Duke Energy accused of using illegal workers

By WCPO News


High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
A local electrical worker's union is accusing Duke Energy of using illegal immigrants as workers at power plants in the Tri-state area.

The union says Duke Energy used a contractor, Sunbelt Insulation, based out of Greer, South Carolina.

And according to the IBEW, that company hired illegal immigrants – more than a hundred of whom worked for Duke Energy in five different power plants in Ohio, Indiana and Kentucky – at various times over the past few years.

The union says they have documents, including recordings of conversations which were gathered by the International Association of Heat and Frost Insulators union.

These conversations, they say, show that Sunbelt Insulation not only employed illegal immigrants who ended up working in Duke power plants, but purchased fake social security cards and falsified I-9 documents for those workers.

"We've got people in this area who want jobs," said IBEW Local 1347 Business Manager Stephen Feldhaus.

"That's what we're upset about," said Feldhaus. "And then the fact that you've got illegals in there and you have no background checks, they're not doing any background checks. So it's putting our members' safety at risk."

Duke Energy says they've done an internal investigation and had a third party investigate the matter.

They say those investigations showed that Sunbelt Insulation did have the proper documents for their workers.

"Everything that we require based on the federal guidelines was completely in order, we were very pleased with the outcome," Duke spokesperson Johnna Reeder said about the investigations.

"However, we did turn it over to the federal authorities who will then in turn decide if everything followed the proper documentation, and if there were any discrepancies," said Reeder.

Both Duke Energy and the IBEW say they've provided all of their documentation to the Immigrations and Customs Enforcement (ICE) office.

Related News

Nearly 600 Hong Kong families still without electricity after power supply cut by Typhoon Mangkhut

Hong Kong Typhoon Mangkhut Power Outages strain households with blackouts, electricity disruption, and humid heat, impacting Tin Ping Estate in Sheung Shui and outlying islands; contractor-led restoration faces fines for delays and infrastructure repairs.

 

Key Points

They are blackout events after Typhoon Mangkhut, bringing heat stress, food spoilage, and delayed power restoration.

✅ 16 floors in Tin Ping Estate lost power after meter room blast.

✅ Contractor faces HK$100,000 daily fines for late restoration.

✅ Kat O and Ap Chau families remain off-grid in humid heat.

 

Nearly 600 Hong Kong families are still sweltering under the summer heat and facing dark nights without electricity after Typhoon Mangkhut cut off power supply to areas, echoing mass power outages seen elsewhere.

At Sheung Shui’s Tin Ping Estate in the New Territories, 384 families were still without power, a situation similar to the LA-area blackout that left many without service. They were told on Tuesday that a contractor would rectify the situation by Friday, or be fined HK$100,000 for each day of delay.

In remote areas such as outlying islets Kat O and Ap Chau, there were some 200 families still without electricity, similar to Tennessee storm outages affecting rural communities.

The power outage at Tin Ping Estate affected 16 floors – from the 11th to 26th – in Tin Cheung House after a blast from the meter room on the 15th floor was heard at about 5pm on Sunday, and authorities urged residents to follow storm electrical safety tips during repairs.

“I was sitting on the sofa when I heard a loud bang,” said Lee Sau-king, 61, whose flat was next to the meter room. “I was so scared that my hands kept trembling.”

While the block’s common areas and lifts were not affected, flats on the 16 floors encountered blackouts.

As her fridge was out of power, Lee had to throw away all the food she had stocked up for the typhoon. With the freezer not functioning, her stored dried seafood became soaked and she had to dry them outside the window when the storm passed.

Daily maximum temperatures rose back to 30 degrees Celsius after the typhoon, and nights became unbearably humid, as utilities worldwide pursue utility climate adaptation to maintain reliability. “It’s too hot here. I can’t sleep at all,” Lee said.

 

Related News

View more

Almost 500-mile-long lightning bolt crossed three US states

Longest Lightning Flash Record confirmed by WMO: a 477.2-mile megaflash spanning Mississippi, Louisiana, and Texas, detected by satellite sensors, highlighting Great Plains supercell storms, lightning safety, and extreme weather monitoring advancements.

 

Key Points

It is the WMO-verified 477.2-mile megaflash across MS, LA, and TX, detected via satellites.

✅ Spanned 477.2 miles across Mississippi, Louisiana, and Texas

✅ Verified by WMO using space-based lightning detection

✅ Occurs in megaflash-prone regions like the U.S. Great Plains

 

An almost 500-mile long bolt of lightning that lit up the sky across three US states has set a new world record for longest flash, scientists have confirmed.

The lightning bolt, extended a total of 477.2 miles (768 km) and spread across Mississippi, Louisiana, and Texas.

The previous record was 440.6 miles (709 km) and recorded in Brazil in 2018.

Lightning rarely extends over 10 miles and usually lasts under a second, yet utilities plan for severe weather when building long-distance lines such as the TransWest Express transmission project to enhance reliability.

Another lightning flash recorded in 2020 - in Uruguay and Argentina - has also set a new record for duration at 17.1 seconds. The previous record was 16.7 seconds.

"These are extraordinary records from lightning flash events," Professor Randall Cerveny, the WMO's rapporteur of weather and climate extremes, said.

According to the WMO, both records took place in areas prone to intense storms that produce 'megaflashes', namely the Great Plains region of the United States and the La Plata basin of South America's southern cone, where utilities adapting to climate change is an increasing priority.

Professor Cerveny added that greater extremes are likely to exist and are likely to be recorded in the future thanks to advances in space-based lightning detection technology.

The WMO warned that lightning was a hazard and urged people in both regions and around the world to take caution during storms, which can lead to extensive disruptions like the Tennessee power outages reported after severe weather.

"These extremely large and long-duration lightning events were not isolated but happened during active thunderstorms," lightning specialist Ron Holle said in a WMO statement.

"Any time there is thunder heard, it is time to reach a lightning-safe place".

Previously accepted WMO 'lightning extremes' include a 1975 incident in which 21 people were killed by a single flash of a lightning as they huddled inside a tent in Zimbabwe, and modern events show how dangerous weather can also cut electricity for days, as with the Hong Kong typhoon outages that affected families.

In another incident, 469 people were killed when lightning struck the Egyptian town of Dronka in 1994, causing burning oil to flood the town, and major incidents can also disrupt infrastructure, as seen during the LA power outage following a substation fire.

The WMO notes that the only lightning-safe locations are "substantial" buildings with wiring and plumbing, and dedicated lightning protection training helps reinforce these guidelines, rather than structures such as bus stops or those found at beaches.

Fully enclosed metal-topped vehicles are also considered reliably safe, and regional storm safety tips offer additional guidance.

 

Related News

View more

Is The Global Energy Transition On Track?

Global Decarbonization Strategies align renewable energy, electrification, clean air policies, IMO sulfur cap, LNG fuels, and the EU 2050 roadmap to cut carbon intensity and meet Paris Agreement targets via EVs and efficiency.

 

Key Points

Frameworks that cut emissions via renewables, EVs, efficiency, cleaner marine fuels, and EU policy roadmaps.

✅ Renewables scale as wind and solar outcompete new coal and gas.

✅ Electrification of transport grows as EV costs fall and charging expands.

✅ IMO 2020 sulfur cap and LNG shift cut shipping emissions and particulates.

 

Are we doing enough to save the planet? Silly question. The latest prognosis from the United Nations’ Intergovernmental Panel on Climate Change made for gloomy reading. Fundamental to the Paris Agreement is the target of keeping global average temperatures from rising beyond 2°C. The UN argues that radical measures are needed, and investment incentives for clean electricity are seen as critical by many leaders to accelerate progress to meet that target.

Renewable power and electrification of transport are the pillars of decarbonization. It’s well underway in renewables - the collapse in costs make wind and solar generation competitive with new build coal and gas.

Renewables’ share of the global power market will triple by 2040 from its current level of 6% according to our forecasts.

The consumption side is slower, awaiting technological breakthrough and informed by efforts in countries such as New Zealand’s electricity transition to replace fossil fuels with electricity. The lower battery costs needed for electric vehicles (EVs) to compete head on and displace internal combustion engine (ICE)  cars are some years away. These forces only start to have a significant impact on global carbon intensity in the 2030s. Our forecasts fall well short of the 2°C target, as does the IEA’s base case scenario.

Yet we can’t just wait for new technology to come to the rescue. There are encouraging signs that society sees the need to deal with a deteriorating environment. Three areas of focus came out in discussion during Wood Mackenzie’s London Energy Forum - unrelated, different in scope and scale, each pointing the way forward.

First, clean air in cities.  China has shown how to clean up a local environment quickly. The government reacted to poor air quality in Beijing and other major cities by closing older coal power plants and forcing energy intensive industry and the residential sector to shift away from coal. The country’s return on investment will include a substantial future health care dividend.

European cities are introducing restrictions on diesel cars to improve air quality. London’s 2017 “toxicity charge” is a precursor of an Ultra-Low Emission Zone in 2019, and aligns with UK net-zero policy changes that affect transport planning, to be extended across much of the city by 2020. Paris wants to ban diesel cars from the city centre by 2025 and ICE vehicles by 2030. Barcelona, Madrid, Hamburg and Stuttgart are hatching similar plans.

 

College Promise In California: Community-Wide Efforts To Support Student Success

Second, desulphurisation of global shipping. High sulphur fuel oil (HSFO) meets around 3.5 million barrels per day (b/d) of the total marine market of 5 million b/d. A maximum of 3.5% sulphur content is allowed currently. The International Maritime Organisation (IMO) implements a 0.5% limit on all shipping in 2020, dramatically reducing the release of sulphur oxides into the atmosphere.

Some ships will switch to very low sulphur fuel oil, of which only around 1.4 million b/d will be available in 2020. Others will have to choose between investing in scrubbers or buying premium-priced low sulphur marine gas oil.

Longer-term, lower carbon-intensity gas is a winner as liquefied natural gas becomes fuel of choice for many newbuilds. Marine LNG demand climbs from near zero to 50 million tonnes per annum (tpa) by 2040 on our forecasts, behind only China, India and Japan as a demand centre. LNG will displace over 1 million b/d of oil demand in shipping by 2040.

Third, Europe’s radical decarbonisation plans. Already in the vanguard of emissions reductions policy, the European Commission is proposing to reduce carbon emissions for new cars and vans by 30% by 2030 versus 2020. The targets come with incentives for car manufacturers linked to the uptake of EVs.

The 2050 roadmap, presently at the concept stage, envisages a far more demanding regime, with EU electricity plans for 2050 implying a much larger power system. The mooted 80% reduction in emissions compared with 1990 will embrace all sectors. Power and transport are already moving in this direction, but the legacy fuel mix in many other sectors will be disrupted, too.

Near zero-energy buildings and homes might be possible with energy efficiency improvements, renewables and heat pumps. Electrification, recycling and bioenergy could reduce fossil fuel use in energy intensive sectors like steel and aluminium, and Europe’s oil majors going electric illustrates how incumbents are adapting. Some sectors will cite the risk decarbonisation poses to Europe’s global competitiveness. If change is to come, industry will need to build new partnerships with society to meet these targets.

The 2050 roadmap signals the ambition and will be game changing for Europe if it is adopted. It would provide a template for a global roll out that would go a long way toward meeting UN’s concerns.

 

Related News

View more

Japan opens part of last town off-limits since nuclear leaks

Futaba Partial Reopening marks limited access to the Fukushima exclusion zone, highlighting radiation decontamination progress, the train station restart, and regional recovery ahead of the Tokyo Olympics after the 2011 nuclear disaster and evacuation.

 

Key Points

A lift of entry bans in Futaba, signaling Fukushima recovery, decontamination progress, and a train station restart.

✅ Unrestricted access to 2.4 km² around Futaba Station

✅ Symbolic step ahead of Tokyo Olympics torch relay

✅ Decommissioning and decontamination to span decades

 

Japan's government on Wednesday opened part of the last town that had been off-limits due to radiation since the Fukushima nuclear disaster nine years ago, in a symbolic move to show the region's recovery ahead of the Tokyo Olympics, even as grid blackout risks have drawn scrutiny nationwide.

The entire population of 7,000 was forced to evacuate Futaba after three reactors melted down due to damage at the town's nuclear plant caused by a magnitude 9. 0 quake and tsunami March 11, 2011.

The partial lifting of the entry ban comes weeks before the Olympic torch starts from another town in Fukushima, as new energy projects like a large hydrogen system move forward in the prefecture. The torch could also arrive in Futaba, about 4 kilometres (2.4 miles) from the wrecked nuclear plant.

Unrestricted access, however, is only being allowed to a 2.4 square-kilometre (less than 1 square-mile) area near the main Futaba train station, which will reopen later this month to reconnect it with the rest of the region for the first time since the accident. The vast majority of Futaba is restricted to those who get permission for a day visit.

The three reactor meltdowns at the town's Fukushima Dai-ichi nuclear power plant spewed massive amounts of radiation that contaminated the surrounding area and at its peak, forced more than 160,000 people to flee, even as regulators later granted TEPCO restart approval for a separate Niigata plant elsewhere in Japan.

The gate at a checkpoint was opened at midnight Tuesday, and Futaba officials placed a signboard at their new town office, at a time when the shutdown of Germany's last reactors has reshaped energy debates abroad.

“I'm overwhelmed with emotion as we finally bring part of our town operations back to our home town," said Futaba Mayor Shiro Izawa. “I pledge to steadily push forward our recovery and reconstruction."

Town officials say they hope to see Futaba’s former residents return, but prospects are grim because of lingering concern about radiation, and as Germany's nuclear exit underscores shifting policies abroad. Many residents also found new jobs and ties to communities after evacuating, and only about 10% say they plan to return.

Futaba's registered residents already has decreased by 1,000 from its pre-disaster population of 7,000. Many evacuees ended up in Kazo City, north of Tokyo, after long bus trips, various stopovers and stays in shelters at an athletic arena and an abandoned high school. The town's government reopened in a makeshift office in another Fukushima town of Iwaki, while abroad projects like the Bruce reactor refurbishment illustrate long-term nuclear maintenance efforts.

Even after radiation levels declined to safe levels, the region's farming and fishing are hurt by lingering concerns among consumers and retailers. The nuclear plant is being decommission in a process that will take decades, with spent fuel removal delays extending timelines, and it is building temporary storage for massive amounts of debris and soil from ongoing decontamination efforts.

 

Related News

View more

Ireland: We are the global leaders in taking renewables onto the grid

Ireland 65% Renewable Grid Capability showcases world leading integration of intermittent wind and solar, smart grid flexibility, EU-SysFlex learnings, and the Celtic Interconnector to enhance stability, exports, and energy security across the European grid.

 

Key Points

Ireland can run its isolated power system with 65% variable wind and solar, informing EU grid integration and scaling.

✅ 65% system non-synchronous penetration on an isolated grid

✅ EU-SysFlex roadmap supports large-scale renewables integration

✅ Celtic Interconnector adds 700MW capacity and stability

 

Ireland is now able to cope with 65% of its electricity coming from intermittent electricity sources like wind and solar, as highlighted by Ireland's green electricity outlook today – an expertise Energy Minister Denish Naugthen believes can be replicated on a larger scale as Europe moves towards 50% renewable power by 2030.

Denis Naughten is an Irish politician who serves as Minister for Communications, Climate Action and Environment since May 2016.

Naughten spoke to editor Frédéric Simon on the sidelines of a EURACTIV event in the European  Parliament to mark the launch of EU-SysFlex, an EU-funded project, which aims to create a long-term roadmap for the large-scale integration of renewable energy on electricity grids.

What is the reason for your presence in Brussels today and the main message that you came to deliver?

The reason that I’m here today is that we’re going to share the knowledge what we have developed in Ireland, right across Europe. We are now the global leaders in taking variable renewable electricity like wind and solar onto our grid.

We can take a 65% loading on to the grid today – there is no other isolated grid in the world that can do that. We’re going to get up to 75% by 2020. This is a huge technical challenge for any electricity grid and it’s going to be a problem that is going to grow and grow across Europe, even as Europe's electricity demand rises in the coming years, as we move to 50% renewables onto our grid by 2030.

And our knowledge and understanding can be used to help solve the problems right across Europe. And the sharing of technology can mean that we can make our own grid in Ireland far more robust.

What is the contribution of Ireland when it comes to the debate which is currently taking place in Europe about raising the ambition on renewable energy and make the grid fit for that? What are the main milestones that you see looking ahead for Europe and Ireland?

It is a challenge for Europe to do this, but we’ve done it Ireland. We have been able to take a 65% loading of wind power on our grid, with Irish wind generation hitting records recently, so we can replicate that across Europe.

Yes it is about a much larger scale and yes, we need to work collaboratively together, reflecting common goals for electricity networks worldwide – not just in dealing with the technical solutions that we have in Ireland at the fore of this technology, but also replicating them on a larger scale across Europe.

And I believe we can do that, I believe we can use the learnings that we have developed in Ireland and amplify those to deal with far bigger challenges that we have on the European electricity grid.

Trialogue talks have started at European level about the reform of the electricity market. There is talk about decentralised energy generation coming from small-scale producers. Do you see support from all the member states in doing that? And how do you see the challenges ahead on a political level to get everyone on board on such a vision?

I don’t believe there is a political problem here in relation to this. I think there is unanimity across Europe that we need to support consumers in producing electricity for self-consumption and to be able to either store or put that back into the grid.

The issues here are more technical in nature. And how you support a grid to do that. And who actually pays for that. Ireland is very much a microcosm of the pan-European grid and how we can deal with those challenges.

What we’re doing at the moment in Ireland is looking at a pilot scheme to support consumers to generate their own electricity to meet their own needs and to be able to store that on site.

I think in the years to come a lot of that will be actually done with more battery storage in the form of electric vehicles and people would be able to transport that energy from one location to another as and when it’s needed. In the short term, we’re looking at some novel solutions to support consumers producing their own electricity and meeting their own needs.

So I think this is complex from a technical point of view at the moment, I don’t think there is an unwillingness from a political perspective to do it, and I think working with this particular initiative and other initiatives across Europe, we can crack those technical challenges.

To conclude, last year, the European Commission allocated €4 million to a project to link up the Irish electricity grid to France. How is that going to benefit Ireland? And is that related to worries that you may have over Brexit?

The plan, which is called the Celtic Interconnector, is to link France with the Irish electricity grid. It’s going to have a capacity of about 700MW. It allows us to provide additional stability on our grid and enables us to take more renewables onto the grid. It also allows us to export renewable electricity onto the main European grid as well, and provide stability to the French network.

So it’s a benefit to both individual networks as well as allowing far more renewables onto the grid. We’ve been working quite closely with RTE in France and with both regulators. We’re hoping to get the support of the European Commission to move it now from the design stage onto the construction stage. And I understand discussions are ongoing with the Commission at present with regard to that.

And that is going to diversify potential sources of electricity coming in for Ireland in a situation which is pretty uncertain because of Brexit, correct?

Well, I don’t think there is uncertainty because of Brexit in that we have agreements with the United Kingdom, we’re still going to be part of the broader energy family in relation to back-and-forth supply across the Irish Sea, with grid reinforcements in Scotland underscoring reliability needs.  But I think it is important in terms of meeting the 15% interconnectivity that the EU has set in relation to electricity.

And also in relation of providing us with an alternative support in relation to electricity supply outside of Britain. Because Britain is now leaving the European Union and I think this is important from a political point of view, and from a broader energy security point of view. But we don’t see it in the short term as causing threats in relation to security of supply.

 

Related News

View more

Why Is Central Asia Suffering From Severe Electricity Shortages?

Central Asia power shortages strain grids across Kazakhstan, Uzbekistan, Kyrgyzstan, Tajikistan, and Turkmenistan, driven by drought-hit hydropower, aging coal and gas plants, rising demand, cryptomining loads, and winter peak consumption risks.

 

Key Points

Regionwide blackouts from drought, aging plants and grids, rising demand, and winter peaks stressing Central Asia.

✅ Drought slashes hydropower in Kyrgyzstan, Tajikistan, Uzbekistan

✅ Aging coal and gas TPPs and weak grids cause frequent outages

✅ Cryptomining loads and winter heating spike demand and stress supply

 

Central Asians from western Kazakhstan to southern Tajikistan are suffering from power and energy shortages that have caused hardship and emergency situations affecting the lives of millions of people.

On October 14, several units at three power plants in northeastern Kazakhstan were shut down in an emergency that resulted in a loss of more than 1,000 megawatts (MW) of electricity.

It serves as an example of the kind of power failures that plague the region 30 years after the Central Asian countries gained independence and despite hundreds of millions of dollars being invested in energy infrastructure and power grids, and echo risks seen in other advanced markets such as Japan's near-blackouts during recent cold snaps.

Some of the reasons for these problems are clear, but with all the money these countries have allocated to their energy sectors and financial help they have received from international financial institutions, it is curious the situation is already so desperate with winter officially still weeks away.


The Current Problems
Three power plants were affected in the October 14 shutdowns of units: Ekibastuz-1, Ekibastuz-2, and the Aksu power plant.

Ekibastuz-1 is the largest power plant in Kazakhstan, capable of generating some 4,000 MW, roughly 13 percent of Kazakhstan’s total power output.

The Kazakhstan Electricity Grid Operating Company (KEGOC) explained the problems resulted partially from malfunctions and repair work, but also from overuse of the system that the government would later say was due to cryptominers, a large number of whom have moved to Kazakhstan recently from China after Beijing banned the mining needed by Bitcoin and other cryptocurrencies, amid its own China's power cuts across several provinces in 2021.

But between November 8 and 9, rolling blackouts were reported in the East Kazakhstan, North Kazakhstan, and Kyzylorda provinces, as well as the area around Almaty, Kazakhstan’s biggest city, and Shymkent, its third largest city.

People in Uzbekistan say they, too, are facing blackouts that the Energy Ministry described as “short-term outages,” even as authorities have looked to export electricity to Afghanistan to support regional demand, though it has been clear for several weeks that the country will have problems with natural gas supplies this winter.


Power lines in Uzbekistan
Kyrgyz President Sadyr Japarov continues to say there won't be any power rationing in Kyrgyzstan this winter, but at the end of September the National Energy Holding Company ordered “restrictions on the lighting of secondary streets, advertisements, and facades of shops, cafes, and other nonresidential customers.”

Many parts of Tajikistan are already experiencing intermittent supplies of electricity.

Even in Turkmenistan, a country with the fourth-largest reserves of natural gas in the world, there were reports of problems with electricity and heating in the capital, Ashgabat.


What Is Going On?
The causes of some of these problems are easy to see.

The population of the region has grown significantly, with the population of Central Asia when the Soviet Union collapsed in late 1991 being some 50 million and today about 75 million.

Kyrgyzstan and Tajikistan are mountainous countries that have long been touted for their hydropower potential and some 90 percent of Kyrgyzstan’s domestically produced electricity and 98 percent of Tajikistan’s come from hydropower.

But a severe drought that struck Central Asia this year has resulted in less hydropower and, in general, less energy for the region, similar to constraints seen in Europe's reduced hydro and nuclear output this year.

Tajik authorities have not reported how low the water in the country’s key reservoirs is, but Kyrgyzstan has reported the water level in the reservoir at its Toktogul hydropower plant (HPP) is 11.8 billion cubic meters (bcm), the lowest level in years and far less than the 14.7 bcm of water it had in November 2020.

The Toktogul HPP, with an installed capacity of 1,200 MW, provides some 40 percent of the country's domestically produced electricity, but operating the HPP this winter to generate desperately needed energy brings the risk of leaving water levels at the reservoir critically low next spring and summer when the water is also needed for agricultural purposes.

This year’s drought is something Kyrgyzstan and Tajikistan will have to take into consideration as they plan how to provide power for their growing populations in the future. Hydropower is a desirable option but may be less reliable with the onset of climate change, prompting interest in alternatives such as Ukraine's wind power to diversify generation.

Uzbekistan is also feeling the effects of this year’s drought, and, like the South Caucasus where Georgia's electricity imports have increased, supply shortfalls are testing grids.

According to the International Energy Agency, HPPs account for some 12 percent of Uzbekistan’s generating capacity.

Uzbekistan’s Energy Ministry attributed low water levels at HPPs that have caused a 23 percent decrease in hydropower generation this year.


A reservoir in Kyrgyzstan
Kazakhstan and Uzbekistan are the most populous Central Asian countries, and both depend on thermal power plants (TPP) for generating most of their electricity.

Most of the TPPs in Kazakhstan are coal-fired, while most of the TPPs in Uzbekistan are gas-fired.

Kazakhstan has 68 power plants, 80 percent of which are coal-fired TPPs, and most are in the northern part of the country where the largest deposits of coal are located. Kazakhstan has the world's 10th largest reserves of coal.

About 88 percent of Uzbekistan’s electricity comes from TTPs, most of which use natural gas.

Uzbekistan’s proven reserves are some 800 billion cubic meters, but gas production in Uzbekistan has been decreasing.

In December 2020, Uzbek President Shavkat Mirziyoev ordered a halt to the country’s gas exports and instructed that gas to be redirected for domestic use. Mirziyoev has already given similar instructions for this coming winter.


How Did It Come To This?
The biggest problem with the energy infrastructure in Central Asia is that it is generally very old. Nearly all of its power plants date back to the Soviet era -- and some well back into the Soviet period.

The use of power plants and transmission lines that some describe as “obsolete” and a few call “decrepit” has unfortunately been a necessity in Central Asia, even as regional players pursue new interconnections like Iran's plan to transmit electricity to Europe as a power hub.

Reporting on Kazakhstan in September 2016, the Asian Development Bank (ADB) said, “70 percent of the power generation infrastructure is in need of rehabilitation.”

The Ekibastuz-1 TPP is relatively new by the power-plant standards of Central Asia. The first unit of the eight units of the TPP was commissioned in 1980.

The first unit at the AKSU TPP was commissioned in 1968, and the first unit of the gas- and fuel-fired TPP in southern Kazakhstan’s Zhambyl Province was commissioned in 1967.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified