sales in the state’s electric car market this year, at 103,398 and 66,698 respectively. Tesla’s overall market share of battery electric car sales is at 62.9%. In fact, the Tesla Model Y is the top selling vehicle overall in California, followed by the Model 3, the Toyota RAV4 (40,622), and the Toyota Camry (39,293).

While that is good news for Tesla, its overall market share has slipped from 71.8% year to date last year at this time. Competing models from brands like Chevrolet, BMW, Mercedes, Hyundai, Volkswagen, and Kia have been slowly eating into Tesla’s market share. Overall, in California, Toyota is the sales king with 15% of sales, even as the state leads in EV charging deployment statewide, followed by Tesla at 13.5%. In the second quarter, Tesla narrowly edged out Toyota for top sales in the state before sales swung back in Toyota’s favor in the third quarter.

That being said, Tesla’s sales in the state climbed by 38.5% year to date, while Toyota’s actually shrank by 0.7%. Time will tell if Tesla’s popularity with the state’s car buyers improves and it can overtake Toyota for the 2023 crown, even as U.S. EV market share dipped in early 2024, or if other EV makers can offer better products at better prices and lure California customers who want to purchase electric cars away from the Tesla brand. Certainly, no company can expect to have two thirds of the market to itself forever.

 

Related News

View more

What to know about DOE's hydrogen hubs

U.S. Clean Hydrogen Hubs aim to scale production, storage, transport, and use as DOE and the Biden administration fund regional projects under the infrastructure law, blending green and blue hydrogen, carbon capture, renewables, and pipelines.

 

Key Points

Federally funded regional projects to make, move, and use low-carbon hydrogen via green, blue, and pink routes.

✅ $7B DOE funding via infrastructure law

✅ Mix of green, blue, pink hydrogen pathways

✅ Targets 10M metric tons annually by 2030

 

New details are emerging about the Biden administration’s landmark plans to build out a U.S. clean hydrogen industry.

On Friday, the Department of Energy named the seven winners of $7 billion in federal funds to establish regional hydrogen hubs. The hubs — funded through the infrastructure law — are part of the administration’s efforts to jump-start an industry it sees as key to achieving climate goals like the goal of 100 percent clean electricity by 2035 set by the administration. The aim is to demonstrate everything from the production and storage of hydrogen to its transport and consumption.

“All across the country, from coast to coast, in the heartland, we’re building a clean energy future here in America, not somewhere else,” President Joe Biden said while announcing the hubs in Philadelphia.

From 79 initial proposals, DOE chose the following: the Mid-Atlantic Hydrogen Hub, Appalachian Hydrogen Hub, California Hydrogen Hub, Gulf Coast Hydrogen Hub, Heartland Hydrogen Hub, Midwest Hydrogen Hub and Pacific Northwest Hydrogen Hub.

Many of the winning proposals are backed by state government leaders and industry partners, and by Southeast cities that have ramped up clean energy purchases in recent years as well. The Midwest hub, for example, is a coalition of Illinois, Indiana and Michigan — supported by politicians like Illinois Gov. J.B. Pritzker (D), as well as such companies as Air Liquide, Ameren Illinois and Atlas Agro. The mid-Atlantic hub is supported by Democratic members of Congress representing the region, including Delaware Sens. Chris Coons and Tom Carper and Rep. Lisa Blunt Rochester.

The administration hopes the hubs will produce 10 million metric tons of “clean” hydrogen annually by 2030. But much about the projects remains unknown — including how trends like cheap batteries for solar could affect clean power supply — and dependent on negotiations with DOE.


A win for ‘blue’ hydrogen?
Nearly all hydrogen created in the U.S. today is extracted from natural gas through steam methane reformation. The emissions-intensive process produces what is known as “grey” hydrogen — or “blue” hydrogen when combined with carbon capture and storage.

Four recipients — the Appalachian, Gulf Coast, Heartland and Midwest hydrogen hubs — include blue hydrogen in their plans, though the infrastructure law only mandated one.

That has drawn the ire of environmentalists, who argue blue hydrogen is not emissions-free, partly because of the potential for methane leaks during the production process.

“This is worse than expected,” Clean Energy Group President Seth Mullendore said after the recipients were announced Friday. “The fact that more than half the hubs will be using fossil gas is outrageous.”

Critics have also pointed out that many of the industry partners backing the hub projects include oil and gas companies. The coalitions are a mix of private-sector groups — often including renewable energy developers — and government stakeholders. Proposals have also looped in universities, utilities, environmental groups, community organizations, labor unions and tribal nations, among others.

“The massive build out of hydrogen infrastructure is little more than an industry ploy to rebrand fracked gas,” said Food & Water Watch Policy Director Jim Walsh in a statement Friday. “In a moment when every political decision that we make must reject fossil expansion, the Biden administration is going in the opposite direction.”

The White House has emphasized that roughly two-thirds of the $7 billion pot is “associated” with the production of “green” hydrogen, which uses electricity from renewable sources. Two of the chosen proposals — in California and the Pacific Northwest — are making green hydrogen their focus, reflecting advances such as offshore green hydrogen being pursued by industry leaders, while three other hubs plan to include green hydrogen alongside hydrogen made with natural gas (blue) or nuclear energy (pink).

Many hubs plan to use several methods for hydrogen production, and globally, projects like Brazil's green hydrogen plant highlight the scale of investment, but the exact mix may change depending on which projects make it through the DOE negotiations process. The Midwest hub, for example, told E&E News it’s pursuing an “all-of-the-above” strategy and has projects for green, blue and “pink” hydrogen. The mid-Atlantic hub in southeastern Pennsylvania, Delaware and New Jersey will also generate hydrogen with nuclear reactors.

Energy Secretary Jennifer Granholm has described clean hydrogen as a fresh business opportunity, especially for the natural gas industry, which has supported the concept of sending hydrogen to market through its pipeline network. Lawmakers like Sen. Joe Manchin (D-W.Va.) — who said the Appalachian hub will make West Virginia the “new epicenter of hydrogen” — have pushed for continuing to use natural gas to make hydrogen in his state.

“Natural gas utilities are committed to exploring all options for emissions reduction as demonstrated by the 39 hydrogen pilot projects already underway and are eager to participate in a number of the hubs,” said American Gas Association President and CEO Karen Harbert in a statement Friday.

Green hydrogen also has faced criticism. Some groups argue that the renewable resources needed to produce green hydrogen are limited, even with sources such as wind, solar and hydropower technology, so funding should be reserved for applications that cannot be easily electrified, mostly industrial processes. There also is uncertainty about how the Treasury Department will handle hydrogen made from grid electricity — which can include power from fossil fuel plants — in its upcoming guidance on the first-ever tax credit for clean hydrogen production.

“Even the cleanest forms of hydrogen present serious problems,” Walsh said. “As groundwater sources are drying up across the country, there is no reason to waste precious drinking water resources on hydrogen when there are cheaper, cleaner energy sources that can facilitate a real transition off fossil fuels.”

But Angelina Galiteva, CEO of the hub in drought-prone California, said hydrogen will enable the state “to increase renewable penetration to reach all corners of the economy,” noting parallel initiatives such as Dubai's solar hydrogen plans that illustrate the potential.

“Transitioning to renewable clean hydrogen will pose significantly less stress on water resources than remaining on the current fossil path,” she said.

 

Related News

View more

U.S. Electric Vehicle Sales Soar Into 2024

U.S. EV Sales Growth reflects rising consumer demand, expanding market share, new tax credits, and robust charging infrastructure, as automakers boost output and quarterly sales under the Inflation Reduction Act drive adoption across states.

 

Key Points

It is the rise in U.S. EV sales and market share, driven by incentives, charging growth, and automaker investment.

✅ Quarterly EV sales and share have risen since Q3 2021.

✅ Share topped 10% in Q3 2023, with states far above.

✅ IRA credits and chargers lower costs and boost adoption.

 

Contrary to any skepticism, the demand for electric vehicles (EVs) in the United States is not dwindling. Data from the Alliance for Automotive Innovation highlights a significant and ongoing increase in EV sales from 2021 through the third quarter of 2023. An upward trend in quarterly sales (depicted as bars on the left axis) and EV sales shares (illustrated by the red line on the right axis) is evident. Sales surged from about 125,000 in Q1 2021 to 185,000 in Q4 2021, and from around 300,000 in Q1 2023 to 375,000 by Q3 2023. Notably, by Q3 2023, annual U.S. EV sales exceeded 1 million for the first time, a milestone often cited as the tipping point for mass adoption in the U.S., marking a 58% increase over the same period in 2022.

EV sales have shown consistent quarterly growth since Q3 2021, and the proportion of EVs in total light-duty vehicle sales is also on the rise. EVs’ share of new sales increased from roughly 3% in Q1 2021 to about 7% in 2022, and further to over 10% in Q3 2023, though they are still behind gas cars in overall market share, for now. For context, according to the U.S. Environmental Protection Agency’s Automotive Trends Report, EVs have reached a 10% market share more quickly than conventional hybrids without a plug, which took about 25 years.

State-level data also indicates that several states exceed national averages in EV sales. California, for example, saw EVs comprising nearly 27% of sales through September 2023, even as a brief Q1 2024 market share dip has been noted nationally. Additionally, 12 states plus the District of Columbia had EV sales shares between 10% and 20% through Q3 2023.

EV sales data by automaker reveal that most companies sold more EVs in Q2 or Q3 2023 than in any previous quarter, mirroring global growth that went from zero to 2 million in five years. Except for Ford, each automaker sold more EVs in the first three quarters of 2023 than in all of 2022. EV sales in Q3 2023 notably increased compared to Q3 2022 for companies like BMW, Tesla, and Volkswagen.

Despite some production scalebacks by Ford and General Motors, these companies, along with others, remain dedicated to an electric future and expect to sell more EVs than ever. The growing consumer interest in EVs is also reflected in recent surveys by McKinsey, J.D. Power, and Consumer Reports, and echoed in Europe where the share of electric cars grew during lockdown months, showing an increasing intent to purchase EVs and a declining interest in gasoline vehicles.

Furthermore, the Inflation Reduction Act of 2022 introduces new tax credits, potentially making EVs more affordable than gasoline counterparts. Investments in charging infrastructure are also expected to increase, especially as EV adoption could drive a 38% rise in U.S. electricity demand, with over $21 billion allocated to boost public chargers from around 160,000 in 2023 to nearly 1 million by 2030.

The shift to EVs is crucial for reducing climate pollution, enhancing public health, and generating economic benefits and jobs, and by 2021 plug-in vehicles had already traveled 19 billion miles on electricity, underscoring real-world progress toward these goals. The current data and trends indicate a robust and positive future for EVs in the U.S., reinforcing the need for strong standards to further encourage investment and consumer confidence in electric vehicles.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.