Symantec Proves Russian


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today

Dragonfly energy sector cyberattacks target ICS and SCADA across critical infrastructure, including the power grid and nuclear facilities, using spearphishing, watering-hole sites, supply-chain compromises, malware, and VPN exploits to gain operational access.

 

Key Points

Dragonfly APT campaigns target energy firms and ICS to gain grid access, risking manipulation and service disruption.

✅ Breaches leveraged spearphishing, watering-hole sites, and supply chains.

✅ Targeted ICS, SCADA, VPNs to pivot into operational networks.

✅ Aimed to enable power grid manipulation and potential outages.

 

An October, 2017 report by researchers at Symantec Corp., cited by the U.S. government, has linked recent US power grid cyber attacks to a group of hackers it had code-named "Dragonfly", and said it found evidence critical infrastructure facilities in Turkey and Switzerland also had been breached.

The Symantec researchers said an earlier wave of attacks by the same group starting in 2011 was used to gather intelligence on companies and their operational systems. The hackers then used that information for a more advanced wave of attacks targeting industrial control systems that, if disabled, leave millions without power or water.

U.S. intelligence officials have long been concerned about the security of the country’s electrical grid. The recent attacks, condemned by the U.S. government, striking almost simultaneously at multiple locations, are testing the government’s ability to coordinate an effective response among several private utilities, state and local officials, and industry regulators.

#google#

While the core of a nuclear generator is heavily protected, a sudden shutdown of the turbine can trigger safety systems. These safety devices are designed to disperse excess heat while the nuclear reaction is halted, but the safety systems themselves may be vulnerable to attack.

The operating systems at nuclear plants also tend to be legacy controls built decades ago and don’t have digital control systems that can be exploited by hackers.

“Since at least March 2016, Russian government cyber actors… targeted government entities and multiple U.S. critical infrastructure sectors, including the energy, nuclear, commercial facilities, water, aviation, and critical manufacturing sectors,” according to Thursday’s FBI and Department of Homeland Security report. The report did not say how successful the attacks were or specify the targets, but said that the Russian hackers “targeted small commercial facilities’ networks where they staged malware, conducted spearphishing, and gained remote access into energy sector networks.” At least one target of a string of infrastructure attacks last year was a nuclear power facility in Kansas.

Symantec doesn’t typically point fingers at particular nations in its research on cyberattacks, said Eric Chien, technical director of Symantec’s Security Technology and Response division, though he said his team doesn’t see anything it would disagree with in the new federal report. The government report appears to corroborate Symantec’s research, showing that the hackers had penetrated computers and accessed utility control rooms that would let them directly manipulate power systems, he says.

“There were really no more technical hurdles for them to do something like flip off the power,” he said.

And as for the group behind the attacks, Chien said it appears to be relatively dormant for now, but it has gone quiet in the past only to return with new hacks.

“We expect they’re sort of retooling now, and they likely will be back,”

 


 

In some cases, Dragonfly successfully broke into the core systems that control US and European energy companies, Symantec revealed.

“The energy sector has become an area of increased interest to cyber-attackers over the past two years,” Symantec said in its report.

“Most notably, disruptions to Ukraine’s power system in 2015 and 2016 were attributed to a cyberattack and led to power outages affecting hundreds of thousands of people. In recent months, there have also been media reports of attempted attacks on the electricity grids in some European countries, as well as reports of companies that manage nuclear facilities in the US being compromised by hackers.

“The Dragonfly group appears to be interested in both learning how energy facilities operate and also gaining access to operational systems themselves, to the extent that the group now potentially has the ability to sabotage or gain control of these systems should it decide to do so. Symantec customers are protected against the activities of the Dragonfly group.”

In recent weeks, senior US intelligence officials said that the Kremlin believes it can launch hacking operations against the West with impunity, including a cyber weapon that can disrupt power grids, according to assessments.

The DHS and FBI report further elaborated: “This campaign comprises two distinct categories of victims: staging and intended targets. The initial victims are peripheral organisations such as trusted third-party suppliers with less-secure networks, referred to as ‘staging targets’ throughout this alert.

“The threat actors used the staging targets’ networks as pivot points and malware repositories when targeting their final intended victims. National Cybersecurity and Communications Integration Center and FBI judge the ultimate objective of the actors is to compromise organisational networks, also referred to as the ‘intended target’.”

According to the US alert, hackers used a variety of attack methods, including spear-phishing emails, watering-hole domains, credential gathering, open source and network reconnaissance, host-based exploitation, and deliberate targeting of ICS infrastructure.

The attackers also targeted VPN software and used password cracking tools.

Once inside, the attackers downloaded tools from a remote server and then carried out a number of actions, including modifying key systems to store plaintext credentials in memory, and built web shells to gain command and control of targeted systems.

“This actors’ campaign has affected multiple organisations in the energy, nuclear, water, aviation, construction and critical manufacturing sectors, with hundreds of victims across the U.S. power grid confirmed,” the DHS said, before outlining a number of steps that IT managers in infrastructure organisations can take to cleanse their systems and defend against Russian hackers. he said.
 

 

Related News

Related News

Tesla’s Powerwall as the beating heart of your home

GMP Tesla Powerwall Program replaces utility meters with smart battery storage, enabling virtual power plant services, demand response, and resilient homes, integrating solar readiness, EV charging support, and smart grid controls across Vermont households.

 

Key Points

Green Mountain Power uses Tesla Powerwalls as smart meters, creating a VPP for demand response and home backup.

✅ $30 monthly for 10 years or $3,000 upfront for two units

✅ Utility controls batteries for peak shaving and demand response

✅ Enables backup power, solar readiness, and EV charging support

 

There are more than 100 million single-family homes in the United States of America. If each of these homes were to have two 13.5 kWh Tesla Powerwalls, that would total 2.7 Terawatt-hours worth of electricity stored. Prior research has suggested that this volume of energy storage could get us halfway to the 5.4 TWh of storage needed to let the nation get 80% of its electricity from solar and wind, as states like California increasingly turn to grid batteries to support the transition.

Vermont utility Green Mountain Power (GMP) seeks to remove standard electric utility metering hardware and replace it with the equipment inside of a Tesla Powerwall, as part of a broader digital grid evolution underway. Mary Powell, President and CEO of Green Mountain Power, says, “We have a vision of a battery system in every single home” and they’ve got a patent pending software solution to make it happen.

The Resilient Home program will install two standard Tesla Powerwalls each in 250 homes in GMP’s service area. The homeowner will pay either $30 a month for ten years ($3,600), or $3,000 up front. At the end of the ten year period, payments end, but the unit can stay in the home for an additional five years – or as long as it has a usable life.

A single Powerwall costs approximately $6,800, making this a major discount.

GMP notes that the home must have reliable internet access to allow GMP and Tesla to communicate with the Powerwall. GMP will control the functions of the Powerwall, effectively operating a virtual power plant across participating homes, expanding the scope of programs like those that saved the state’s ratepayers more than $500,000 during peak demand events last year. The utility specifically notes that customers agree to share stored energy with GMP on several peak demand days each year.

The hardware can be designed to interact with current backup generators during power outages, or emerging fuel cell solutions that maintain battery charge longer during extended outages, however, the units will not charge from the generator. As noted the utility will be making use of the hardware during normal operating times, however, during a power outage the private home owner will be able to use the electricity to back up both their house and top off their car.

The utility told pv magazine USA that the Powerwalls are standard from the factory, with GMP’s patent pending software solution being the special sauce (has a hint of recent UL certifications). GMP said the program will also get home owners “adoption ready” for solar power, including microgrid energy storage markets, and other smart devices.

Sonnen’s ecoLinx is already directly interacting with a home’s electrical panel (literally throwing wifi enabled circuit breakers). Now with Tesla Powerwalls being used to replace utility meters, we see one further layer of integration that will lead to design changes that will drive residential solar toward $1/W. Electric utilities are also experimenting with controlling module level electronics and smart solar inverters in 100% residential penetration situations. And of course, considering that California is requiring solar – and probably storage in the future – in all new homes, we should expect to see further experimentation in this model. Off grid solar inverter manufacturers already include electric panels with their offerings.

If we add in the electric car, and have vehicle-to-grid abilities, we start to see a very strong amount of electricity generation and energy storage, helping to keep the lights on during grid stress, potentially happening in more than 100 million residential power plants. Resilient homes indeed.

 

Related News

View more

'Electricity out of essentially nothing': Invention creates power from falling snow

Snow-powered nanogenerator harvests static electricity from falling snow using a silicone triboelectric design, enabling energy harvesting, solar panel support during snowfall, and dual-use sensing for weather monitoring and wearable winter sports analytics.

 

Key Points

A silicone triboelectric device that harvests snowDcharge to generate power and enable sensing.

✅ Triboelectric silicone layer captures charge from falling snow.

✅ Integrates with solar arrays to maintain power during snowfall.

✅ Functions as weather and motion sensor for winter sports.

 

Scientists from University of California, Los Angeles and McMaster University have invented a nanogenerator that creates electricity from falling snow.

Most Canadians have already seen a mini-version of this, McMaster Prof. Ravi Selvaganapathy told CTV’s Your Morning. “We find that we often get shocked in the winter when it’s dry when we come in into contact with a conductive surface like a doorknob.”

The thin device works by harnessing static electricity: positively-charged, falling snow collides with the negatively-charged silicone device, which produces a charge that’s captured by an electrode.

“You separate the charges and create electricity out of essentially nothing,” Richard Kaner, who holds UCLA’s Dr. Myung Ki Hong Endowed Chair in Materials Innovation and whose lab has explored turning waste into graphene, said in a press release.

“The device can work in remote areas because it provides its own power and does not need batteries or reliance on home storage systems such as the Tesla Powerwall, which store energy for later use,” he said, explaining that the device was 3D printed, flexible and inexpensive to make because of the low cost of silicone.

“It’s also going to be useful in places like Canada, where we get a lot of snow and are pursuing a net-zero grid by 2050 to cut emissions. We can extract energy from the environment,” Selvaganapathy added.

The team, which also included scientists from the University of Toronto, published their findings in Nano Energy journal last year, but a few weeks ago, they revealed the device’s more practical uses.

About 30 per cent of the Earth’s surface is covered by snow each winter, which can significantly limit the energy generated by solar panels, including rooftop solar grids in cold climates.

So the team thought: why not simply harness electricity from the snow whenever the solar panels were covered?

Integrating their device into solar panel arrays could produce a continuous power supply whenever it snows, potentially as part of emerging virtual power plants that aggregate distributed resources, study co-author and UCLA assistant researcher Maher El-Kady explained.

The device also serves as a weather-monitoring station by recording how much snow is falling and from where; as well as the direction and speed of the wind.

The team said they also want to incorporate their device into weather sensors to help them better acquire and transmit electronic signals, supporting initiatives to use AI for energy savings across local grids. They said several Toronto-based companies -- which they couldn’t name -- have expressed interest in partnering with them.

Selvaganapathy said the device would hop on the trend of “sensors being incorporated into what we wear, into our homes and even to detect electricity theft in some markets in order to monitor a lot of the things that are important to us”

But the device’s arguably larger potential use is being integrated into technology to monitor athletes and their performances during winter sports, such as hiking, skiing and cross-country skiing.

Up to now, the movement patterns used during cross-country skiing couldn’t be detected by a smart watch, but this device may be able to.

Scientists such as Kaner believe the technology could usher in a new era of self-monitoring devices to assess an athlete’s performance while they’re running, walking or jumping.

The device is simply a proof of concept and the next step would be figuring out how to generate more electricity and integrate it into all of these potential devices, Selvaganapathy said.

 

Related News

View more

Hydro One wants to spend another $6-million to redesign bills

Hydro One Bill Redesign Spending sparks debate over Ontario Energy Board regulation, rate applications, privatization, and digital billing upgrades, as surveys cite confusing invoices under the Fair Hydro Plan for residential, commercial, and industrial customers.

 

Key Points

$15M project to simplify Hydro One bills, upgrade systems, and improve digital billing for commercial customers.

✅ $9M spent; $6M proposed for C&I and large-account changes.

✅ OEB to rule amid rate application and privatization scrutiny.

✅ Survey: 40% of customers struggled to understand bills.

 

Ontario's largest and recently privatized electricity utility has spent $9-million to redesign bills and is proposing to spend an additional $6-million on the project.

Hydro One has come under fire for spending since the Liberal government sold more than half of the company, notably for its CEO's $4.5-million pay.

Now, the NDP is raising concerns with the $15-million bill redesign expense contained in a rate application from the formerly public utility.

"I don't think the problem we face is a bill that people can't understand, I think the problem is rates that are too high," said energy critic Peter Tabuns. "Fifteen million dollars seems awfully expensive to me."

But Hydro One says a 2016 survey of its customers indicated about 40 per cent had trouble understanding their bills.

Ferio Pugliese, the company's executive vice-president of customer care and corporate affairs, said the redesign was aimed at giving customers a simpler bill.

"The new format is a format that when tested and put in front of our customers has been designed to give customers the four or five salient items they want to see on their bill," he said.

About $9-million has already gone into redesigning bills, mostly for residential customers, Pugliese said. Cosmetic changes to bills account for about 25 per cent of the cost, with the rest of the money going toward updating information systems and improving digital billing platforms, he said.

The additional $6-million Hydro One is looking to spend would go toward bill changes mostly for its commercial, industrial and large distribution account customers.

Energy Minister Glenn Thibeault noted in a statement that the Ontario Energy Board has yet to decide on the expense, but he suggested he sees the bill redesign as necessary alongside legislation to lower electricity rates introduced by the province.

"With Ontarians wanting clearer bills that are easier to understand, Hydro One's bill redesign project is a necessary improvement that will help customers," he wrote.

"Reductions from the Fair Hydro Plan (the government's 25 per cent cut to bills last year) are important information for both households and businesses, and it's our job to provide clear, helpful answers whenever possible."

The OEB recently ordered Hydro One to lower a rate increase it had been seeking for this year to 0.2 per cent down from 4.8 per cent.

The regulator also rejected a Hydro One proposal to give shareholders all of the tax savings generated by the IPO in 2015 when the Liberal government first began partially privatizing the utility. The OEB instead mandated shareholders receive 62 per cent of the savings while ratepayers receive the remaining 38 per cent.

 

 

Related News

View more

New York Achieves Solar Energy Goals Ahead of Schedule

New York Solar Milestone accelerates renewable energy adoption, meeting targets early with 8,000 MW capacity powering 1.1 million homes, boosting green jobs, community solar, battery storage, and grid reliability under the CLCPA clean energy framework.

 

Key Points

It is New York achieving its solar goal early, powering 1.1M homes and advancing CLCPA renewable targets.

✅ 8,000 MW installed, enough to power about 1.1M homes

✅ CLCPA targets: 70 percent renewables by 2030

✅ Community solar, storage, and green jobs scaling statewide

 

In a remarkable display of commitment to renewable energy, New York has achieved its solar energy targets a year ahead of schedule, marking a significant milestone in the state's clean energy journey, and aligning with a national trend where renewables reached a record 28% in April nationwide. With the addition of solar power capacity capable of powering over a million homes, New York is not just setting the pace for solar adoption but is also establishing itself as a leader in the fight against climate change.

A Commitment to Renewable Energy

New York’s ambitious clean energy agenda is part of a broader effort to reduce greenhouse gas emissions and transition to sustainable energy sources. The state's goal, established under the Climate Leadership and Community Protection Act (CLCPA), aims for 70% of its electricity to come from renewable sources by 2030. With the recent advancements in solar energy, including contracts for 23 renewable projects totaling 2.3 GW, New York is well on its way to achieving that goal, demonstrating that aggressive policy frameworks can lead to tangible results.

The Numbers Speak for Themselves

As of now, New York has successfully installed more than 8,000 megawatts (MW) of solar energy capacity, supported by large-scale energy projects underway across New York that are expanding the grid. This achievement translates to enough electricity to power approximately 1.1 million homes, showcasing the state's investment in harnessing the sun’s power. The rapid expansion of solar installations reflects both increasing consumer interest and supportive policies that facilitate growth in the renewable energy sector.

Economic Benefits and Job Creation

The surge in solar energy capacity has not only environmental implications but also significant economic benefits. The solar industry in New York has become a substantial job creator, employing tens of thousands of individuals across various sectors. From manufacturing solar panels to installation and maintenance, the job opportunities associated with this growth are diverse and vital for local economies.

Moreover, as solar installations increase, the state benefits from reduced electricity costs over time. By investing in renewable energy, New York is paving the way for a more resilient and sustainable energy future, while simultaneously providing economic opportunities for its residents.

Community Engagement and Accessibility

New York's solar success is also tied to its efforts to engage communities and increase access to renewable energy. Initiatives such as community solar programs allow residents who may not have the means or space to install solar panels on their homes to benefit from solar energy. These programs provide an inclusive approach, ensuring that low-income households and underserved communities have access to clean energy solutions.

The state has also implemented various incentives to encourage solar adoption, including tax credits, rebates, and financing options. These efforts not only promote environmental sustainability but also aim to make solar energy more accessible to all New Yorkers, furthering the commitment to equity in the energy transition.

Innovations and Future Prospects

New York's solar achievements are complemented by ongoing innovations in technology and energy storage solutions. The integration of battery storage systems is becoming increasingly important, reflecting growth in solar and storage in the coming years, and allowing for the capture and storage of solar energy for use during non-sunny periods. This technology enhances grid reliability and supports the state’s goal of transitioning to a fully sustainable energy system.

Looking ahead, New York aims to continue this momentum. The state is exploring additional strategies to increase renewable energy capacity, including plans to investigate sites for offshore wind across its coastline, and other clean energy technologies. By diversifying its renewable energy portfolio, New York is positioning itself to meet and even exceed future energy demands while reducing its carbon footprint.

A Model for Other States

New York’s success story serves as a model for other states aiming to enhance their renewable energy capabilities, with its approval of the biggest offshore wind farm underscoring that leadership. The combination of strong policy frameworks, community engagement, and technological innovation can inspire similar initiatives nationwide. As more states look to address climate change, New York’s proactive approach can provide valuable insights into effective strategies for solar energy deployment.

New York’s achievement of its solar energy goals a year ahead of schedule is a testament to the state's unwavering commitment to sustainability and renewable energy. With the capacity to power over a million homes, this milestone not only signifies progress in clean energy adoption but also highlights the potential for economic growth and community engagement. As New York continues on its path toward a greener future, and stays on the road to 100% renewables by mid-century, it sets a powerful example for others to follow, proving that ambitious renewable energy goals can indeed become a reality.

 

Related News

View more

Maryland opens solar-power subscriptions to all

Maryland Community Solar Program enables renters and condo residents to subscribe to offsite solar, earn utility bill discounts, and support projects across BGE, Pepco, Delmarva, and Potomac Edison territories, with low to moderate income participation.

 

Key Points

A pilot allowing residents to subscribe to offsite solar and get bill credits and savings, regardless of home ownership.

✅ 5-10 percent discounts on standard utility rates

✅ Available in BGE, Pepco, Delmarva, Potomac Edison areas

✅ Includes low and moderate income subscriber carve-outs

 

Maryland has launched a pilot program that will allow anyone to power their home with solar panels — even if they are renters or condo-dwellers, or live in the shade of trees.

Solar developers are looking for hundreds of residents to subscribe to six power projects planned across the state, including recently announced sites in Owings Mills and Westminster. Their offers include discounts on standard electric rates.

The developers need a critical mass of customers who are willing to buy the projects’ electricity before they can move forward with plans to install solar panels on about 80 acres. Under state rules, the customer base must include low- and moderate-income residents, many of whom face energy insecurity challenges.

The idea of the community solar program is to tap into the pool of residential customers who don’t want to get their energy from fossil fuels but currently have no way to switch to a cleaner alternative.

That could significantly expand demand for solar projects, said Gary Skulnik, a longtime Maryland solar entrepreneur.

Skulnik is now CEO of Neighborhood Sun, a company recruiting customers for the six projects.

“You’re signing up for a project that won’t exist unless we get enough subscribers,” Skulnik said. “You’re actually getting a new project built.”

It could also stoke simmering conflicts over what sort of land is appropriate for solar development.

The General Assembly authorized the community solar pilot program in 2015. But not-in-my-backyard opposition and concerns about the loss of agricultural land have slowed progress.

Community solar could force more communities to confront those sorts of clashes — and to consider more carefully where solar farms belong.

“We are going to see a lot more solar development in the state,” said Megan Billingsley, assistant director of the Valleys Planning Council in Baltimore County. “One of the things we haven’t seen is any direction or thoughtful planning on where we want to see solar development.”

The General Assembly authorized about 200 megawatts in community solar projects — enough to power about 40,000 households — over three years.

Customers can sign up for projects built within the territory of their electric utility. About half of that solar energy load has been allotted for the region served by Baltimore Gas and Electric Co.

By subscribing to a community solar project, customers won’t actually be getting their electricity from its photovoltaic panels. But their payments will help finance it and, in some cases, complementary battery storage solutions as well.

The Public Service Commission has approved six projects so far: Two in BGE territory, in Owings Mills and near Westminster; one in Pepco territory, in Prince George’s County; two in Delmarva Power and Light territory, in Caroline and Worcester counties; and one in Potomac Edison territory, in Washington County where planning officials have developed proposed recommendations.

More projects are expected to win approval in the next two years.

But none of them can be built unless they catch on with electricity customers. The developers are looking for 2,600 customers statewide.

Skulnik would not say how many customers an individual project needs to get the green light. But he said that the Prince George’s proposal, a 25-acre array atop a Fort Washington landfill is the closest, with about 100 subscribers so far.

The terms of subscription vary by project, but discounts range from 5 percent to 10 percent off utility rates. Customers are asked to commit to the projects for as long as 25 years. (They can break the contracts with advance notice, or if they move to a different utility service area.)

Maryland joins more than a dozen states in advancing community solar projects, as scientists work to improve solar and wind power technology.

Corey Ramsden is an executive for Solar United Neighbors, a nonprofit that promotes the solar industry in eight states and the District of Columbia.

He said potential customers are often confused by the mechanics of subscribing to community solar, or hesitant to commit for years or even decades. The industry is working to answer questions and get people more comfortable with the idea, he said.

But it has been a challenge across the country, including debates over New England grid upgrades, and in Maryland. Advocates for solar say there is broad support for renewable energy generation. The state has set goals to increase green energy use and reduce greenhouse gas emissions.

Still, many Marylanders don’t welcome the reality when a project attempts to move in.

Rural land is often the most desirable for solar developers, because it requires the least effort to prepare for an array of panels. But community groups in those areas have asked whether land historically used for farming is right for a more industrial use.

“People are very much in favor of going for a lot more renewables, for whatever reason,” said Dru Schmidt-Perkins, the former president of the land conservation group 1,000 Friends of Maryland. “That support comes to a screeching halt when land that is perceived to be valuable for other things, whether a historic view­shed or farming, suddenly becomes a target of a location for this new project.”

Such concerns have at least temporarily stalled the momentum for solar across the state. Anne Arundel County had at least five small community solar projects in the pipeline in December when officials decided to pause development for eight months. Baltimore County officials imposed a four-month moratorium on solar development before passing an ordinance last year to limit the size and number of solar farms.

Billingsley said the Valley Plannings Council, which advocates for historic and rural areas in western Baltimore County, is frustrated that there hasn’t been more discussion about which areas the county should target for solar development — and which it shouldn’t.

She said she fears that pressure to expand solar farms across rural lands is only going to grow as community solar projects launch, and as lawmakers in Annapolis talk about more policies to promote investment in renewable energy.

Schmidt-Perkins called community solar “an amazing program” for those who would install solar panels on their roofs if they could. But she said its launch heightens the importance of discussions about a broader solar strategy.

“Most communities are caught a little flat-footed on this and are somewhat at the mercy of an industry that’s chomping at the bit,” she said. “It’s time for Maryland to say, ‘Okay, let’s come up with our plan so that we know how much solar can we really generate in this state on lands that are not conflict-based.’”

 

Related News

View more

Massachusetts stirs controversy with solar demand charge, TOU pricing cut

Massachusetts Solar Net Metering faces new demand charges and elimination of residential time-of-use rates under an MDPU order, as Eversource cites grid cost fairness while clean energy advocates warn of impacts on distributed solar growth.

 

Key Points

Policy letting solar customers net out usage with exports; MDPU now adds demand charges and ends TOU rates.

✅ New residential solar demand charges start Dec 31, 2018.

✅ Optional residential TOU rates eliminated by MDPU order.

✅ Eversource cites grid cost fairness; advocates warn slower solar.

 

A recent Massachusetts Department of Public Utilities' rate case order changes the way solar net metering works and eliminates optional residential time-of-use rates, stirring controversy between clean energy advocates and utility Eversource and potential consumer backlash over rate design.

"There is a lot of room to talk about what net-energy metering should look like, but a demand charge is an unfair way to charge customers," Mark LeBel, staff attorney at non-profit clean energy advocacy organization Acadia Center, said in a Tuesday phone call. Acadia Center is an intervenor in the rate case and opposed the changes.

The Friday MDPU order implements demand charges for new residential solar projects starting on December 31, 2018. Such charges are based on the highest peak hourly consumption over the course of a month, regardless of what time the power is consumed.

Eversource contends the demand charge will more fairly distribute the costs of maintaining the local power grid, echoing minimum charge proposals aimed at low-usage customers. Net metering is often criticized for not evenly distributing those costs, which are effectively subsidized by non-net-metered customers.

"What the demand charge will do is eliminate, to the extent possible, the unfair cross subsidization by non-net-metered customers that currently exists with rates that only have kilowatt-hour charges and no kilowatt demand, Mike Durand, Eversource spokesman, said in a Tuesday email. 

"For net metered facilities that use little kilowatt-hours, a demand charge is a way to charge them for their fair share of the cost of the significant maintenance and upgrade work we do on the local grid every day," Durand said. "Currently, their neighbors are paying more than their share of those costs."

It will not affect existing facilities, Durand said, only those installed after December 31, 2018.

Solar advocates are not enthusiastic about the change and see it slowing the growth of solar power, particularly residential rooftop solar, in the state.

"This is a terrible outcome for the future of solar in Massachusetts," Nathan Phelps, program manager of distributed generation and regulatory policy at solar power advocacy group Vote Solar, said in a Tuesday phone call.

"It's very inconsistent with DPU precedent and numerous pieces of legislation passed in the last 10 years," Phelps said. "The commonwealth has passed several pieces of legislation that are supportive of renewable energy and solar power. I don't know what the DPU was thinking."

 

TIME-OF-USE PRICING ELIMINATED

It does not matter when during the month peak demand occurs -- which could be during the week in the evening -- customers will be charged the same as they would on a hot summer day, LeBel said. Because an individual customer's peak usage does not necessarily correspond to peak demand across the utility's system, consumers are not being provided incentives to reduce energy usage in a way that could benefit the power system, Acadia Center said in a Tuesday statement.

However, Eversource maintains that residential customer distribution peaks based on customer load profiles do not align with basic service peak periods, which are based on Independent System Operator New England's peaks that reflect market-based pricing, even as a Connecticut market overhaul advances in the region, according to the MDPU order.

"The residential Time of Use rates we're eliminating are obsolete, having been designed decades ago when we were responsible for both the generation and the delivery of electricity," Eversource's Durand said.

"We are no longer in the generation business, having divested of our generation assets in Massachusetts in compliance with the law that restructured of our industry back in the late 1990s. Time Varying pricing is best used with generation rates, where the price for electricity changes based on time of day and electricity demand and can significantly alter electric bills for households," he said.

Additionally, only 0.02% of residential customers take service on Eversource's TOU rates and it would be difficult for residential customers to avoid peak period rates because they do not have the ability to shift or reduce load, according to the order.

"The Department allowed the Companies' proposal to eliminate their optional residential TOU rates in order to consolidate and align their residential rates and tariffs to better achieve the rate structure goal of simplicity," the MDPU said in the order.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified