Crematorium burns bodies to generate power

By Xenophilia


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
A crematorium is planning to use energy from burning bodies to run its own electricity and heating.

Hastings Borough Council in East Sussex says it would be the first in Europe to invest in technology which converts excess heat from cremations into reusable energy.

It hopes new generators, being installed next summer as part of an £800,000 refit, will save money in the long run by cutting energy bills.

Hastings Borough Council amenities manager Peter Mead said the recycled power would not come directly from the bodies but from the machines used to cremate them and filter the fumes.

He said: “A crematorium uses vast amounts of energy. We buy about £25,000 worth of gas a year. Clearly we want to be as energy efficient as we can be.

“The first part would be to use that heat, but the second stage is to use it to generate electricity.

“They need to first see whether it will technically work, but if it does it would be the first in the UK or Europe.”

Cremation is popular these days for those who have kicked the bucket. In Canada, only 3 per cent of the population got cremated 50 years ago, while today that number has ballooned to more than 55 per cent. But hereÂ’s a shocker for the conservation-minded: The amount of natural gas and electricity used to cremate one body is the equivalent of driving a car from coast to coast. When your body goes up in flames, it also emits a lot of nasty stuff: greenhouse gases, smog-causing gases, particulates, and mercury vapour if youÂ’ve got a few of those old tooth fillings.

Given this post-humus environmental footprint — and given our concern about climate change — innovation in this area is on the rise. In Denmark and Sweden, some municipalities are taking the waste heat from their local crematoriums and using it as part of their district heating systems. In North America, there’s a new technology called Resomation — generically, biocremation — that avoids incineration by chemically breaking down the body.

A Toronto-based company called Transition Science Inc. has licensed the technology and recently signed up its first customer, cemetery and crematorium operator Park Lawn Trust, which plans to have its first Resomation system up and running in Toronto next spring.

It’s kind of yucky — basically the body is loaded into a metal chamber that’s filled with an alkali-based solution that, under heat and pressure, turns the non-skeleton portion of the body into a soapy soup that’s simply flushed down the drain (apparently it’s benign and gets treated in our wastewater treatment system just like what we flush down the toilet). The process uses a fraction of the energy required for cremation.

Sure, sounds gross, but since weÂ’re always talking about the need for cradle-to-grave energy analyses, it makes sense that we leave the world in the most energy-efficient way possible.

Related News

New York Finalizes Contracts for 23 Renewable Projects Totaling 2.3 GW

New York Renewable Energy Contracts secure 23 projects totaling 2.3 GW, spanning offshore wind, solar, and battery storage under CLCPA goals, advancing 70% by 2030, a carbon-free 2040 grid, grid reliability, and green jobs.

 

Key Points

State agreements securing 23 wind, solar, and storage projects (2.3 GW) to meet CLCPA clean power targets.

✅ 2.3 GW across 23 wind, solar, and storage projects statewide

✅ Supports 70% renewables by 2030; carbon-free grid by 2040

✅ Drives emissions cuts, grid reliability, and green jobs

 

In a significant milestone for the state’s clean energy ambitions, New York has finalized contracts with 23 renewable energy projects, as part of large-scale energy projects underway in New York, totaling a combined capacity of 2.3 gigawatts (GW). This move is part of the state’s ongoing efforts to accelerate its transition to renewable energy, reduce carbon emissions, and meet the ambitious targets set under the Climate Leadership and Community Protection Act (CLCPA), which aims to achieve a carbon-free electricity grid by 2040.

A Strong Commitment to Renewable Energy

The 23 projects secured under these contracts represent a diverse range of renewable energy sources, including wind, solar, and battery storage. Together, these projects are expected to contribute significantly to New York’s energy grid, generating enough clean electricity to power millions of homes. The deal is a key component of New York’s broader strategy to achieve a 70% renewable energy share in the state’s electricity mix by 2030 and to reduce greenhouse gas emissions by 85% by 2050.

Governor Kathy Hochul celebrated the agreements as a major step forward in the state’s commitment to combating climate change while creating green jobs and economic opportunities. “New York is leading the nation in its clean energy goals, and these projects will help us meet our bold climate targets while delivering reliable and affordable energy to New Yorkers,” Hochul said in a statement.

The Details of the Contracts

The 23 projects span across various regions of the state, with an emphasis on areas that are well-suited for renewable energy development, such as upstate New York, which boasts vast open spaces ideal for large-scale solar and wind installations and the state is investigating sites for offshore wind projects along the coast. The contracts finalized by the state will ensure a steady supply of clean power from these renewable sources, helping to stabilize the grid and reduce reliance on fossil fuels.

A significant portion of the new renewable capacity will come from offshore wind projects, which have become a cornerstone of New York’s renewable energy strategy. Offshore wind has the potential to provide large amounts of electricity, and the state recently greenlighted the country's biggest offshore wind farm to date, taking advantage of the state's proximity to the Atlantic Ocean. Several of the contracts finalized include offshore wind farm projects, which are expected to be operational within the next few years.

In addition to wind energy, solar power continues to be a critical component of the state’s renewable energy strategy. The state has already made substantial investments in solar energy, having achieved solar energy goals ahead of schedule recently, and these new contracts will further expand the state’s solar capacity. The inclusion of battery storage projects is another important element, as energy storage solutions are vital to ensuring that renewable energy can be effectively utilized, even when the sun isn’t shining or the wind isn’t blowing.

Economic and Job Creation Benefits

The finalization of these 23 contracts will not only bring significant environmental benefits but also create thousands of jobs in the renewable energy sector. Construction, maintenance, and operational jobs will be generated throughout the life of the projects, benefiting communities across the state, including areas near Long Island's South Shore wind proposals that stand to gain from new investment. The investment in renewable energy is expected to support New York’s recovery from the economic impacts of the COVID-19 pandemic, contributing to the state’s clean energy economy and providing long-term economic stability.

The state's focus on clean energy also provides opportunities for local businesses, highlighted by the first Clean Energy Community designation in the state, as many of these projects will require services and materials from within New York State. Additionally, Governor Hochul’s administration has made efforts to ensure that disadvantaged communities and workers from underrepresented backgrounds will have access to job training and employment opportunities within the renewable energy sector.

The Path Forward: A Clean Energy Future

New York’s aggressive move toward renewable energy is indicative of the state’s commitment to addressing climate change and leading the nation in clean energy innovation. By locking in contracts for these renewable energy projects, the state is not only securing a cleaner future but also ensuring that the transition is fair and just for all communities, particularly those that have been historically impacted by pollution and environmental degradation.

While the finalized contracts mark a major achievement, the state’s work is far from over. The completion of these 23 projects is just one piece of the puzzle in New York’s broader strategy to decarbonize its energy system. To meet its ambitious targets under the CLCPA, New York will need to continue investing in renewable energy, energy storage, grid modernization, and energy efficiency programs.

As New York moves forward with its clean energy transition, and as BOEM receives wind power lease requests in the Northeast, the state will likely continue to explore new technologies and innovative solutions to meet the growing demand for renewable energy. The success of the 23 finalized contracts serves as a reminder of the state’s leadership in the clean energy space and its ongoing efforts to create a sustainable, low-carbon future for all New Yorkers.

New York’s decision to finalize contracts with 23 renewable energy projects totaling 2.3 gigawatts represents a bold step toward meeting the state’s clean energy and climate goals. These projects, which include a mix of wind, solar, and energy storage, will contribute significantly to reducing the state’s reliance on fossil fuels and lowering greenhouse gas emissions. With the additional benefits of job creation and economic growth, this move positions New York as a leader in the nation’s transition to renewable energy and a sustainable future.

 

Related News

View more

Europe's stunted hydro & nuclear output may hobble recovery drive

Europe 2023 Energy Shortfall underscores how weak hydro and nuclear offset record solar and wind, tightening grids as natural gas supplies shrink and demand rebounds, heightening risks of electricity shortages across key economies.

 

Key Points

A regional gap as weak hydro and nuclear offset record solar and wind, straining supply as gas stays tight.

✅ Hydro and nuclear output fell sharply in early 2023

✅ Record solar and wind could not offset the deficit

✅ Industrial demand rebound pressures limited gas supplies

 

Shortfalls in Europe's hydro and nuclear output have more than offset record electricity generation from wind and solar power sites over the first quarter of 2023, leaving the region vulnerable to acute energy shortages for the second straight year.

European countries fast-tracked renewable energy capacity development in 2022 in the wake of Russia's invasion of Ukraine last February, which upended natural gas flows to the region and sent power prices soaring.

Europe lifted renewable energy supply capacity by a record 57,290 megawatts in 2022, or by nearly 9%, according to the International Energy Agency (IRENA), amid a scramble to replace imported Russian gas with cleaner, home-grown energy.

However, steep drops in both hydro and nuclear output - two key sources of non-emitting energy - mean Europe's power producers have limited ways to lift overall electricity generation, as the region is losing nuclear power at a critical moment, just as the region's economies start to reboot after last year's energy shock.

POWER PLATEAU
Europe's total electricity generation over the first quarter of 2023 hit 1,213 terawatt hours, or roughly 6.4% less than during the same period in 2022, according to data from think tank Ember.

At the same time, European power hits records during extreme heat as plants struggle to cool, exacerbating supply risks.

As Europe's total electricity demand levels were in post-COVID-19 expansion mode in early 2022 before Russia's so-called special operation sent power costs to record highs amid debates over how electricity is priced in Europe, it makes sense that overall electricity use was comparatively stunted in early 2023.

However, efforts are now underway to revive activity at scores of European factories, industrial plants and production lines that were shuttered or curtailed in 2022, so Europe's collective electricity consumption totals are set to trend steadily higher over the remainder of 2023.

With Russian natural gas unavailable in the previous quantities due to sanctions and supply issues, Europe's power producers will need to deploy alternative energy sources, including renewables poised to eclipse coal globally, to feed that increase in power demand.

And following the large jump in renewable capacity brought online in 2022, utilities can deploy more low-emissions energy than ever before across Europe's electricity grids.

 

Related News

View more

Construction of expanded Hoa Binh Hydropower Plant to start October 2020

Expanded Hoa Binh Hydropower Plant increases EVN capacity with 480MW turbines, commercial loan financing, grid stability, flood control, and Da River reliability, supported by PECC1 feasibility work and CMSC collaboration on site clearance.

 

Key Points

A 480MW EVN expansion on the Da River to enhance grid stability, flood control, and seasonal water supply in Vietnam.

✅ 480MW, two turbines, EVN-led financing without guarantees

✅ Improves frequency modulation and national grid stability

✅ Supports flood control and dry-season water supply

 

The extended Hoa Binh Hydropower Plant, which is expected to break ground in October 2020, is considered the largest power project to be constructed this year, even as Vietnam advances a mega wind project planned for 2025.

Covering an area of 99.2 hectares, the project is invested by Electricity of Vietnam (EVN). Besides, Vietnam Electricity Power Projects Management Board No.1 (EVNPMB1) is the representative of the investor and Power Engineering Consulting JSC 1 (EVNPECC1) is in charge of building the feasibility report for the project. The expanded Hoa Binh Hydro Power Plant has a total investment of VND9.22 trillion ($400.87 million), 30 per cent of which is EVN’s equity and the remaining 70 per cent comes from commercial loans without a government guarantee.

According to the initial plan, EVN will begin the construction of the project in the second quarter of this year and is expected to take the first unit into operation in the third quarter of 2023, a timeline reminiscent of Barakah Unit 1 reaching full power, and the second one in the fourth quarter of the same year.

Chairman of the Committee for Management of State Capital at Enterprises (CMSC) Nguyen Hoang Anh said that in order to start the construction in time, CMSC will co-operate with EVN to work with partners as well as local and foreign banks to mobilise capital, reflecting broader nuclear project milestones across the energy sector.

In addition, EVN will co-operate with Hoa Binh People’s Committee to implement site clearance, remove Ba Cap port and select contractors.

Once completed, the project will contribute to preventing floods in the rainy season and supply water in the dry season. The plant expansion will include two turbines with the total capacity of 480MW, similar in scale to the 525-MW hydropower station China is building on a Yangtze tributary, and electricity output of about 488.3 million kWh per year.

In addition, it will help improve frequency modulation capability and stabilise the frequency of the national electricity system through approaches like pumped storage capacity, and reduce the working intensity of available turbines of the plant, thus prolonging the life of the equipment and saving maintenance and repair costs.

Built in the Da River basin in the northern mountainous province of Hoa Binh, at the time of its conception in 1979, Hoa Binh was the largest hydropower plant in Southeast Asia, while projects such as China’s Lawa hydropower station now dwarf earlier benchmarks.

The construction was supported by the Soviet Union all the way through, designing, supplying equipment, supervising, and helping it go on stream. Construction began in November 1979 and was completed 15 years later in December 1994, when it was officially commissioned, similar to two new BC generating stations recently brought online.

 

Related News

View more

National Grid warns of short supply of electricity over next few days

National Grid power supply warning highlights electricity shortage risks amid low wind output, generator outages, and cold weather, reducing capacity margins and grid stability; considering demand response and reserve power to avoid blackout risk.

 

Key Points

An alert that reduced capacity from low wind and outages requires actions to maintain UK grid stability.

✅ Low wind output and generator outages reduce capacity margins

✅ ESO exploring demand response and reserve generation options

✅ Aim: maintain grid stability and avoid blackout risk

 

National Grid has warned that Britain’s electricity will be in short supply over the next few days after a string of unplanned power plant outages and unusually low wind speeds this week, as cheap wind power wanes across the system.

The electricity system operator said it will take action to “make sure there is enough generation” during the cold weather spell, including virtual power plants and other demand-side measures, to prevent a second major blackout in as many years.

“Unusually low wind output coinciding with a number of generator outages means the cushion of spare capacity we operate the system with has been reduced,” the company told its Twitter followers.

“We’re exploring measures and actions to make sure there is enough generation available to increase our buffer of capacity.”

A spokeswoman for National Grid said the latest electricity supply squeeze was not expected to be as severe as recorded last month, following reports that the government’s emergency energy plan was not going ahead, and added that the company did not expect to issue an official warning in the next 24 hours.

“We’re monitoring how the situation develops,” she said.

The warning is the second from the electricity system operator in recent weeks. In mid-September the company issued an official warning to the electricity market as peak power prices climbed, that its ‘buffer’ of power reserves had fallen below 500MW and it may need to call on more power plants to help prevent a blackout. The notice was later withdrawn.

Concerns over National Grid’s electricity supplies have been relatively rare in recent years. It was forced in November 2015 to ask businesses to cut their demand as a “last resort” measure to keep the lights on after a string of coal plant breakdowns.

But since then, National Grid’s greater challenge has been an oversupply of electricity, partly due to record wind generation, which has threatened to overwhelm the grid during times of low electricity demand.

National Grid has already spent almost £1bn on extra measures to prevent blackouts over the first half of the year by paying generators to produce less electricity during the coronavirus lockdown, as daily demand fell.

The company paid wind farms to turn off, and EDF Energy to halve the nuclear generation from its Sizewell B nuclear plant, to avoid overwhelming the grid when demand for electricity fell by almost a quarter from last year.

The electricity supply squeeze comes a little over a year after National Grid left large parts of England and Wales without electricity after the biggest blackout in a decade left a million homes in the dark. National Grid blamed a lightning strike for the widespread power failure.

Similar supply strains have recently caused power cuts in China, underscoring how weather and generation mix can trigger blackouts.

 

Related News

View more

Share of coal in UK's electricity system falls to record lows

UK Coal Phase-Out marks record-low coal generation as the UK grid shifts to renewable power, wind farms, and a net zero trajectory, slashing carbon emissions and supporting cleaner EV charging across the electricity system.

 

Key Points

UK Coal Phase-Out ends coal-fired electricity nationwide, powered by renewables and net zero policy to cut grid carbon.

✅ Coal's Q2 share fell to 0.7%, a record low

✅ Renewables up 12% with Beatrice wind farm

✅ EV charging grows cleaner as grid decarbonizes

 

The share of coal in the UK’s electricity system has fallen to record lows in recent months, alongside a coal-free power record, according to government data.

The figures show electricity generated by the UK’s most polluting power plants made up an average of 0.7% of the total in the second quarter of this year, a shift underway since wind first outpaced coal in 2016 across the UK. The amount of coal used to power the electricity grid fell by almost two-thirds compared with the same months last year.

A government spokesperson said coal-generated energy “will soon be a distant memory” as the UK moves towards becoming a net zero emissions economy, despite signs that low-carbon generation stalled in 2019 in some analyses.

“This new record low is a result of our world-leading low-carbon energy industry, which provided more than half of our energy last year and continues to go from strength to strength as we aim to end our contribution to climate change entirely by 2050,” the spokesperson said.

The UK electricity market is on track to end coal power after 142 years by the government’s target date of 2025.

This year three major energy companies have announced plans to close coal-fired power plants in the UK, which would leave only four remaining after the coming winter, ahead of the last coal power station going offline nationwide.

RWE said this month it would close the Aberthaw B power station in south Wales, its last UK coal plant, after the winter. SSE will close the Fiddler’s Ferry plant near Warrington, Cheshire, in March 2020, and EDF Energy will shutter the Cottam coal plant in September.

So far this year the UK has gone more than 3,000 hours without using coal for power, including a full week without coal earlier in the year – nearly five times more than the whole of 2017.

Meanwhile, the government’s data shows that renewable energy climbed by 12% from the second quarter of last year, boosted by the startup of the Beatrice windfarm in the Moray Firth in Scotland, and the UK leading the G20 in wind power share in recent assessments.

The cleaner power system could accelerate carbon savings from the UK’s roads, too, as more drivers opt for electric vehicles. A study by Imperial College London for the energy company Drax found that the UK’s increasingly low-carbon energy system meant electric cars were a greener option even when taking into account the carbon emissions produced by making car batteries.

Dr Iain Staffell, of Imperial College London, said: “An electric vehicle in the UK simply cannot be more polluting than its petrol or diesel equivalent – even when taking into account the upfront carbon cost of manufacturing their batteries. Any EV bought today could be emitting just a tenth of what a petrol car would in as little as five years’ time, as the electricity it uses to charge comes from an increasingly low-carbon mix.”

 

Related News

View more

Why Nuclear Fusion Is Still The Holy Grail Of Clean Energy

Nuclear fusion breakthrough signals progress toward clean energy as NIF lasers near ignition and net energy gain, while tokamak designs like ITER advance magnetic confinement, plasma stability, and self-sustaining chain reactions for commercial reactors.

 

Key Points

A milestone as lab fusion nears ignition and net gain, indicating clean energy via lasers and tokamak confinement.

✅ NIF laser shot approached ignition and triggered self-heating

✅ Tokamak path advances with ITER and stronger magnetic confinement

✅ Net energy gain remains the critical milestone for power plants

 

Just 100 years ago, when English mathematician and astronomer Arthur Eddington suggested that the stars power themselves through a process of merging atoms to create energy, heat, and light, the idea was an unthinkable novelty. Now, in 2021, we’re getting remarkably close to recreating the process of nuclear fusion here on Earth. Over the last century, scientists have been steadily chasing commercial nuclear fusion, ‘the holy grail of clean energy.’ The first direct demonstration of fusion in a lab took place just 12 years after it was conceptualized, at Cambridge University in 1932, followed by the world’s first attempt to build a fusion reactor in 1938. In 1950, Soviet scientists Andrei Sakharov and Igor Tamm propelled the pursuit forward with their development of the tokamak, a fusion device involving massive magnets which is still at the heart of many major fusion pursuits today, including the world’s biggest nuclear fusion experiment ITER in France.

Since that breakthrough, scientists have been getting closer and closer to achieving nuclear fusion. While fusion has indeed been achieved in labs throughout this timeline, it has always required far more energy than it emits, defeating the purpose of the commercial fusion initiative, and elsewhere in nuclear a new U.S. reactor start-up highlights ongoing progress. If unlocked, commercial nuclear fusion would change life as we know it. It would provide an infinite source of clean energy requiring no fossil fuels and leaving behind no hazardous waste products, and many analysts argue that net-zero emissions may be out of reach without nuclear power, underscoring fusion’s promise.

Nuclear fission, the process which powers all of our nuclear energy production now, including next-gen nuclear designs in development, requires the use of radioactive isotopes to achieve the splitting of atoms, and leaves behind waste products which remain hazardous to human and ecological health for up to tens of thousands of years. Not only does nuclear fusion leave nothing behind, it is many times more powerful. Yet, it has remained elusive despite decades of attempts and considerable investment and collaboration from both public and private entities, such as the Gates-backed mini-reactor concept, around the world.

But just this month there was an incredible breakthrough that may indicate that we are getting close. “For an almost imperceptible fraction of a second on Aug. 8, massive lasers at a government facility in Northern California re-created the power of the sun in a tiny hot spot no wider than a human hair,” CNET reported in August. This breakthrough occurred at the National Ignition Facility, where scientists used lasers to set off a fusion reaction that emitted a stunning 10 quadrillion watts of power. Although the experiment lasted for just 100 trillionths of a second, the amount of energy it produced was equal to about “6% of the total energy of all the sunshine striking Earth’s surface at any given moment.”

“This phenomenal breakthrough brings us tantalizingly close to a demonstration of ‘net energy gain’ from fusion reactions — just when the planet needs it,” said Arthur Turrell, physicist and nuclear fusion expert. What’s more, scientists and experts are hopeful that the rate of fusion breakthroughs will continue to speed up, as interest in atomic energy is heating up again across markets, and commercial nuclear fusion could be achieved sooner than ever seemed possible before. At a time when it has never been more important or more urgent to find a powerful and affordable means of producing clean energy, and as policies like the U.K.’s green industrial revolution guide the next waves of reactors, commercial nuclear fusion can’t come fast enough.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.