Georgia Power offers conservation tips

By PR Newswire


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
As Georgia moves into the heat of August, Georgia Power's energy-saving K9 unit is on the job. The dogs, stars of the utility's latest advertising campaign, offer customers information on ways to conserve electricity and save money on energy bills.

Here are some of their tips to keep you cool and comfortable as the temperatures heat up.

During the summer, your air conditioner is usually the biggest user of electricity. For many homes, it accounts for more than half of the summer electric bill.

• Set your thermostat at 78 degrees or higher and leave it there. For every degree below that setting, you'll use 3 to 4 percent more electricity. For example, the savings is about $4 per degree on the typical monthly residential bill for cooling only.

• Set the thermostat even higher when at work or away from home for long periods of time, but no more than five degrees higher.

• Even better, invest in a programmable thermostat that automatically adjusts your home's temperature to your schedule, so you're comfortable when at home and save energy while away. They work best for homeowners who have consistent schedules.

• Change or clean your air conditioner filter regularly to maximize the unit's cooling potential. Dirty filters restrict airflow and reduce efficiency.

• Keep air vents clear of obstructions to help your heating and cooling system operate more efficiently.

• Check your windows and doors for a tight fit. Apply weather stripping or caulking if needed.

• Clear outside units of plants or brush so they can work more efficiently.

ENERGY STAR Appliances

• Look for the ENERGY STAR brand when purchasing new appliances.

• Purchase an ENERGY STAR or high-SEER-rated unit when replacing cooling equipment or a heat pump. The higher the SEER (Seasonal Energy Efficiency Rating), the more efficient the unit. Experts recommend at least a 13 SEER.

• ENERGY STAR-rated appliances, such as refrigerators and dishwashers use 10 to 50 percent less energy and/or water when compared to standard appliances.

Proper insulation

• Increasing attic insulation can reduce heat loss / heat gain by up to 28 percent.

• Insulation is measured in R-value, which is a measure of resistance to heat flow. The higher the R-value, the better the insulation value.

• Experts recommend you use an R-value of R-30 or higher, depending on local energy codes, in ceiling areas.

Cool kitchen tips

• Use pots and pans that match the size of the burners on your stove. This allows more heat to reach the pan and less heat will be lost to surrounding air.

• Try to use the range instead of the oven. Or better yet, turn on the microwave or use a pressure cooker. Both use less power than a standard electric range.

• Whenever possible, cook a lot of meals at the same time. This uses less energy than cooking each meal separately.

• Avoid opening the oven door. This lets out 20 percent of the heat.

Using the refrigerator

• Look for the ENERGY STAR label when choosing a new refrigerator. Refrigerators manufactured prior to 1993 use twice as much energy as today's models.

• Choose the right size refrigerator for your needs. Larger models use more energy. Open and close the refrigerator door quickly. Know what you want before opening the door.

• Make sure your refrigerator door seals are airtight. Check them by closing a piece of paper in the door, half in and half out. If you can pull the paper out easily, you may need to make some adjustments or replace the seal.

• Allow air to circulate around the condenser coils of your refrigerator or freezer by leaving a space between the wall or cabinets and the appliance. Be sure to keep the coils clean.

• Set the refrigerator thermostat to between 35 and 38 degrees, and your freezer at zero degrees.

Clothes washer/Dishwasher

• Turn down your water-heater thermostat. A setting of 120 degrees is adequate for most homes and will save money and energy.

• When using the dishwasher, turn off the drying cycle if you don't need dishes right away.

• Wait until the dishwasher is full before running it. Partial loads use just as much water and power as a full load.

• Scrape dishes before loading them into the dishwasher so you don't have to rinse them. If they need rinsing, use cold water.

• Wash full loads of clothes.

• Dry clothes in consecutive loads so the dryer does not have to reheat every time. Separate loads into heavy and lightweight items for more even drying, and remove clothes while they're still slightly damp. Always clean the lint filter after each load.

Lighting

You've heard it before, but one of the best ways to save energy is to turn off lights when you're not using them. Never leave too many on when you're away from home. • Change the most-used lights in your home to ENERGY STAR qualified compact fluorescent (CFL) bulbs — they use 75 percent less energy than standard lighting and last up to 10 times longer. Also, ENERGY STAR qualified CFL bulbs generate 75 percent less heat which means your air conditioner works less, which lowers your electric bill. And they can produce four times more light than standard incandescent lamps, for the same amount of energy.

• Use one large bulb instead of several small ones in areas where bright light is needed.

• Use smaller lamps in work areas, like sewing areas and computer desks, so you don't light the entire room.

• Do some decorating. Lighter-colored walls, drapes, blinds and upholstery reflect light. Dark colors absorb heat and require more artificial light.

Just for Comfort

• Use fans whenever possible. Ceiling fans can make the air in a room feel 6 degrees cooler and allow you to save energy. Remember, however, to turn them off when you're not in the room.

• Run the dishwasher, dryer and stove in the morning or after the sun goes down to avoid adding heat to your house during the hottest part of the day.

• Use a power strip or simply unplug electronics when they are not in use and save as much as $100 a year.

Related News

Berlin urged to remove barriers to PV

Germany Solar Cap Removal would accelerate photovoltaics, storage, and renewables, replacing coal and nuclear during phaseout with 10GW per year toward 162GW by 2030, boosting grid resilience, O&M jobs, and domestic clean energy growth.

 

Key Points

A policy change to scrap the 52GW limit, enabling 10GW/year PV and storage to replace coal and nuclear capacity.

✅ Scrap 52GW cap to prevent post-2020 market slump

✅ Add 10GW PV annually; scale residential, commercial, grid storage

✅ Create jobs in planning, installation, and O&M through 2030

 

The German Solar Association (BSW) has called on the government to remove barriers to the development of new solar power capacity in Germany and storage capacity needed to replace coal and nuclear generation that is being phased out.

A 52GW cap should be scrapped, otherwise there is a risk that a market slump will occur in the solar industry after 2020, BSW said, especially as U.S. solar expansion plans signal accelerating global demand.

BSW managing director Carsten Körnig said: “Time is running out, and further delays are irresponsible. The 52GW mark will already be reached within a few months.”
A new report from BSW, in cooperation with Bonn-based marketing and social research company EuPD Research and The smarter E Europe initiative, said 10GW a year is needed as well as an increase in battery storage capacity.

This would lead to cumulative photovoltaic capacity of 162GW and 15GW residential, commercial and grid storage systems by 2030, in line with global renewable records being set, leading to new job opportunities.

The number of jobs in the domestic photovoltaic and storage industries could increase to 78,000 by the end of the next decade from today’s level of 26,400, aligning with forecasts of wind and solar reaching 50% by mid-century, said 'The Energy Transition in the Context of the Nuclear and Coal Phaseout – Perspectives in the Electricity Market to 2040' study.

Job growth would take place for the most part in the fields of planning, installation and operations and maintenance of PV systems, as solar uptake in Poland increases, the report said.

In maintenance alone, employment would increase from 9,200 to 26,000, with additional opened up by tapping into the market potential of medium- to long-term storage systems, alongside changing electricity prices in Northern Europe that favor flexibility, it said.

The report added that industry revenue could grow from €5bn to €12.5bn in the coming decade.

The report was supported by BayWa Re E3/DC, Fronius, Goldbeck Solar, IBC Solar, Panasonic, Sharp, Siemens, Sonnen, Suntech, Tesvolt and Varta.

 

Related News

View more

Two new BC generating stations officially commissioned

BC Hydro Site C and Clean Energy Policy shapes B.C.'s power mix, affecting run-of-river hydro, net metering for rooftop solar, independent power producers, and surplus capacity forecasts tied to LNG Canada demand.

 

Key Points

BC Hydro's strategy centers on Site C, limiting new run-of-river projects and tightening net metering amid surplus power

✅ Site C adds long-term capacity with lower projected rates.

✅ Run-of-river IPP growth paused amid surplus forecasts.

✅ Net metering limits deter oversized rooftop solar.

 

Innergex Renewable Energy Inc. is celebrating the official commissioning today of what may be the last large run-of-river hydro project in B.C. for years to come.

The project – two new generating stations on the Upper Lillooet River and Boulder Creek in the Pemberton Valley – actually began producing power in 2017, but the official commissioning was delayed until Friday September 14.

Innergex, which earlier this year bought out Vancouver’s Alterra Power, invested $491 million in the two run-of-river hydro-electric projects, which have a generating capacity of 106 megawatts of power. The project has the generating capacity to power 39,000 homes.

The commissioning happened to coincide with an address by BC Hydro CEO Chris O’Riley to the Greater Vancouver Board of Trade Friday, in which he provided an update on the progress of the $10.7-billion Site C dam project.

That project has put an end, for the foreseeable future, of any major new run-of-river projects like the Innergex project in Pemberton.

BC Hydro expects the new dam to produce a surplus of power when it is commissioned in November 2024, so no new clean energy power calls are expected for years to come.

Independent power producers aren’t the only ones who have seen a decline in opportunities to make money in B.C. providing renewable power, as the Siwash Creek project shows. So will homeowners who over-build their own solar power systems, in an attempt to make money from power sales.

There are about 1,300 homeowners in B.C. with rooftop solar systems, and when they produce surplus power, they can sell it to BC Hydro.

BC Hydro is amending the net metering program to discourage homeowners from over-building. In some cases, some howeowners have been generating 40% to 50% more power than they need.

“We were getting installations that were massively over-sized for their load, and selling this big quantity of power to us,” O’Riley said. “And that was never the idea of the program.”

Going forward, BC Hydro plans to place limits on how much power a homeowner can sell to BC Hydro.

BC Hydro has been criticized for building Site C when the demand for power has been generally flat, and reliance on out-of-province electricity has drawn scrutiny. But O’Riley said the dam isn’t being built for today’s generation, but the next.

“We’re not building Site C for today,” he said. “We have an energy surplus for the short term. We’re not even building it for 2024. We’re building it for the next 100 years.”

O’Riley acknowledged Site C dam has been a contentious and “extremely challenging” project. It has faced numerous court challenges, a late-stage review by the BC Utilities Commission, cost overruns, geotechnical problems and a dispute with the main contractors.

In a separate case, the province was ordered to pay $10 million over the denial of a Squamish power project, highlighting broader legal risk.

But those issues have been resolved, O’Riley said, and the project is back on track with a new construction schedule.

“As we move forward, we have a responsibility to deliver a project on time and against the new revised budget, and I’m confident the changes we’ve made are set up to do that,” O’Riley said.

Currently, there are about 3,300 workers employed on the dam project.

Despite criticisms that BC Hydro is investing in a legacy mega-project at a time when cost of wind and solar have been falling, O’Riley insisted that Site C was the best and lowest cost option.

“First, it’s the lowest cost option,” he said. “We expect over the first 20 years of Site C’s operating life, our customers will see rates 7% to 10% below what it would otherwise be using the alternatives.”

BC Hydro missed a critical window to divert the Peace River, something that can only be done in September, during lower river flows. That added a full year’s delay to the project.

O’Riley said BC Hydro had built in a one-year contingency into the project, so he expects the project can still be completed by 2024 – the original in-service target date. But the delay will add more than $2 billion to the last budget estimate, boosting the estimated capital cost from $8.3 billion to $10.7 billion.

Meeting the 2024 in-service target date could be important, if Royal Dutch Shell and its consortium partners make a final investment decision this year on the $40 billion LNG Canada project.

That project also has a completion target date of 2024, and would be a major new industrial customer with a substantial power draw for operations.

“If they make a decision to go forward, they will be a very big customer of BC Hydro,” O’Riley told Business in Vancouver. “They would be in our top three or four biggest customers.”

 

Related News

View more

How offshore wind energy is powering up the UK

UK Offshore Wind Expansion will make wind the main power source, driving renewable energy, offshore projects, smart grids, battery storage, and interconnectors to cut carbon emissions, boost exports, and attract global investment.

 

Key Points

A UK strategy to scale offshore wind, integrate smart grids and storage, cut emissions and drive investment and exports

✅ 30% energy target by 2030, backed by CfD support

✅ 250m industry investment and smart grid build-out

✅ Battery storage and interconnectors balance intermittency

 

Plans are afoot to make wind the UKs main power source for the first time in history amid ambitious targets to generate 30 percent of its total energy supply by 2030, up from 8 percent at present.

A recently inked deal will see the offshore wind industry invest 250 million into technology and infrastructure over the next 11 years, with the government committing up to 557 million in support, under a renewable energy auction that boosts wind and tidal projects, as part of its bid to lower carbon emissions to 80 percent of 1990 levels by 2050.

Offshore wind investment is crucial for meeting decarbonisation targets while increasing energy production, says Dominic Szanto, Director, Energy and Infrastructure at JLL. The governments approach over the last seven years has been to promise support to the industry, provided that cost reduction targets were met. This certainty has led to the development of larger, more efficient wind turbines which means the cost of offshore wind energy is a third of what it was in 2012.

 

Boosting the wind industry

Offshore wind power has been gathering pace in the UK and has grown despite COVID-19 disruptions in recent years. Earlier this year, the Hornsea One wind farm, the worlds largest offshore generator which is located off the Yorkshire coast, started producing electricity. When fully operational in 2020, the project will supply energy to over a million homes, and a further two phases are planned over the coming decade.

Over 10 gigawatts of offshore wind either already has government support or is eligible to apply for it in the near future, following a 10 GW contract award that underscores momentum, representing over 30 billion of likely investment opportunities.

Capital is coming from European utility firms and increasingly from Asian strategic investors looking to learn from the UKs experience. The attractive government support mechanism means banks are keen to lend into the sector, says Szanto.

New investment in the UKs offshore wind sector will also help to counter the growing influence of China. The UK is currently the worlds largest offshore wind market, but by 2021 it will be outstripped by China.

Through its new deal, the government hopes to increase wind power exports fivefold to 2.6 billion per year by 2030, with the UKs manufacturing and engineering skills driving projects in growth markets in Europe and Asia and in developing countries supported by the World Bank support through financing and advisory programs.

Over the next two decades, theres a massive opportunity for the UK to maintain its industry leading position by designing, constructing, operating and financing offshore wind projects, says Szanto. Building on projects such as the Hywind project in Scotland, it could become a major export to countries like the USA and Japan, where U.S. lessons from the U.K. are informing policy and coastal waters are much deeper.

 

Wind-powered smart grids

As wind power becomes a major contributor to the UKs energy supply, which will be increasingly made up of renewable sources in coming decades, there are key infrastructure challenges to overcome.

A real challenge is that the UKs power generation is becoming far more decentralised, with smaller power stations such as onshore wind farms and solar parks and more prosumers residential houses with rooftop solar coupled with a significant rise in intermittent generation, says Szanto. The grid was never designed to manage energy use like that.

One potential part of the solution is to use offshore wind farms in other sites in European waters.

By developing connections between wind projects from neighbouring countries, it will create super-grids that will help mitigate intermittency issues, says Szanto.

More advanced energy storage batteries will also be key for when less energy is generated on still days. There is a growing need for batteries that can store large amounts of energy and smart technology to discharge that energy. Were going through a revolution where new technology companies are working to enable a much smarter grid.

Future smart grids, based on developing technology such as blockchain, might enable the direct trading of energy between generators and consumers, with algorithms that can manage many localised sources and, critically, ensure a smooth power supply.

Investors seeking a higher-yield market are increasingly turning to battery technology, Szanto says. In a future smart grid, for example, batteries could store electricity bought cheaply at low-usage times then sold at peak usage prices or be used to provide backup energy services to other companies.

 

Majors investing in the transition

Its not just new energy technology companies driving change; established oil and gas companies are accelerating spending on renewable energy. Shell has committed to $1-2 billion per year on clean energy technologies out of a $25-30 billion budget, while Equinor plans to spend 15-20 percent of its budget on renewables by 2030.

The oil and gas majors have the global footprint to deliver offshore wind projects in every country, says Szanto. This could also create co-investment opportunities for other investors in the sector especially as nascent wind markets such as the U.S., where the U.S. offshore wind timeline is still developing, and Japan evolve.

European energy giants, for example, have bid to build New Yorks first offshore wind project.

As offshore wind becomes a globalised sector, with a trillion-dollar market outlook emerging, the major fuel companies will have increasingly large roles. They have the resources to undertake the years-long, cost-intensive developments of wind projects, driven by a need for new business models as the world looks beyond carbon-based fuels, says Szanto.

Oil and gas heavyweights are also making wind, solar and energy storage acquisitions BP acquired solar developer Lightsource and car-charging network Chargemaster, while Shell spent $400 million on solar and battery companies.

The public perception is that renewable energy is niche, but its now a mainstream form of energy generation., concludes Szanto.

Every nation in the world is aligned in wanting a decarbonised future. In terms of electricity, that means renewable energy and for offshore wind energy, the outlook is extremely positive.

 

Related News

View more

Energy experts: US electric grid not designed to withstand the impacts of climate change

Summer Power Grid Reliability and Climate Risk drives urgent planning as extreme heat, peak demand, drought, and aging infrastructure strain ERCOT, NERC regions, risking outages without renewables integration and climate-informed grid modeling.

 

Key Points

Assessment of how extreme weather and demand stress the US grid, informing climate-smart planning to reduce outages.

✅ Many operators rely on historical weather, not climate projections

✅ NERC flags elevated blackout risk amid extreme heat and drought

✅ Renewables and storage can boost capacity and cut emissions

 

As heat ramps up ahead of what forecasters say will be a hotter than normal summer, electricity experts and officials are warning that states may not have enough power to meet demand in the coming months. And many of the nation's grid operators are also not taking climate change into account in their planning, despite available grid resilience guidance that could inform upgrades, even as extreme weather becomes more frequent and more severe.

Power operators in the Central US, in their summer readiness report, have already predicted "insufficient firm resources to cover summer peak forecasts." That assessment accounted for historical weather and the latest NOAA outlook that projects for more extreme weather this summer.

But energy experts say that some power grid operators are not considering how the climate crisis is changing our weather — including more frequent extreme events — and that is a problem if the intent is to build a reliable power grid while accelerating investing in carbon-free electricity across markets.

"The reality is the electricity system is old and a lot of the infrastructure was built before we started thinking about climate change," said Romany Webb, a researcher at Columbia University's Sabin Center for Climate Change Law. "It's not designed to withstand the impacts of climate change."

Webb says many power grid operators use historical weather to make investment decisions, rather than the more dire climate projections, simply because they want to avoid the possibility of financial loss, even as climate-related credit risks for nuclear plants are being flagged, for investing in what might happen versus what has already happened. She said it's the wrong approach and it makes the grid vulnerable.

"We have seen a reluctance on the part of many utilities to factor climate change into their planning processes because they say the science around climate change is too uncertain," Webb said. "The reality is we know climate change is happening, we know the impact it has in terms of more severe heatwaves, hurricanes, drought, with recent hydropower constraints in British Columbia illustrating the risks, and we know that all of those things affect the electricity system so ignoring those impacts just makes the problems worse."

An early heatwave knocked six power plants offline in Texas earlier this month. Residents were asked to limit electricity use, keeping thermostats at 78 degrees or higher and, as extreme heat boosts electricity bills for consumers, avoid using large appliances at peak times. The Electric Reliability Council of Texas, or ERCOT, in its seasonal reliability report, said the state's power grid is prepared for the summer and has "sufficient" power for "normal" summer conditions, based on average weather from 2006 to 2020.

But NOAA's recently released summer outlook forecasts above average temperatures for every county in the nation.

"We are continuing to design and site facilities based on historical weather patterns that we know in the age of climate change are not a good proxy for future conditions," Webb said.

When asked if the agency is creating a blind spot for itself by not accounting for extreme weather predictions, an ERCOT spokesperson said the report "uses a scenario approach to illustrate a range of resource adequacy outcomes based on extreme system conditions, including some extreme weather scenarios."

The North American Electric Reliability Corporation, or NERC — a regulating authority that oversees the health of the nation's electrical infrastructure — has a less optimistic projection.

In a recent seasonal reliability report, NERC placed Texas at "elevated risk" for blackouts this summer. It also reported that while much of the nation will have adequate electricity this summer, several markets are at risk of energy emergencies.

California grid operators, who recently avoided widespread rolling blackouts as heat strained the grid, in its summer reliability report also based its readiness analysis on "the most recent 20 years of historical weather data." The report also notes the assessment "does not fully reflect more extreme climate induced load and supply uncertainties."

Compounding the US power grid's supply and demand problem is drought: NERC says there's been a 2% loss of reliable hydropower from the nation's power-producing dams. Add to that the rapid retirement of many coal power plants — all while nearly everything from toothbrushes to cars are now electrified. Energy experts say adding more renewables into the mix will have the dual impact of cutting climate change inducing greenhouse gas emissions but also increasing the nation's power supply, aligning with efforts such as California's 100% carbon-free mandate that aim to speed the transition.
 

 

Related News

View more

Opinion: Cleaning Up Ontario's Hydro Mess - Ford government needs to scrap the Fair Hydro Plan and review all options

Ontario Hydro Crisis highlights soaring electricity rates, costly subsidies, nuclear refurbishments, and stalled renewables in Ontario. Policy missteps, weak planning, and rising natural gas emissions burden ratepayers while energy efficiency and storage remain underused.

 

Key Points

High power costs and subsidies from policy errors, nuclear refurbishments, stalled efficiency and renewables in Ontario.

✅ $5.6B yearly subsidy masks electricity rates and deficits

✅ Nuclear refurbishments embed rising costs for decades

✅ Efficiency, storage, and DERs stalled amid weak planning

 

By Mark Winfield

While the troubled Site C and Muskrat Falls hydroelectric dam projects in B.C. and Newfoundland and Labrador have drawn a great deal of national attention over the past few months, Ontario has quietly been having a hydro crisis of its own.

One of the central promises in the 2018 platform of the Ontario Progressive Conservative party was to “clean up the hydro mess,” and then-PC leader Doug Ford vowed to fire Hydro One's leadership as part of that effort. There certainly is a mess, with the costs of subsidies taken from general provincial revenues to artificially lower hydro rates nearing $7 billion annually. That is a level approaching the province’s total pre-COVID-19 annual deficit. After only two years, that will also exceed total expected cost overruns of the Site C and Muskrat Falls projects, currently estimated at $12 billion ($6 billion each).

There is no doubt that Doug Ford’s government inherited a significant mess around the province’s electricity system from the previous Liberal governments of former premiers Dalton McGuinty and Kathleen Wynne. But the Ford government has also demonstrated a remarkable capacity for undoing the things its predecessors had managed to get right while doubling down on their mistakes.

The Liberals did have some significant achievements. Most notably: coal-fired electricity generation, which constituted 25 per cent of the province’s electricity supply in the early 2000s, was phased out in 2014. The phaseout dramatically improved air quality in the province. There was also a significant growth in renewable energy production. From  virtually zero in 2003, the province installed 4,500 MW of wind-powered generation, and 450 MW of solar photovoltaic by 2018, a total capacity more than double that of the Sir Adam Beck Generating Stations at Niagara Falls.

At the same time, public concerns over rising hydro rates flowing from a major reconstruction of the province’s electricity system from 2003 onwards became a central political issue in the province. But rather than reconsider the role of the key drivers of the continuing rate increases – namely the massively expensive and risky refurbishments of the Darlington and Bruce nuclear facilities, the Liberals adopted a financially ruinous Fair Hydro Plan. The central feature of the 2017 plan was a short-term 25 per cent reduction in hydro rates, financed by removing the provincial portion of the HST from hydro bills, and by extending the amortization period for capital projects within the system. The total cost of the plan in terms of lost revenues and financing costs has been estimated in excess of $40 billion over 29 years, with the burden largely falling on future ratepayers and taxpayers.


Decision-making around the electricity system became deeply politicized, and a secret cabinet forecast of soaring prices intensified public debate across Ontario. Legislation adopted by the Wynne government in 2016 eliminated the requirement for the development of system plans to be subject to any form of meaningful regulatory oversight or review. Instead, the system was guided through directives from the provincial cabinet. Major investments like the Darlington and Bruce refurbishments proceeded without meaningful, public, external reviews of their feasibility, costs or alternatives.

The Ford government proceeded to add more layers to these troubles. The province’s relatively comprehensive framework for energy efficiency was effectively dismantled in March, 2019, with little meaningful replacement. That was despite strong evidence that energy efficiency offered the most cost-effective strategy for reducing greenhouse gas emissions and electricity costs.

The Ford government basically retained the Fair Hydro Plan and promised further rate reductions, later tabling legislation to lower electricity rates as well. To its credit, the government did take steps to clarify real costs of the plan. Last year, these were revealed to amount to a de facto $5.6 billion-per-year subsidy coming from general revenues, and rising. That constituted the major portion of the province’s $7.4 billion pre-COVID-19 deficit. The financial hole was deepened further through November’s financial statement, with the addition of a further $1.3 billion subsidy to commercial and industrial consumers. The numbers can only get worse as the costs of the Darlington and Bruce refurbishments become embedded more fully into electricity rates.

The government also quietly dispensed with the last public vestige of an energy planning framework, relieving itself of the requirement to produce a Long-Term Energy Plan every three years. The next plan would normally have been due next month, in February.

Even the gains from the 2014 phaseout of coal-fired electricity are at risk. Major increases are projected in emissions of greenhouse gases, smog-causing nitrogen oxides and particulate matter from natural gas-fired power plants as the plants are run to cover electricity needs during the Bruce and Darlington refurbishments over the next decade. These developments could erode as much as 40 per cent of the improvements in air quality and greenhouse gas emission gained through the coal phaseout.

The province’s activities around renewable energy, energy storage and distributed energy resources are at a standstill, with exception of a few experimental “sandbox” projects, while other jurisdictions face profound electricity-sector change and adapt. Globally, these technologies are seen as the leading edge of energy-system development and decarbonization. Ontario seems to have chosen to make itself an energy innovation wasteland instead.

The overall result is a system with little or no space for innovation that is embedding ever-higher costs while trying to disguise those costs at enormous expense to the provincial treasury and still failing to provide effective relief to low-income electricity consumers.

The decline in electricity demand associated with the COVID-19 pandemic, along with the introduction of a temporary recovery rate for electricity, gives the province an opportunity to step back and consider its next steps with the electricity system. A phaseout of the Fair Hydro Plan electricity-rate reduction and its replacement with a more cost-effective strategy of targeted relief aimed at those most heavily burdened by rising hydro rates, particularly rural and low-income consumers, as reconnection efforts for nonpayment have underscored the hardship faced by many households, would be a good place to start.

Next, the province needs to conduct a comprehensive, public review of electricity options available to it, including additional renewables – the costs of which have fallen dramatically over the past decade – distributed energy resources, hydro imports from Quebec and energy efficiency before proceeding with further nuclear refurbishments.

In the longer term, a transparent, evidence-based process for electricity system planning needs to be established – one that is subject to substantive public and regulatory oversight and review. Finally, the province needs to establish a new organization to be called Energy Efficiency Ontario to revive its efforts around energy efficiency, developing a comprehensive energy-efficiency strategy for the province, covering electricity and natural gas use, and addressing the needs of marginalized communities.

Without these kinds of steps, the province seems destined to continue to lurch from contradictory decision after contradictory decision as the economic and environmental costs of the system’s existing trajectory continue to rise.

Mark Winfield is a professor of environmental studies at York University and co-chair of the university’s Sustainable Energy Initiative.

 

Related News

View more

A Texas-Sized Gas-for-Electricity Swap

Texas Heat Pump Electrification replaces natural gas furnaces with electric heating across ERCOT, cutting carbon emissions, lowering utility bills, shifting summer peaks to winter, and aligning higher loads with strong seasonal wind power generation.

 

Key Points

Statewide shift from gas furnaces to heat pumps in Texas, reducing emissions and bills while moving grid peak to winter.

✅ Up to $452 annual utility savings per household

✅ CO2 cuts up to 13.8 million metric tons in scenarios

✅ Winter peak rises, summer peak falls; wind aligns with load

 

What would happen if you converted all the single-family homes in Texas from natural gas to electric heating?

According to a paper from Pecan Street, an Austin-based energy research organization, the transition would reduce climate-warming pollution, save Texas households up to $452 annually on their utility bills, and flip the state from a summer-peaking to a winter-peaking system. And that winter peak would be “nothing the grid couldn’t evolve to handle,” according to co-author Joshua Rhodes, a view echoed by analyses outlining Texas grid reliability improvements statewide today.

The report stems from the reality that buildings must be part of any comprehensive climate action plan.

“If we do want to decarbonize, eventually we do have to move into that space. It may not be the lowest-hanging fruit, but eventually we will have to get there,” said Rhodes.

Rhodes is a founding partner of the consultancy IdeaSmiths and an analyst at Vibrant Clean Energy. Pecan Street commissioned the study, which is distilled from a larger original analysis by IdeaSmiths, at the request of the nonprofit Environmental Defense Fund.

In an interview, Rhodes said, “The goal and motivation were to put bounding on some of the claims that have been made about electrification: that if we electrify a lot of different end uses or sectors of the economy...power demand of the grid would double.”

Rhodes and co-author Philip R. White used an analysis tool from the National Renewable Energy Laboratory called ResStock to determine the impact of replacing natural-gas furnaces with electric heat pumps in homes across the ERCOT service territory, which encompasses 90 percent of Texas’ electricity load.

Rhodes and White ran 80,000 simulations in order to determine how heat pumps would perform in Texas homes and how the pumps would impact the ERCOT grid.

The researchers modeled the use of “standard efficiency” (ducted, SEER 14, 8.2 HSPF air-source heat pump) and “superior efficiency” (ductless, SEER 29.3, 14 HSPF mini-split heat pump) heat pump models against two weather data sets — a typical meteorological year, and 2011, which had extreme weather in both the winter and summer and highlighted blackout risks during severe heat for many regions.

Emissions were calculated using Texas’ power sector data from 2017. For energy cost calculations, IdeaSmiths used 10.93 cents per kilowatt-hour for electricity and 8.4 cents per therm for natural gas.

Nothing the grid can't handle
Rhodes and White modeled six scenarios. All the scenarios resulted in annual household utility bill savings — including the two in which annual electricity demand increased — ranging from $57.82 for the standard efficiency heat pump and typical meteorological year to $451.90 for the high-efficiency heat pump and 2011 extreme weather year.

“For the average home, it was cheaper to switch. It made economic sense today to switch to a relatively high-efficiency heat pump,” said Rhodes. “Electricity bills would go up, but gas bills can go down.”

All the scenarios found carbon savings too, with CO2 reductions ranging from 2.6 million metric tons with a standard efficiency heat pump and typical meteorological year to 13.8 million metric tons with the high-efficiency heat pump in 2011-year weather.

Peak electricity demand in Texas would shift from summer to winter. Because heat pumps provide both high-efficiency space heating and cooling, in the scenario with “superior efficiency” heat pumps, the summer peak drops by nearly 24 percent to 54 gigawatts compared to ERCOT’s 71-gigawatt 2016 summer peak, even as recurring strains on the Texas power grid during extreme conditions persist.

The winter peak would increase compared to ERCOT’s 66-gigawatt 2018 winter peak, up by 22.73 percent to 81 gigawatts with standard efficiency heat pumps and up by 10.6 percent to 73 gigawatts with high-efficiency heat pumps.

“The grid could evolve to handle this. This is not a wholesale rethinking of how the grid would have to operate,” said Rhodes.

He added, “There would be some operational changes if we went to a winter-peaking grid. There would be implications for when power plants and transmission lines schedule their downtime for maintenance. But this is not beyond the realm of reality.”

And because Texas’ wind power generation is higher in winter, a winter peak would better match the expected higher load from all-electric heating to the availability of zero-carbon electricity.

 

A conservative estimate
The study presented what are likely conservative estimates of the potential for heat pumps to reduce carbon pollution and lower peak electricity demand, especially when paired with efficiency and demand response strategies that can flatten demand.

Electric heat pumps will become cleaner as more zero-carbon wind and solar power are added to the ERCOT grid, as utilities such as Tucson Electric Power phase out coal. By the end of 2018, 30 percent of the energy used on the ERCOT grid was from carbon-free sources.

According to the U.S. Energy Information Administration, three in five Texas households already use electricity as their primary source of heat, much of it electric-resistance heating. Rhodes and White did not model the energy use and peak demand impacts of replacing that electric-resistance heating with much more energy efficient heat pumps.

“Most of the electric-resistance heating in Texas is located in the very far south, where they don’t have much heating at all,” Rhodes said. “You would see savings in terms of the bills there because these heat pumps definitely operate more efficiently than electric-resistance heating for most of the time.”

Rhodes and White also highlighted areas for future research. For one, their study did not factor in the upfront cost to homeowners of installing heat pumps.

“More study is needed,” they write in the Pecan Street paper, “to determine the feasibility of various ‘replacement’ scenarios and how and to what degree the upgrade costs would be shared by others.”

Research from the Rocky Mountain Institute has found that electrification of both space and water heating is cheaper for homeowners over the life of the appliances in most new construction, when transitioning from propane or heating oil, when a gas furnace and air conditioner are replaced at the same time, and when rooftop solar is coupled with electrification, aligning with broader utility trends toward electrification.

More work is also needed to assess the best way to jump-start the market for high-efficiency all-electric heating. Rhodes believes getting installers on board is key.

“Whenever a homeowner’s making a decision, if their system goes out, they lean heavily on what the HVAC company suggests or tells them because the average homeowner doesn’t know much about their systems,” he said.

More work is also needed to assess the best way to jump-start the market for high-efficiency all-electric heating, and how utility strategies such as smart home network programs affect adoption too. Rhodes believes getting installers on board is key.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified