Does NB Power deal serve Canada?

By Senator Lowell Murray, Saint John Telegraph-Journal


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
On October 29, a Memorandum of Understanding was signed by the Premiers of New Brunswick and Quebec for the sale of all the assets of NB Power to Hydro-Québec. The MOU is to lead to "definitive agreements" which would be the subject of legislation to be approved by the New Brunswick legislature before March 31, 2010.

The debate, which has engaged New Brunswickers to an extent seldom before seen there or anywhere, is not comparable to controversies such as the privatization of a publicly-owned utility, which in the fairly recent past has been debated and resolved one way or the other in several provinces. Nor is it an ordinary interprovincial agreement or a mere commercial transaction.

What is proposed is the acquisition, management and control by one province of a Crown corporation presently owned by another province. NB Power is to become a subsidiary of Hydro-Québec. If there are precedents for this in Canada I have not heard of any.

It is not my purpose to intrude on the debate among New Brunswickers as to where the interests of their province lie in this matter; rather I want to submit that there are aspects of this proposed transaction to which the government and Parliament of Canada cannot be indifferent. We have an interest and a responsibility.

There is the obvious interest of Atomic Energy of Canada Ltd. in the future of the Point Lepreau nuclear facility — one of the key provisions of the MOU — and of course Parliament's exclusive jurisdiction over atomic energy, which we obtained by invoking our constitutional declaratory power many years before any of us came to this place. However, there are at least three other elements of more general concern to us here.

First there is the question of interprovincial trade; second that of international trade; third, the broad constitutional issue whether New Brunswick is in effect transferring legislative jurisdiction to Quebec and whether this is an appropriate thing to do.

With regard to interprovincial trade, the governments of Newfoundland/Labrador and of Nova Scotia have already flagged potential barriers to the transmission of their electricity through New Brunswick if the MOU is implemented. At present, open access through New Brunswick is ensured by an independent operator, the New Brunswick System Operator, which has its own governing board and is outside the control of NB Power.

Under the MOU, this independent operator will disappear and its role will be assumed by a transmission subsidiary of Hydro-Québec. The future "neutral" operation of the transmission systems is, to understate the case, an open question.

On this issue, permit me to take a moment to draw to your attention the one amendment made by the authors of the 1982 Constitution to the division of powers provisions of what we used to call the BNA Act, now the Constitution Act, 1867....

The amendment of which I speak is now known as section 92A of our Constitution. It reinforced provincial jurisdiction over natural resources.... Subsection (2) of the new section 92A stipulated that a province may make laws for the export of electric energy but that such laws may not authorize or provide for discrimination in prices or in supplies exported to another part of Canada.

As the negotiations went on, Ontario and the federal government continued to fret about possible discrimination and so a compromise was reached that led to subsection (3) of 92A: "Nothing in subsection (2) derogates from the authority of Parliament to enact laws in relation to the matters referred to in that subsection and, where a law of Parliament and a law of a province conflict, the law of Parliament prevails to the extent of the conflict."

In other words, the "Fathers" of 1982 created a new concurrent field of jurisdiction with federal paramountcy. This is noteworthy in the context of the proposed New Brunswick-Quebec transaction: Parliament has full authority to legislate, if necessary, to remedy any abuse of power by a province.

I don't know whether section 92A is of any comfort to Newfoundland/Labrador and Nova Scotia as they contemplate the future operation of the Maritime and Québec transmission systems, or indeed to Ontario, which has been silent so far but whose officials and ministers must surely be following these matters closely.

Newfoundland/Labrador and Nova Scotia earlier this month asked New Brunswick for a commitment to negotiate an agreement with them, before the transaction with Quebec is completed, to construct a new interprovincial transmission line through New Brunswick to the border with the State of Maine and in the meantime to ensure that the independent New Brunswick System Operator will remain in charge of open access applications. So far, New Brunswick seems to have brushed off these representations, arguing that nothing will have changed under the proposed deal with Quebec and anyway that the U.S. authorities will enforce non-discriminatory access in the interests of its northeastern importers of electricity.

Nova Scotia and Newfoundland/Labrador would then be in the odd position of depending on the U.S. to protect their interests in Canadian interprovincial trade. If these interests are imperiled, it is surely the role of the federal government to protect them.

The question of international trade is intimately bound up with the interprovincial considerations I have just mentioned. Canada has a lot of generating capacity, existing and potential, and the United States is a big market. The two countries have an integrated system, the Maritimes component of which is the responsibility of the independent New Brunswick System Operator, now destined to be replaced by the Hydro-Québec subsidiary. The disappearance of the New Brunswick System Operator sends an ominous signal. I will say as objectively as I can that Nova Scotia and Newfoundland/Labrador have every reason to be concerned.

Under the MOU, Hydro-Québec will own and control all present and future interconnections with New England as well as important links with New York. It would be an understatement to say that Québec will have increased its market power very significantly.

Concerns about the use of that increased market power were expressed by New England importers of Canadian electricity as soon as the MOU was signed. While the Minister of International Trade may be reluctant to take a position on the potential consequences of a sale of NB Power to Hydro-Québec for New England and New York importers of electricity, the government of the United States will have every interest in protecting the potential access of its importers to electric power generated in Nova Scotia and Newfoundland and Labrador and to the competitive pricing regime for Quebec and New Brunswick power such access supports.

The implications of the MOU for international trade thus cannot be evaded by the federal government, and it should begin now to consider how it will act to prevent perceived abuse of this enhanced market power, or, at least, how it will respond if the U.S.A. government raises concerns about the potential for such abuse.

For example, the Minister of International Trade could simply state that the MOU, if it proceeds, must explicitly reaffirm the historic principle and practice of open access that is quantifiable and rules-based, both for international and inter-provincial electric power exports. A policy of continued silence would be an implicit delegation of the federal government's jurisdiction in this area of interprovincial and international trade to the U.S.A. Federal Energy Regulatory Commission and the government of Quebec.

With regard to New Brunswick's legislative authority, I acknowledge article 7.5 of the MOU. This article is headed "Sovereignty Unaffected" and reads as follows: "Nothing in this MOU or in the proposed transactions is intended to limit the exercise by each of New Brunswick and Quebec of its sovereignty or constrain its ability to establish or modify independent energy and industrial policies and regulations, provided that each of the parties will comply with those commitments specifically agreed as part of this MOU and the definitive agreements".

One of those commitments in the MOU is that "the regulatory framework governing the generation, transmission and distribution of electricity in New Brunswick will be altered to conform to the framework currently in effect in Quebec." Under an act of the New Brunswick legislature, regulation of NB Power is delegated to an independent crown agency, the New Brunswick Energy and Utilities Board, known as the EUB. When, under the MOU, the regulatory framework in New Brunswick is made to conform to that of Quebec, what discretion or authority in this field will remain to the EUB, or even to the government and legislature of New Brunswick?

What the MOU seems to be saying is that New Brunswick's sovereignty will be intact, except that it is eliminated when it comes to the ability to regulate the generation, transmission and distribution of electricity. Further, it would seem that Hydro-Québec, once it takes control, can do whatever it wants to do with those assets in the future. It appears that New Brunswick has indentured itself indefinitely to Hydro-Québec.

The government may and probably does prefer to be silent on these issues, regarding them as hypothetical, at least until the MOU is given concrete form in an agreement and legislation. But such a course would be simply an evasion of responsibility and an untenable evasion at that. As I have attempted to demonstrate, one or more of the following events is highly likely to demand some response from the federal government if the MOU proceeds to the stage of definitive agreements: a demand for intervention from frustrated neighbouring provinces, action by the United States government or a court challenge to one or more issues raised by the MOU and subsequent definitive agreements.

If such a fait accompli or something like it is lobbed into the lap of an unprepared federal government, possibly at a very politically inconvenient time, ministers and their advisors may wish they had thought through and staked out a responsible federal government position much earlier in the process.

Related News

Failed PG&E power line blamed for Drum fire off Hwy 246 last June

PG&E Drum Fire Cause identified as a power line failure in Santa Barbara County, with arcing electricity igniting vegetation near Buellton on Drum Canyon Road; 696 acres burned as investigators and CPUC review PG&E safety.

 

Key Points

A failed PG&E power line sparked the 696-acre Drum Fire near Buellton; the utility is conducting its own probe.

✅ Power line failed between poles, arcing ignited vegetation.

✅ 696 acres burned; no structures damaged or injuries.

✅ PG&E filed CPUC incident report; ongoing investigation.

 

A downed Pacific Gas and Electric Co. power line was the cause of the Drum fire that broke out June 14 on Drum Canyon Road northwest of Buellton, a reminder that a transformer explosion can also spark multiple fires, the Santa Barbara County Fire Department announced Thursday.

The fire broke out about 12:50 p.m. north of Highway 246 and burned about 696 acres of wildland before firefighters brought it under control, although no structures were damaged or mass outages like the Los Angeles power outage occurred, according to an incident summary.

A team of investigators pinpointed the official cause as a power line that failed between two utility poles and fell to the ground, and as downed line safety tips emphasize, arcing electricity ignited the surrounding vegetation, said County Fire Department spokesman Capt. Daniel Bertucelli.

In response, a PG&E spokesman said the utility is conducting its own investigation and does not have access to whatever data investigators used, and, as the ATCO regulatory penalty illustrates, such matters can draw significant oversight, but he noted the company filed an electric incident report on the wire with the California Public Utilities Commission on June 14.

"We are grateful to the first responders who fought the 2020 Drum fire in Santa Barbara County and helped make sure that there were no injuries or fatalities, outcomes not always seen in copper theft incidents, and no reports of structures damaged or burned," PG&E spokesman Mark Mesesan said.

"While we are continuing to conduct our own investigation into the events that led to the Drum fire, and as the Site C watchdog inquiry shows, oversight bodies can seek more transparency, PG&E does not have access to the Santa Barbara County Fire Department's report."

He said PG&E remains focused on reducing wildfire risk across its service area while limiting the scope and duration of public safety power shutoffs, including strategies like line-burying decisions adopted by other utilities, and that the safety of customers and communities it serves are its most important responsibility.

 

Related News

View more

B.C.'s Green Energy Ambitions Face Power Supply Challenges

British Columbia Green Grid Constraints underscore BC Hydro's rising imports, peak demand, electrification, hydroelectric variability, and transmission bottlenecks, challenging renewable energy expansion, energy security, and CleanBC targets across industry and zero-emission transportation.

 

Key Points

They are capacity and supply limits straining B.C.'s clean electrification, driving imports and risking reliability.

✅ Record 25% imports in FY2024 raise emissions and costs

✅ Peak demand and transmission limits delay new connections

✅ Drought reduces hydro output; diversified generation needed

 

British Columbia's ambitious green energy initiatives are encountering significant hurdles due to a strained electrical grid and increasing demand, with a EV demand bottleneck adding pressure. The province's commitment to reducing carbon emissions and transitioning to renewable energy sources is being tested by the limitations of its current power infrastructure.

Rising Demand and Dwindling Supply

In recent years, B.C. has experienced a surge in electricity demand, driven by factors such as population growth, increased use of electric vehicles, and the electrification of industrial processes. However, the province's power supply has struggled to keep pace, and one study projects B.C. would need to at least double its power output to electrify all road vehicles. In fiscal year 2024, BC Hydro imported a record 13,600 gigawatt hours of electricity, accounting for 25% of the province's total consumption. This reliance on external sources, particularly from fossil-fuel-generated power in the U.S. and Alberta, raises concerns about energy security and sustainability.

Infrastructure Limitations

The current electrical grid is facing capacity constraints, especially during peak demand periods, and regional interties such as a proposed Yukon connection are being discussed to improve reliability. A report from the North American Electric Reliability Corporation highlighted that B.C. could be classified as an "at-risk" area for power generation as early as 2026. This assessment underscores the urgency of addressing infrastructure deficiencies to ensure a reliable and resilient energy supply.

Government Initiatives and Investments

In response to these challenges, the provincial government has outlined plans to expand the electrical system. Premier David Eby announced a 10-year, $36-billion investment to enhance the grid's capacity, including grid development and job creation measures to support local economies. The initiative focuses on increasing electrification, upgrading high-voltage transmission lines, refurbishing existing generating facilities, and expanding substations. These efforts aim to meet the growing demand and support the transition to clean energy sources.

The Role of Renewable Energy

Renewable energy sources, particularly hydroelectric power, play a central role in B.C.'s energy strategy. However, the province's reliance on hydroelectricity has its challenges. Drought conditions in recent years have led to reduced water levels in reservoirs, impacting the generation capacity of hydroelectric plants. This variability underscores the need for a diversified energy mix, with options like a hydrogen project complementing hydro, to ensure a stable and reliable power supply.

Balancing Environmental Goals and Energy Needs

B.C.'s commitment to environmental sustainability is evident in its policies, such as the CleanBC initiative, which aims to phase out natural gas heating in new homes by 2030 and achieve 100% zero-emission vehicle sales by 2035, supported by networks like B.C.'s Electric Highway that expand charging access. While these goals are commendable, they place additional pressure on the electrical grid. The increased demand from electric vehicles and electrified heating systems necessitates a corresponding expansion in power generation and distribution infrastructure.

British Columbia's green energy ambitions are commendable and align with global efforts to combat climate change. However, achieving these goals requires a robust and resilient electrical grid capable of meeting the increasing demand for power. The province's reliance on external power sources and the challenges posed by climate variability highlight the need for strategic investments in infrastructure and a diversified energy portfolio, guided by BC Hydro review recommendations to keep electricity affordable. By addressing these challenges proactively, B.C. can pave the way for a sustainable and secure energy future.

 

Related News

View more

Ex-SpaceX engineers in race to build first commercial electric speedboat

Arc One Electric Speedboat delivers zero-emission performance, quiet operation, and reduced maintenance, leveraging battery propulsion, aerospace engineering, and venture-backed innovation to cut noise pollution, fuel costs, and water contamination in high-performance marine recreation.

 

Key Points

Arc One Electric Speedboat is a battery-powered, zero-emission craft offering quiet, high-performance marine cruising.

✅ 475 hp, 24 ft hull, about 40 mph top speed

✅ Cuts noise, fumes, and water contamination vs gas boats

✅ Backed by Andreessen Horowitz; ex-SpaceX engineers

 

A team of former SpaceX rocket engineers have joined the race to build the first commercial electric speedboat.

The Arc Boat company announced it had raised $4.25m (£3m) in seed funding to start work on a 24ft 475-horsepower craft that will cost about $300,000.

The LA-based company, which is backed by venture capital firm Andreessen Horowitz (an early backer of Facebook and Airbnb), said the first model of the Arc One boat would be available for sale by the end of the year.

Mitch Lee, Arc’s chief executive, said he wanted to build electric boats because of the impact conventional petrol- or diesel-powered boats have on the environment.

“They not only get just two miles to the gallon, they also pump a lot of those fumes into the water,” Lee said. “In addition, there is the huge noise pollution factor [of conventional boats] and that is awful for the marine life. With gas-powered boats it’s not just carbon emissions into the air, it’s also polluting the water and causing noise pollution. Electric boats, like electric ships clearing the air on the B.C. coast, eliminate all that.”

Lee said electric vessels would also reduce the hassle of boat ownership. “I love being out on the water, being on a boat is so much fun, but owning a boat is so awful,” he said. “I have always believed that electric boats make sense. They will be quicker, quieter and way cheaper and easier to operate and maintain, with access options like an electric boat club in Seattle lowering barriers for newcomers.”

While the first models will be very expensive, Lee said the cost was mostly in developing the technology and cheaper versions would be available in the future, mirroring advances in electric aviation seen across the industry. “It is very much the Tesla approach – we are starting up market and using that income to finance research and development and work our way down market,” he said.

Lee said the technology could be applied to larger craft, and even ferries could run on electricity in the future, as projects for battery-electric high-speed ferries begin to scale.

“We started in February with no team, no money and no warehouse,” he said. “By December we are going to be selling the Arc One, and we are hiring aggressively because we want to accelerate the adoption of electric boats across a whole range of craft, including an electric-ready ferry on Kootenay Lake.”

Lee founded the company with fellow mechanical engineer Ryan Cook. Cook, the company’s chief technology officer, was previously the lead mechanical engineer at Elon Musk’s space exploration company SpaceX where he worked on the Falcon 9 rocket, the world’s first orbital class reusable rocket. In parallel, Harbour Air's electric aircraft highlights cross-sector electrification. Apart from Lee, all of Arc’s employees have some experience working at SpaceX.

The Arc boat, which would have a top speed of 40 mph, joins a number of startups rushing to make the first large-scale production of electric-powered speedboats, while a Vancouver seaplane airline demonstrates complementary progress with a prototype electric aircraft. The Monaco Yacht Club this month held a competition for electric boat prototypes to “instigate a new vision and promote all positive approaches to bring yachting into line” with global carbon dioxide emission reduction targets. Sweden’s Candela C-7 hydrofoil boat was crowned the fastest electric vessel.

 

Related News

View more

Climate change poses high credit risks for nuclear power plants: Moody's

Nuclear Plant Climate Risks span flood risk, heat stress, and water scarcity, threatening operations, safety systems, and steam generation; resilience depends on mitigation investments, cooling-water management, and adaptive maintenance strategies.

 

Key Points

Climate-driven threats to nuclear plants: floods, heat, and water stress requiring resilience and mitigation.

✅ Flooding threats to safety and cooling systems

✅ Heat stress reduces thermal efficiency and output

✅ Water scarcity risks limit cooling capacity

 

 

Climate change can affect every aspect of nuclear plant operations like fuel handling, power and steam generation and the need for resilient power systems planning, maintenance, safety systems and waste processing, the credit rating agency said.

However, the ultimate credit impact will depend upon the ability of plant operators to invest in carbon-free electricity and other mitigating measures to manage these risks, it added.
Close proximity to large water bodies increase the risk of damage to plant equipment that helps ensure safe operation, the agency said in a note.

Moody’s noted that about 37 gigawatts (GW) of U.S. nuclear capacity is expected to have elevated exposure to flood risk and 48 GW elevated exposure to combined rising heat, extreme heat costs and water stress caused by climate change.

Parts of the Midwest and southern Florida face the highest levels of heat stress, while the Rocky Mountain region and California face the greatest reduction in the availability of future water supply, illustrating the need for adapting power generation to drought strategies, it said.

Nuclear plants seeking to extend their operations by 20, or even 40 years, beyond their existing 40-year licenses in support of sustaining U.S. nuclear power and decarbonization face this climate hazard and may require capital investment adjustments, Moody’s said, as companies such as Duke Energy climate report respond to investor pressure for climate transparency.

“Some of these investments will help prepare for the increasing severity and frequency of extreme weather events, highlighting that the US electric grid is not designed for climate impacts today.”

 

 

Related News

View more

Seven small UK energy suppliers must pay renewables fees or risk losing licence

Ofgem Renewables Obligations drive supplier payments for renewables fees, feed-in tariffs, and renewable generation, with non-payment risking supply licences amid the price cap and volatile wholesale prices across the UK energy market.

 

Key Points

Mandatory payments by suppliers funding renewables via feed-in tariffs; non-payment can trigger supply licence revoking.

✅ Covers Renewables Obligation and Feed-in Tariff scheme compliance.

✅ Non-payment can lead to Ofgem action and licence loss.

✅ Affected by price cap and wholesale price volatility.

 

Seven small British energy suppliers owe a total of 34 million pounds ($43.74 million) in renewables fees, amid a renewables backlog that has stalled projects, and could face losing their supply licences if they cannot pay, energy regulator Ofgem reports.

Under Britain’s energy market rules, suppliers of energy must meet so-called renewables obligations and feed-in tariffs, including households' ability to sell solar power back to energy firms, which are imposed on them by the government to help fund renewable power generation.

Several small energy companies have gone bust over the past two years, a trend echoed by findings from a global utility study on renewable priorities, as they struggled to pay the renewables fees and as their profits were affected by a price cap on the most commonly used tariffs and fluctuating wholesale prices, even as a 10 GW contract brings new renewable capacity onto the UK grid.

Ofgem has called on the companies to make necessary payments by Oct. 31, as moves to offer community-generated power to all UK customers progress.

“If they do not pay Ofgem could start the process of revoking their licences to supply energy,” it said in a statement, as offshore wind power continues to scale nationwide.

The seven suppliers are, amid debates over clean energy impacts, Co-Operative Energy Limited; Flow Energy Limited; MA Energy Limited; Nabuh Energy Limited; Robin Hood Energy Limited; Symbio Energy Limited and Tonik Energy Limited. ($1 = 0.7773 pounds)

 

Related News

View more

Balancing Act: Germany's Power Sector Navigates Energy Transition

Germany January Power Mix shows gas-fired generation rising, coal steady, and nuclear phaseout impacts, amid cold weather, energy prices, industrial demand, and emissions targets shaping renewables, grid stability, and security of supply.

 

Key Points

The January electricity mix, highlighting gas, coal, renewables, and nuclear exit effects on emissions, prices, and demand.

✅ Gas output up 13% to 8.74 TWh, share at 18.6%.

✅ Coal share 23%, down year on year, steady vs late 2023.

✅ Nuclear gap filled by gas and coal; emissions below Jan 2023.

 

Germany's electricity generation in January presented a fascinating snapshot of its energy transition journey. As the country strives to move away from fossil fuels, with renewables overtaking coal and nuclear in its power mix, it grapples with the realities of replacing nuclear power and meeting fluctuating energy demands.

Gas Takes the Lead:

Gas-fired power plants saw their highest output in two years, generating 8.74 terawatt hours (TWh). This 13% increase compared to January 2023 compensated for the closure of nuclear reactors, which were extended during the energy crisis to shore up supply, and colder weather driving up heating needs. This reliance on gas, however, pushed its share in the electricity mix to 18.6%, highlighting Germany's continued dependence on fossil fuels.

Coal Fades, but Not Forgotten:

While gas surged, coal-fired generation remained below previous levels, dropping 29% from January 2023. However, it stayed relatively flat compared to late 2023, suggesting utilities haven't entirely eliminated it. Coal still held a 23% share, and periodic coal reliance remains evident, exceeding gas' contribution, reflecting its role as a reliable backup for intermittent renewable sources like wind.

Nuclear Void and its Fallout:

The shutdown of nuclear plants in April 2023 created a significant gap, previously accounting for an average of 12% of annual electricity output. This loss is being compensated through gas and coal, with gas currently the preferred choice, even as a nuclear option debate persists among policymakers. This strategy kept January's power sector emissions lower than the previous year, but rising demand could shift the balance.

Industry's Uncertain Impact:

Germany's industrial sector, a major energy consumer, is facing challenges like high energy prices and weak consumer demand. While the government aims to foster industrial recovery, uncertainties linger due to a shaky coalition and limited budget, and debate about a possible nuclear resurgence continues in parallel, which could reshape policy. Any future industrial revival would likely increase energy demand and potentially necessitate more gas or coal.

Cost-Driven Choices and Emission Concerns:

The choice between gas and coal depends on their relative costs, in a system pursuing a coal and nuclear phase-out under long-term policy. Currently, gas seems more favorable emission-wise, but if its price rises, coal might become more attractive, impacting overall emissions.

Looking Ahead:

Germany's energy transition faces a complex balancing act, with persistent grid expansion woes and exposure to cheap gas complicating progress. While the reliance on gas and coal highlights the difficulties in replacing nuclear, the focus on emissions reduction is encouraging. Navigating the challenges of affordability, industrial needs, and climate goals will be crucial for a successful transition to a clean and secure energy future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified