Symantec Proves Russian


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Dragonfly energy sector cyberattacks target ICS and SCADA across critical infrastructure, including the power grid and nuclear facilities, using spearphishing, watering-hole sites, supply-chain compromises, malware, and VPN exploits to gain operational access.

 

Key Points

Dragonfly APT campaigns target energy firms and ICS to gain grid access, risking manipulation and service disruption.

✅ Breaches leveraged spearphishing, watering-hole sites, and supply chains.

✅ Targeted ICS, SCADA, VPNs to pivot into operational networks.

✅ Aimed to enable power grid manipulation and potential outages.

 

An October, 2017 report by researchers at Symantec Corp., cited by the U.S. government, has linked recent US power grid cyber attacks to a group of hackers it had code-named "Dragonfly", and said it found evidence critical infrastructure facilities in Turkey and Switzerland also had been breached.

The Symantec researchers said an earlier wave of attacks by the same group starting in 2011 was used to gather intelligence on companies and their operational systems. The hackers then used that information for a more advanced wave of attacks targeting industrial control systems that, if disabled, leave millions without power or water.

U.S. intelligence officials have long been concerned about the security of the country’s electrical grid. The recent attacks, condemned by the U.S. government, striking almost simultaneously at multiple locations, are testing the government’s ability to coordinate an effective response among several private utilities, state and local officials, and industry regulators.

#google#

While the core of a nuclear generator is heavily protected, a sudden shutdown of the turbine can trigger safety systems. These safety devices are designed to disperse excess heat while the nuclear reaction is halted, but the safety systems themselves may be vulnerable to attack.

The operating systems at nuclear plants also tend to be legacy controls built decades ago and don’t have digital control systems that can be exploited by hackers.

“Since at least March 2016, Russian government cyber actors… targeted government entities and multiple U.S. critical infrastructure sectors, including the energy, nuclear, commercial facilities, water, aviation, and critical manufacturing sectors,” according to Thursday’s FBI and Department of Homeland Security report. The report did not say how successful the attacks were or specify the targets, but said that the Russian hackers “targeted small commercial facilities’ networks where they staged malware, conducted spearphishing, and gained remote access into energy sector networks.” At least one target of a string of infrastructure attacks last year was a nuclear power facility in Kansas.

Symantec doesn’t typically point fingers at particular nations in its research on cyberattacks, said Eric Chien, technical director of Symantec’s Security Technology and Response division, though he said his team doesn’t see anything it would disagree with in the new federal report. The government report appears to corroborate Symantec’s research, showing that the hackers had penetrated computers and accessed utility control rooms that would let them directly manipulate power systems, he says.

“There were really no more technical hurdles for them to do something like flip off the power,” he said.

And as for the group behind the attacks, Chien said it appears to be relatively dormant for now, but it has gone quiet in the past only to return with new hacks.

“We expect they’re sort of retooling now, and they likely will be back,”

 


 

In some cases, Dragonfly successfully broke into the core systems that control US and European energy companies, Symantec revealed.

“The energy sector has become an area of increased interest to cyber-attackers over the past two years,” Symantec said in its report.

“Most notably, disruptions to Ukraine’s power system in 2015 and 2016 were attributed to a cyberattack and led to power outages affecting hundreds of thousands of people. In recent months, there have also been media reports of attempted attacks on the electricity grids in some European countries, as well as reports of companies that manage nuclear facilities in the US being compromised by hackers.

“The Dragonfly group appears to be interested in both learning how energy facilities operate and also gaining access to operational systems themselves, to the extent that the group now potentially has the ability to sabotage or gain control of these systems should it decide to do so. Symantec customers are protected against the activities of the Dragonfly group.”

In recent weeks, senior US intelligence officials said that the Kremlin believes it can launch hacking operations against the West with impunity, including a cyber weapon that can disrupt power grids, according to assessments.

The DHS and FBI report further elaborated: “This campaign comprises two distinct categories of victims: staging and intended targets. The initial victims are peripheral organisations such as trusted third-party suppliers with less-secure networks, referred to as ‘staging targets’ throughout this alert.

“The threat actors used the staging targets’ networks as pivot points and malware repositories when targeting their final intended victims. National Cybersecurity and Communications Integration Center and FBI judge the ultimate objective of the actors is to compromise organisational networks, also referred to as the ‘intended target’.”

According to the US alert, hackers used a variety of attack methods, including spear-phishing emails, watering-hole domains, credential gathering, open source and network reconnaissance, host-based exploitation, and deliberate targeting of ICS infrastructure.

The attackers also targeted VPN software and used password cracking tools.

Once inside, the attackers downloaded tools from a remote server and then carried out a number of actions, including modifying key systems to store plaintext credentials in memory, and built web shells to gain command and control of targeted systems.

“This actors’ campaign has affected multiple organisations in the energy, nuclear, water, aviation, construction and critical manufacturing sectors, with hundreds of victims across the U.S. power grid confirmed,” the DHS said, before outlining a number of steps that IT managers in infrastructure organisations can take to cleanse their systems and defend against Russian hackers. he said.
 

 

Related News

Related News

Maine Governor calls for 100% renewable electricity

Maine Climate Council Act targets 80% renewable power by 2030 and 100% by 2050, slashing greenhouse gas emissions via clean electricity, grid procurement, long-term contracts, wind and hydro integration, resilience planning, and carbon sequestration.

 

Key Points

A Maine policy forming a Climate Council to reach 80% renewables in 2030 100% in 2050 and cut greenhouse gas emissions.

✅ 80% renewable electricity by 2030; 100% by 2050.

✅ 45% GHG cut by 2030; 80% by 2050.

✅ Utility procurement authority for clean capacity and energy.

 

The winds of change have shifted and are blowing Northward, as Maine’s Governor, Janet T. Mills, has put forth an act establishing a Climate Council to guide the state’s consumption to 80% renewable electricity in 2030 and 100% by 2050, echoing New York's Green New Deal ambitions underway.

The act, LR 2478 (pdf), also sets a goal of reducing greenhouse gas emissions by 45% in 2030 and 80% by 2050. The document will be submitted to the state Legislature for consideration.

The commission would have the authority to direct investor owned transmission and distribution utilities to run competitive procurement processes, and enter into long-term contracts for capacity resources, energy resources, renewable energy credit contracts, and participate in regional programs, as these all lead toward the clean electricity and emissions-reducing goals that mirror California's 100% mandate debates today.

The Climate Council would convene industry working groups, including Scientific and Technical, Transportation, Coastal and Marine, Energy, and Building & Infrastructure working groups, plus others as needed, where examples like New Zealand's electricity transition could inform discussions.

Membership within the council would include two members of the State Senate, two members of the House, a tribal representative, many department commissioners (Education, Defense, Transportation, etc.), multiple directors, business representatives, environmental non-profit members, and climate science and resilience representatives as well.

The council would update the Maine State Climate Plan every four years, and solicit input from the public and report out progress on its goals every two years, similar to planning underway in Minnesota's carbon-free plan framework. The first Climate Action Plan would be submitted to the legislature by December 1, 2020.

Specifically, the responsibilities of the Scientific and Technical Subcommittee were laid out. The group would be scheduled to meet at least every six months, beginning no later than October 1, 2019. The group would be tasked with reviewing existing scientific literature, including net-zero electricity pathways research, to use it as guidance, recognizing gaps in the state’s knowledge, and guiding outside experts to ascertain this knowledge.  The group would consider ocean acidification, and climate change effects on the state’s species; establish science-based sea-level rise projections for the state’s coastal regions by December 1, 2020; create a climate risk map for flooding and extreme weather events; and consider carbon sequestration via biomass growth.

The state’s largest power plants (above image), generate about 31% from gas, 28% from wood and 41% from hydro+wind. Already, the state has a very clean electricity profile, much like efforts to decarbonize Canada's power sector continue apace. Below, the U.S. Energy Information Administration (EIA) notes that 51% of electricity generation within the state comes from mostly wind+hydro, with a small touch from solar power. The state also gets 24% from wood and other biomass, which would lead some to argue that the state is already at 75% “renewable electricity”. The Governor’s document does reference wind power specifically as a renewable, however, no other specific electricity source. And there is much reference to forestry, agriculture, and logging – specifically noting carbon sequestration – but nothing regarding electricity.

The state’s final 25% of electricity mostly comes from natural gas, even as renewable electricity momentum builds across North America, with this author choosing to put “other” under the fossil percentage noted above.

 

Related News

View more

Canada’s Opportunity in the Global Electricity Market

Canada Clean Electricity Exports leverage hydroelectric power, energy storage, and transmission interconnections to meet rising IEA-forecast demand, support electrification, decarbonize grids, and attract green finance with stable policy and advanced technology.

 

Key Points

Canada's cross-border power sales from hydro and renewables, enabled by storage, transmission, and supportive policy.

✅ Hydro leads generation; expand transmission interties to the US

✅ Deploy storage to balance wind and solar variability

✅ Streamline regulation and green finance to scale exports

 

As global electricity demand continues to surge, Canada finds itself uniquely positioned to capitalize on this expanding market by choosing an electric, connected and clean pathway that scales with demand. With its vast natural resources, advanced technology, and stable political environment, Canada can play a crucial role in meeting the world’s energy needs while also advancing its own economic interests.

The International Energy Agency (IEA) has projected that global electricity demand will grow significantly over the next decade, driven by factors such as population growth, urbanization, and the increasing electrification of various sectors, including transportation and industry. This presents a golden opportunity for Canada to bolster its energy security as it boasts an abundance of renewable energy sources, particularly hydroelectric power. Currently, hydroelectricity accounts for about 60% of Canada’s total electricity generation, making it one of the largest producers of this clean energy source in the world.

The growing emphasis on renewable energy aligns perfectly with Canada’s strengths, with the Prairie Provinces emerging as leaders in new wind and solar capacity across the country. As countries worldwide strive to reduce their carbon footprints and transition to greener energy solutions, Canada’s clean energy resources can be harnessed not only to meet domestic needs but also to export electricity to neighboring countries and beyond. The U.S., for instance, is already a significant market for Canadian electricity, with interconnections facilitating the flow of power across borders. Expanding these connections and investing in infrastructure could further increase Canada’s electricity exports.

Moreover, advancements in energy storage technology present another avenue for Canada to enhance its role in the global electricity market. With the rise of intermittent energy sources like wind and solar, the ability to store excess electricity generated during peak production times becomes essential. Canada’s expertise in technology and innovation positions it well to develop and deploy energy storage solutions that can stabilize the grid through grid modernization projects and ensure a reliable supply of electricity.

Additionally, Canada’s commitment to reducing greenhouse gas emissions and combating climate change aligns with the global shift towards sustainable energy. By investing in renewable energy projects and supporting research and development, Canada can not only meet its climate targets, including zero-emissions electricity by 2035, but also attract international investment. Green financing initiatives are becoming increasingly popular, and Canada can leverage its reputation as a leader in environmental stewardship to tap into this growing market.

However, to fully realize these opportunities, Canada must address some key challenges. Regulatory hurdles, infrastructure limitations, and the need for a coordinated national energy strategy are critical issues that must be navigated. Streamlining regulations and fostering collaboration between federal and provincial governments will be essential in creating a conducive environment for investment in renewable energy projects.

Furthermore, public acceptance and community engagement are vital components of developing new energy projects, especially where solar power adoption lags and outreach is needed. Ensuring that local communities benefit from these initiatives—whether through job creation, economic investment, or shared revenues—will help garner support and facilitate smoother project implementation.

In addition to domestic efforts, Canada should also position itself as a global leader in energy diplomacy. By collaborating with other nations to share best practices, technologies, and resources, Canada can strengthen its influence in international energy discussions. Engaging in multilateral initiatives aimed at addressing energy poverty and promoting sustainable development will not only enhance Canada’s standing on the world stage but also open doors for Canadian companies to expand their reach.

In conclusion, as the global demand for electricity rises, Canada stands at a crossroads, with a tremendous opportunity to lead in the clean energy sector. By leveraging its natural resources, investing in technology, and fostering international partnerships, Canada can not only meet its energy needs but also pursue zero-emission electricity by 2035 while positioning itself as a key player in the global electricity market. The path forward will require strategic planning, investment, and collaboration, but the potential rewards are significant—both for Canada and the planet.

 

Related News

View more

U.S. Nonprofit Invests $250M in Electric Trucks for California Ports

California Ports Electric Truck Leasing accelerates zero-emission logistics, cutting diesel pollution at Los Angeles and Long Beach. A $250 million nonprofit plan funds heavy-duty EVs and charging infrastructure to improve air quality and community health.

 

Key Points

A nonprofit's $250M plan to lease EV trucks at LA/Long Beach ports to cut diesel emissions and improve air quality.

✅ $250M lease program for heavy-duty EVs at LA/Long Beach ports

✅ Cuts diesel emissions; improves air quality in nearby communities

✅ Requires robust charging infrastructure and OEM partnerships

 

In a significant move towards sustainable transportation, a prominent U.S. nonprofit has announced plans to invest $250 million in leasing electric trucks for operations at California ports. This initiative aims to reduce air pollution and promote greener logistics, responding to the urgent need for environmentally friendly solutions in the transportation sector.

Addressing Environmental Concerns

California’s ports, particularly the Port of Los Angeles and the Port of Long Beach, are among the busiest in the United States. However, they also contribute significantly to air pollution due to the heavy reliance on diesel trucks for cargo transport. These ports are essential for the economy, facilitating trade and commerce, but the environmental toll is considerable. Diesel emissions are linked to respiratory issues and other health problems in nearby communities, which often bear the brunt of pollution.

The nonprofit's investment in electric trucks is a critical step towards mitigating these environmental challenges. By transitioning to electric vehicles (EVs), the project aims to significantly cut emissions from port operations, contributing to California's broader goals of reducing greenhouse gas emissions and improving air quality.

The Scale of the Initiative

This ambitious initiative involves leasing a fleet of electric trucks that will operate within the ports and surrounding areas. The $250 million investment is expected to facilitate the acquisition of hundreds of electric vehicles, which will replace conventional diesel trucks used for cargo transport. This fleet will help demonstrate the viability and effectiveness of electric trucks in heavy-duty applications, paving the way for broader adoption.

The plan includes partnerships with established electric truck manufacturers, such as the Volvo VNR Electric platform, and local logistics companies to ensure seamless integration of these vehicles into existing operations. By collaborating with industry leaders, the initiative seeks to establish a model that can be replicated in other major logistics hubs across the country.

Economic and Community Benefits

The introduction of electric trucks is expected to yield multiple benefits, not only in terms of environmental impact but also economically. As these trucks begin operations, and as other fleets adopt electric mail trucks, they will create jobs within the green technology sector, from manufacturing to maintenance and charging infrastructure development. The project is anticipated to stimulate local economies, providing new opportunities in communities that have historically been disadvantaged by pollution.

Moreover, the initiative is poised to enhance public health. By reducing diesel emissions, the nonprofit aims to improve air quality for residents living near the ports, and emerging research links EV adoption to fewer asthma-related ER visits in local communities. This could lead to decreased healthcare costs associated with pollution-related illnesses, benefiting both the community and the healthcare system.

Challenges Ahead

While the initiative is promising, challenges remain. The successful implementation of electric trucks at scale requires a robust charging infrastructure capable of supporting the significant power needs of a large fleet. Additionally, the transition from diesel to electric vehicles involves significant upfront costs, even with leasing arrangements. Ensuring that logistics companies can manage these costs effectively will be crucial for the project's success.

Furthermore, electric trucks currently face limitations in terms of range and payload capacity compared to their diesel counterparts. Continued advancements in battery technology and infrastructure development will be necessary to fully realize the potential of electric vehicles in heavy-duty applications.

The Bigger Picture

This investment in electric trucks aligns with broader national and global efforts to combat climate change. As governments and organizations commit to reducing carbon emissions, initiatives like this one represent crucial steps toward achieving sustainability goals, and ports worldwide are also piloting complementary technologies like hydrogen-powered cranes to decarbonize cargo handling.

California has set ambitious targets for reducing greenhouse gas emissions, including a mandate for all new trucks to be zero-emission by 2045. The nonprofit’s investment not only supports these goals, amid ongoing debates over funding priorities in the state, but also serves as a pilot program that could inform future policies and investments in clean transportation.

The $250 million investment in electric trucks for California ports marks a significant milestone in the push for sustainable transportation solutions. By addressing the urgent need for cleaner logistics, this initiative stands to benefit the environment, public health, and the economy. As the project unfolds, it will be closely watched as a potential model for similar efforts across the country and beyond, with developments such as the all-electric berth at London Gateway illustrating parallel advances, highlighting the critical intersection of innovation, sustainability, and community well-being in the modern logistics landscape.

 

Related News

View more

New York Achieves Solar Energy Goals Ahead of Schedule

New York Solar Milestone accelerates renewable energy adoption, meeting targets early with 8,000 MW capacity powering 1.1 million homes, boosting green jobs, community solar, battery storage, and grid reliability under the CLCPA clean energy framework.

 

Key Points

It is New York achieving its solar goal early, powering 1.1M homes and advancing CLCPA renewable targets.

✅ 8,000 MW installed, enough to power about 1.1M homes

✅ CLCPA targets: 70 percent renewables by 2030

✅ Community solar, storage, and green jobs scaling statewide

 

In a remarkable display of commitment to renewable energy, New York has achieved its solar energy targets a year ahead of schedule, marking a significant milestone in the state's clean energy journey, and aligning with a national trend where renewables reached a record 28% in April nationwide. With the addition of solar power capacity capable of powering over a million homes, New York is not just setting the pace for solar adoption but is also establishing itself as a leader in the fight against climate change.

A Commitment to Renewable Energy

New York’s ambitious clean energy agenda is part of a broader effort to reduce greenhouse gas emissions and transition to sustainable energy sources. The state's goal, established under the Climate Leadership and Community Protection Act (CLCPA), aims for 70% of its electricity to come from renewable sources by 2030. With the recent advancements in solar energy, including contracts for 23 renewable projects totaling 2.3 GW, New York is well on its way to achieving that goal, demonstrating that aggressive policy frameworks can lead to tangible results.

The Numbers Speak for Themselves

As of now, New York has successfully installed more than 8,000 megawatts (MW) of solar energy capacity, supported by large-scale energy projects underway across New York that are expanding the grid. This achievement translates to enough electricity to power approximately 1.1 million homes, showcasing the state's investment in harnessing the sun’s power. The rapid expansion of solar installations reflects both increasing consumer interest and supportive policies that facilitate growth in the renewable energy sector.

Economic Benefits and Job Creation

The surge in solar energy capacity has not only environmental implications but also significant economic benefits. The solar industry in New York has become a substantial job creator, employing tens of thousands of individuals across various sectors. From manufacturing solar panels to installation and maintenance, the job opportunities associated with this growth are diverse and vital for local economies.

Moreover, as solar installations increase, the state benefits from reduced electricity costs over time. By investing in renewable energy, New York is paving the way for a more resilient and sustainable energy future, while simultaneously providing economic opportunities for its residents.

Community Engagement and Accessibility

New York's solar success is also tied to its efforts to engage communities and increase access to renewable energy. Initiatives such as community solar programs allow residents who may not have the means or space to install solar panels on their homes to benefit from solar energy. These programs provide an inclusive approach, ensuring that low-income households and underserved communities have access to clean energy solutions.

The state has also implemented various incentives to encourage solar adoption, including tax credits, rebates, and financing options. These efforts not only promote environmental sustainability but also aim to make solar energy more accessible to all New Yorkers, furthering the commitment to equity in the energy transition.

Innovations and Future Prospects

New York's solar achievements are complemented by ongoing innovations in technology and energy storage solutions. The integration of battery storage systems is becoming increasingly important, reflecting growth in solar and storage in the coming years, and allowing for the capture and storage of solar energy for use during non-sunny periods. This technology enhances grid reliability and supports the state’s goal of transitioning to a fully sustainable energy system.

Looking ahead, New York aims to continue this momentum. The state is exploring additional strategies to increase renewable energy capacity, including plans to investigate sites for offshore wind across its coastline, and other clean energy technologies. By diversifying its renewable energy portfolio, New York is positioning itself to meet and even exceed future energy demands while reducing its carbon footprint.

A Model for Other States

New York’s success story serves as a model for other states aiming to enhance their renewable energy capabilities, with its approval of the biggest offshore wind farm underscoring that leadership. The combination of strong policy frameworks, community engagement, and technological innovation can inspire similar initiatives nationwide. As more states look to address climate change, New York’s proactive approach can provide valuable insights into effective strategies for solar energy deployment.

New York’s achievement of its solar energy goals a year ahead of schedule is a testament to the state's unwavering commitment to sustainability and renewable energy. With the capacity to power over a million homes, this milestone not only signifies progress in clean energy adoption but also highlights the potential for economic growth and community engagement. As New York continues on its path toward a greener future, and stays on the road to 100% renewables by mid-century, it sets a powerful example for others to follow, proving that ambitious renewable energy goals can indeed become a reality.

 

Related News

View more

Dewa in China to woo renewable energy firms

Dewa-China Renewable Energy Partnership advances solar, clean energy, smart grid, 5G, cloud, and Big Data, linking Dewa with Hanergy and Huawei for R&D, smart meters, demand management, and resilient network infrastructure.

 

Key Points

A Dewa collaboration with Hanergy and Huawei to co-develop solar, smart grid, 5G, cloud, and resilient utility networks.

✅ MoU expands solar PV and distributed generation in Dubai and China

✅ Smart grid R&D: smart meters, demand response, self-healing networks

✅ 5G, cloud, and Big Data enable secure, scalable smart city services

 

A high-level delegation from Dubai Electricity and Water Authority (Dewa) recently visited China in bid to build closer ties with Chinese renewable and clean energy and smart services and smart grid companies, amid broader power grid modernization in Asia trends.

The team led by the managing director and CEO Saeed Mohammed Al Tayer visited the headquarters of Hanergy Holding Group, one of the largest international companies in alternative and renewable energy, in Beijing.

The visit complements the co-operation between Dewa and Hanergy after the signing MoU between the two sides last May, said a statement from Dewa.

The two parties focused on renewable and clean energy and its development, including efforts to integrate solar into the grid through advanced programs, and enhancing opportunities for joint investment.

Al Tayer also visited the Exhibition Hall and Exhibition Centre of the Hanergy Clean Energy Exhibition spread over a 7,000-sq-m area at the Beijing Olympic Park.

He discussed solar power technologies and applications, which included integrated photovoltaic panels and their distribution on the roofs of industrial and residential buildings, residential and mobile power systems, micro-grid installations in remote regions, solar-powered vehicles, and various elements of the exhibition.

Al Tayer and the accompanying delegation later visited the Beijing R&D Centre, which is one of Huaweis largest research institutes, known for Huawei smart grid initiatives across global markets, that employs over 12,000 people. The centre covers the latest pre-5G solutions, Cloud, Big Data, as well as vertical solutions for a smart and safe city.

"The visit is part of a joint venture with Huawei, which includes R&D projects to develop smart network infrastructures and various mechanisms and technologies, aligned with recent U.S. grid improvement funding initiatives, such as smart meters for electricity and water services, energy demand management, and self-recovery mechanisms from errors and disasters," he added.

 

Related News

View more

Why power companies should be investing in carbon-free electricity

Noncarbon Electricity Investment Strategy helps utilities hedge policy uncertainty, carbon tax risks, and emissions limits by scaling wind, solar, and CCS, avoiding stranded assets while balancing costs, reliability, and climate policy over decades.

 

Key Points

A strategy for utilities to invest 20-30 percent of capacity in low carbon sources to hedge emissions and carbon risks.

✅ Hedges future carbon tax and emissions limits

✅ Targets 20-30 percent of new generation from clean sources

✅ Reduces stranded asset risk and builds renewables capacity

 

When utility executives make decisions about building new power plants, a lot rides on their choices. Depending on their size and type, new generating facilities cost hundreds of millions or even billions of dollars. They typically will run for 40 or more years — 10 U.S. presidential terms. Much can change during that time.

Today one of the biggest dilemmas that regulators and electricity industry planners face is predicting how strict future limits on greenhouse gas emissions will be. Future policies will affect the profitability of today’s investments. For example, if the United States adopts a carbon tax 10 years from now, it could make power plants that burn fossil fuels less profitable, or even insolvent.

These investment choices also affect consumers. In South Carolina, utilities were allowed to charge their customers higher rates to cover construction costs for two new nuclear reactors, which have now been abandoned because of construction delays and weak electricity demand. Looking forward, if utilities are reliant on coal plants instead of solar and wind, it will be much harder and more expensive for them to meet future emissions targets, even as New Zealand's electrification push accelerates abroad. They will pass the costs of complying with these targets on to customers in the form of higher electricity prices.

With so much uncertainty about future policy, how much should we be investing in noncarbon electricity generation in the next decade? In a recent study, we proposed optimal near-term electricity investment strategies to hedge against risks and manage inherent uncertainties about the future.

We found that for a broad range of assumptions, 20 to 30 percent of new generation in the coming decade should be from noncarbon sources such as wind and solar energy across markets. For most U.S. electricity providers, this strategy would mean increasing their investments in noncarbon power sources, regardless of the current administration’s position on climate change.

Many noncarbon electricity sources — including wind, solar, nuclear power and coal or natural gas with carbon capture and storage — are more expensive than conventional coal and natural gas plants. Even wind power, which is often mentioned as competitive, is actually more costly when accounting for costs such as backup generation and energy storage to ensure that power is available when wind output is low.

Over the past decade, federal tax incentives and state policies designed to promote clean electricity sources spurred many utilities to invest in noncarbon sources. Now the Trump administration is shifting federal policy back toward promoting fossil fuels. But it can still make economic sense for power companies to invest in more expensive noncarbon technologies if we consider the potential impact of future policies.

How much should companies invest to hedge against the possibility of future greenhouse gas limits? On one hand, if they invest too much in noncarbon generation and the federal government adopts only weak climate policies throughout the investment period, utilities will overspend on expensive energy sources.

On the other hand, if they invest too little in noncarbon generation and future administrations adopt stringent emissions targets, utilities will have to replace high-carbon energy sources with cleaner substitutes, which could be extremely costly.

 

Economic modeling with uncertainty

We conducted a quantitative analysis to determine how to balance these two concerns and find an optimal investment strategy given uncertainty about future emissions limits. This is a core choice that power companies have to make when they decide what kinds of plants to build.

First we developed a computational model that represents the sectors of the U.S. economy, including electric power. Then we embedded it within a computer program that evaluates decisions in the electric power sector under policy uncertainty.

The model explores different electric power investment decisions under a wide range of future emissions limits with different probabilities of being implemented. For each decision/policy combination, it computes and compares economy-wide costs over two investment periods extending from 2015 to 2030.

We looked at costs across the economy because emissions policies impose costs on consumers and producers as well as power companies. For example, they may lead to higher electricity, fuel or product prices. By seeking to minimize economy-wide costs, our model identifies the investment decision that produces the greatest overall benefits to society.

 

More investments in clean generation make economic sense

We found that for a broad range of assumptions, the optimal investment strategy for the coming decade is for 20 to 30 percent of new generation to be from noncarbon sources. Our model identified this as the best level because it best positions the United States to meet a wide range of possible future policies at a low cost to the economy.

From 2005-2015, we calculated that about 19 percent of the new generation that came online was from noncarbon sources. Our findings indicate that power companies should put a larger share of their money into noncarbon investments in the coming decade.

While increasing noncarbon investments from a 19 percent share to a 20 to 30 percent share of new generation may seem like a modest change, it actually requires a considerable increase in noncarbon investment dollars. This is especially true since power companies will need to replace dozens of aging coal-fired power plants that are expected to be retired.

In general, society will bear greater costs if power companies underinvest in noncarbon technologies than if they overinvest. If utilities build too much noncarbon generation but end up not needing it to meet emissions limits, they can and will still use it fully. Sunshine and wind are free, so generators can produce electricity from these sources with low operating costs.

In contrast, if the United States adopts strict emissions limits within a decade or two, they could prevent carbon-intensive generation built today from being used. Those plants would become “stranded assets” — investments that are obsolete far earlier than expected, and are a drain on the economy.

Investing early in noncarbon technologies has another benefit: It helps develop the capacity and infrastructure needed to quickly expand noncarbon generation. This would allow energy companies to comply with future emissions policies at lower costs.

 

Seeing beyond one president

The Trump administration is working to roll back Obama-era climate policies such as the Clean Power Plan, and to implement policies that favor fossil generation. But these initiatives should alter the optimal strategy that we have proposed for power companies only if corporate leaders expect Trump’s policies to persist over the 40 years or more that these new generating plants can be expected to run.

Energy executives would need to be extremely confident that, despite investor pressure from shareholders, the United States will adopt only weak climate policies, or none at all, into future decades in order to see cutting investments in noncarbon generation as an optimal near-term strategy. Instead, they may well expect that the United States will eventually rejoin worldwide efforts to slow the pace of climate change and adopt strict emissions limits.

In that case, they should allocate their investments so that at least 20 to 30 percent of new generation over the next decade comes from noncarbon sources. Sustaining and increasing noncarbon investments in the coming decade is not just good for the environment — it’s also a smart business strategy that is good for the economy.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified