Drawing coal's battle lines

By McClatchy Tribune News


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
An environmental group's protest in downtown Houston put a spotlight on the debate over coal - which generates half the nation's electricity but also contributes to climate change.

The Sierra Club said it is launching a national campaign against coal-fired plants by Houston-based Dynegy and punctuated the announcement with a rally outside the company's headquarters. Dynegy, which has as many as six coal-fired plants in its construction plans, responded that it must meet the growing demand for electricity in the short term while long-term alternative energy sources are still being developed.

"It would take a lot of wind to meet those needs," Dynegy spokesman David Byford said. "This is really part of a larger national debate on the country's future and meeting its energy needs." About 40 protesters carried picket signs and chanted "dirty coal has got to go" to mark the start of the campaign.

"The tide is turning against coal-burning power plants," said Bruce Nilles, director of the Sierra Club's National Coal Campaign. "Dynegy is a conspicuous exception to that trend."

Nearly a year ago, Dynegy was talking about building eight coal plants, and CEO Bruce Williamson met with environmentalists to discuss alternatives. Since then, the company dropped plans for two coal plants, Byford said.

Dynegy has two coal-fired plants under construction. One is near Waco, and the second is in Arkansas. Proposed plants in Georgia, Iowa, Michigan and Nevada are in various stages of planning and permitting, Byford said, but they ultimately might use othe fuels.

"It's very flexible," he said. "It's dependent on what customers are asking for." He said the company had planned to build a coal plant in New Jersey but switched it to natural gas because it could be built faster to meet an immediate demand for electricity. Coal is central to discussion of U.S. energy and environmental policy, because coal-fired power plants emit air pollutants as well as the greenhouse gas carbon dioxide. Dallas-based TXU had proposed 11 new coal plants in Texas, drawing bitter opposition from environmentalists, and reduced its proposal to three plants last year as it was acquired by a private equity firm.

And Williamson, the Dynegy CEO, met with Sierra Club members last year after his company acquired the generating capacity of LS Power Group, including plans for eight coal-fired plants. He said then, as Byford did, that the company might not develop all the proposed coal-fired plants. Expected legislation almost certainly will influence those decisions by Dynegy and others.

Congress is working on a cap-and-trade mechanism that would put limits on greenhouse emissions from coal plants and other facilities while allowing companies to trade emissions permits. The top presidential candidates - Republican John McCain and Democrats Hillary Rodham Clinton and Barack Obama - all support versions of the cap-and-trade proposal.

Earlier in February, three major Wall Street banks - Citigroup, JP Morgan Chase and Morgan Stanley - announced they will review more carefully financing requests for power plants that emit greenhouse gases because federal regulation could make them financially riskier.

That could make it more difficult to get financing for coal plants, said Rebecca Tarbotton, director of the Rainforest Action Network's Global Finance Campaign. Byford said the company already has secured financing for the Arkansas and Texas projects under construction but hasn't yet sought financing for the other four plants.

The industry, meanwhile, is developing technology that shrinks carbon dioxide emissions or stores the gas underground, speakers said at the Cambridge Energy Research Associates' conference in Houston.

Rice University energy economist Peter Hartley said the Sierra Club's campaign oversimplifies the problem and solution.

"Most sides in this debate want to shout one way or the other when it's really more nuanced," he said. "Nothing is a silver bullet." The extent to which carbon dioxide contributes to climate change is debatable, he said. Plus, solar, wind and geothermal power are years away from being viable and reliable large-scale energy sources, he said.

A better short-term fix would be to tax energy to encourage better efficiency and conservation, Hartley said, with the revenue devoted to research on clean energy production.

But Ron Hayden, a Sierra Club member who protested at Dynegy, said "clean coal is a disinformation campaign."

Related News

Funding Approved for Bruce C Project Exploration

Bruce C Project advances Ontario clean energy with NRCan funding for nuclear reactors, impact assessment, licensing, and Indigenous engagement, delivering reliable baseload power and low-carbon electricity through pre-development studies at Bruce Power.

 

Key Points

A proposed nuclear build at Bruce Power, backed by NRCan funding for studies, licensing, and impact assessment to expand clean power.

✅ Up to $50M NRCan support for pre-development

✅ Focus: feasibility, impact assessment, licensing

✅ Early Indigenous and community engagement

 

Canada's clean energy landscape received a significant boost recently with the announcement of federal funding for the Bruce Power's Bruce C Project. Natural Resources Canada (NRCan) pledged up to $50 million to support pre-development work for this potential new nuclear build on the Bruce Power site. This collaboration between federal and provincial governments signifies a shared commitment to a cleaner energy future for Ontario and Canada.

The Bruce C Project, if it comes to fruition, has the potential to be a significant addition to Ontario's clean energy grid. The project envisions constructing new nuclear reactors at the existing Bruce Power facility, located on the shores of Lake Huron. Nuclear energy is a reliable source of clean electricity generation, as evidenced by Bruce Power's operating record during the pandemic, producing minimal greenhouse gas emissions during operation.

The funding announced by NRCan will be used to conduct crucial pre-development studies. These studies will assess the feasibility of the project from various angles, including technical considerations, environmental impact assessments, and Indigenous and community engagement, informed by lessons from a major refurbishment that required a Bruce reactor to be taken offline, to ensure thorough planning. Obtaining a license to prepare the site and completing an impact assessment are also key objectives for this pre-development phase.

This financial support from the federal government aligns with both national and provincial clean energy goals. The "Powering Canada Forward" plan, spearheaded by NRCan, emphasizes building a clean, reliable, and affordable electricity system across the country. Ontario's "Powering Ontario's Growth" plan echoes these objectives, focusing on investment options, such as the province's first SMR project, to electrify the province's economy and meet its growing clean energy demand.

"Ontario has one of the cleanest electricity grids in the world and the nuclear industry is leading the way," stated Mike Rencheck, President and CEO of Bruce Power. He views this project as a prime example of collaboration between federal and provincial entities, along with the private sector, where recent manufacturing contracts underscore industry capacity.

Nuclear energy, however, remains a topic of debate. While proponents highlight its role in reducing greenhouse gas emissions and providing reliable baseload power, opponents raise concerns about nuclear waste disposal and potential safety risks. The pre-development studies funded by NRCan will need to thoroughly address these concerns as part of the project's evaluation.

Transparency and open communication with local communities and Indigenous groups will also be crucial for the project's success. Early engagement activities facilitated by the funding will allow for open dialogue and address any potential concerns these stakeholders might have.

The Bruce C Project is still in its early stages. The pre-development work funded by NRCan will provide valuable data to determine the project's viability. If the project moves forward, it has the potential to significantly contribute to Ontario's clean energy future, while also creating jobs and economic benefits for local communities and suppliers.

However, the project faces challenges. Public perception of nuclear energy and the lengthy regulatory process are hurdles that will need to be addressed, as debates around the Pickering B refurbishment have highlighted in Ontario. Additionally, ensuring cost-effectiveness and demonstrating the project's long-term economic viability will be critical for securing broader support.

The next few years will be crucial for the Bruce C Project. The pre-development work funded by NRCan will be instrumental in determining its feasibility. If successful, this project could be a game-changer for Ontario's clean energy future, building on the province's Pickering life extensions to strengthen system adequacy, offering a reliable, low-carbon source of electricity for the province and beyond.

 

Related News

View more

Blackout-Prone California Is Exporting Its Energy Policies To Western States, Electricity Will Become More Costly And Unreliable

California Blackouts expose grid reliability risks as PG&E deenergizes lines during high winds. Mandated solar and wind displace dispatchable natural gas, straining ISO load balancing, transmission maintenance, and battery storage planning amid escalating wildfire liability.

 

Key Points

California grid shutoffs stem from wildfire risk, renewables, and deferred transmission maintenance under mandates.

✅ PG&E deenergizes lines to reduce wildfire ignition during high winds.

✅ Mandated solar and wind displace dispatchable gas, raising balancing costs.

✅ Storage, reliability pricing, and grid upgrades are needed to stabilize supply.

 

California is again facing widespread blackouts this season. Politicians are scrambling to assign blame to Pacific Gas & Electric (PG&E) a heavily regulated utility that can only do what the politically appointed regulators say it can do. In recent years this has meant building a bunch of solar and wind projects, while decommissioning reliable sources of power and scrimping on power line maintenance and upgrades.

The blackouts are connected with the legal liability from old and improperly maintained power lines being blamed for sparking fires—in hopes that deenergizing the grid during high winds reduces the likelihood of fires. 

How did the land of Silicon Valley and Hollywood come to have developing world electricity?

California’s Democratic majority, from Gov. Gavin Newsom to the solidly progressive legislature, to the regulators they appoint, have demanded huge increases in renewable energy. Renewable electricity targets have been pushed up, and policymakers are weighing a revamp of electricity rates to clean the grid, with the state expected to reach a goal of 33% of its power from renewable sources, mostly solar and wind, by next year, and 60% of its electricity from renewables by 2030.

In 2018, 31% of the electricity Californians purchased at the retail level came from approved renewables. But when rooftop solar is added to the mix, about 34% of California’s electricity came from renewables in 2018. Solar photovoltaic (PV) systems installed “behind-the-meter” (BTM) displace utility-supplied generation, but still affect the grid at large, as electricity must be generated at the moment it is consumed. PV installations in California grew 20% from 2017 to 2018, benefiting from the state’s Self-Generation Incentive Program that offers hefty rebates through 2025, as well as a 30% federal tax credit.

Increasingly large amounts of periodic, renewable power comes at a price—the more there is, the more difficult it is to keep the power grid stable and energized. Since electricity must be consumed the instant it is generated, and because wind and solar produce what they will whenever they do, the rest of the grid’s power producers—mostly natural gas plants—have to make up any differences between supply and immediate demand. This load balancing is vital, because without it, the grid will crash and widespread blackouts will ensue.

California often produces a surplus of mandated solar and wind power, generated for 5 to 8 cents per kilowatt hour. This power displaces dispatchable power from natural gas, coal and nuclear plants, resulting in reliable power plants spending less time online and driving up electricity prices as the plants operate for fewer hours of the day. Subsidized and mandated solar power, along with a law passed in California in 2006 (SB 1638) that bans the renewal of coal-fired power contracts, has placed enormous economic pressure on the Western region’s coal power plants—among them, the nation’s largest, Navajo Generating Station. As these plants go off line, the Western power grid will become increasingly unstable. Eventually, the states that share their electric power in the Western Interconnect may have to act to either subsidize dispatchable power or place a value on reliability—something that was taken for granted in the growth of the America’s electrical system and its regulatory scheme.

California law regarding electricity explicitly states that “a violation of the Public Utilities Act is a crime” and that it is “…the intent of the Legislature to provide for the evolution of the ISO (California’s Independent System Operator—the entity that manages California’s grid) into a regional organization to promote the development of regional electricity transmission markets in the western states.” In other words, California expects to dictate how the Western grid operates.

One last note as to what drives much of California’s energy policy: politics. California State Senator Kevin de León (the author served with him in the State Assembly) drafted SB 350, the Clean Energy and Pollution Reduction Act. It became law in 2015. Sen. de León followed up with SB 100 in 2018, signed into law weeks before the 2018 election. SB 100 increased California’s renewable portfolio standard to 60% by 2030 and further requires all the state’s electricity to come from carbon-free sources by 2045, a capstone of the state’s climate policies that factor into the blackout debate.  

Sen. de León used his environmental credentials to burnish his run for the U.S. Senate against Sen. Dianne Feinstein, eventually capturing the endorsements of the California Democratic Party and billionaire environmentalist Tom Steyer, now running for president. Feinstein and de León advanced to the general in California’s jungle primary, where Feinstein won reelection 54.2% to 45.8%.

De León may have lost his race for the U.S. Senate, but his legacy will live on in increasingly unaffordable electricity and blackouts, not only in California, but in the rest of the Western United States—unless federal or state regulators begin to place a value on reliability. This could be done by requiring utility scale renewable power providers to guarantee dispatchable power, as policymakers try to avert a looming shortage of firm capacity, either through purchase agreements with thermal power plants or through the installation of giant and costly battery farms or other energy storage means.

 

Related News

View more

NRC Begins Special Inspection at River Bend Nuclear Power Plant

NRC Special Inspection at River Bend reviews failures of portable emergency diesel generators, nuclear safety measures, and Entergy Operations actions after Fukushima; off-site power loss readiness, remote COVID-19 oversight, and corrective action plans are assessed.

 

Key Points

An NRC review of generator test failures at River Bend, assessing nuclear safety, root causes, and corrective actions.

✅ Evaluates failures of portable emergency diesel generators

✅ Reviews causal analyses and adequacy of corrective actions

✅ Remote COVID-19 oversight; public report expected within 45 days

 

The Nuclear Regulatory Commission has begun a special inspection at the River Bend nuclear power plant, part of broader oversight that includes the Turkey Point renewal application, to review circumstances related to the failure of five portable emergency diesel generators during testing. The plant, operated by Entergy Operations, is located in St. Francisville, La., as nations like France outage risks continue to highlight broader reliability concerns.

The generators are used to supply power to plant systems in the event of a prolonged loss of off-site electrical power coupled with a failure of the permanently installed emergency generators, a concern underscored by incidents such as the SC nuclear plant leak that shut down production for weeks. These portable generators were acquired as part of the facility's safety enhancements mandated by the NRC following the 2011 accident at the Fukushima Dai-ichi facility in Japan, and amid constraints like France limiting output from warm rivers, the emphasis on resilience remains.

The three-member NRC team will develop a chronology of the test failures and evaluate the licensee's causal analyses and the adequacy of corrective actions, informed by lessons from cases like Davis-Besse closure stakes that underscore risk management.

Due to the COVID-19 pandemic, they will complete most of their work remotely, while other regions address constraints such as high river temperatures limiting output for nuclear stations. An inspection report documenting the team's findings, released as global nuclear project milestones continue across the sector, will be publicly available within 45 days of the end of the inspection.
 

 

Related News

View more

Canada's First Commercial Electric Flight

Canada's First Commercial Electric Flight accelerates sustainable aviation, showcasing electric aircraft, pilot training, battery propulsion, and noise reduction, aligning with net-zero goals and e-aviation innovation across commercial, regional, and training operations.

 

Key Points

Canada's electric flight advances sustainable aviation, proving e-aircraft viability and pilot training readiness.

✅ Battery-electric propulsion cuts emissions and noise

✅ New curricula prepare pilots for electric systems and procedures

✅ Supports net-zero goals through green aviation infrastructure

 

Canada, renowned for its vast landscapes and pioneering spirit, has achieved a significant milestone in aviation history with its first commercial electric flight. This groundbreaking achievement marks a pivotal moment in the transition towards sustainable aviation and an aviation revolution for the sector, highlighting Canada's commitment to reducing carbon emissions and embracing innovative technologies.

The inaugural commercial electric flight in Canada not only showcases the capabilities of electric aircraft, with examples like Harbour Air's prototype flight demonstrating feasibility, but also underscores the importance of pilot training in advancing e-aviation. As the aviation industry explores cleaner and greener alternatives to traditional fossil fuel-powered aircraft, pilot training plays a crucial role in preparing aviation professionals for the future of sustainable flight.

Electric aircraft, powered by batteries instead of conventional jet fuel, offer numerous environmental benefits, including lower greenhouse gas emissions and reduced noise pollution, though Canada's 2019 electricity mix still included some fossil generation that can affect lifecycle impacts. These advantages align with Canada's ambitious climate goals and commitment to achieving net-zero emissions by 2050. By investing in e-aviation, Canada aims to lead by example in the global effort to decarbonize the aviation sector and mitigate the impacts of climate change.

The success of Canada's first commercial electric flight is a testament to collaborative efforts between industry stakeholders, government support, and technological innovation. Electric aircraft manufacturers have made significant strides in developing reliable and efficient electric propulsion systems, with research investment helping advance prototypes and certification, paving the way for broader adoption of e-aviation across commercial and private sectors.

Pilot training programs tailored for electric aircraft are crucial in ensuring the safe and effective operation of these advanced technologies, as operators target first electric passenger flights across regional routes. Canadian aviation schools and training institutions are at the forefront of integrating e-aviation into their curriculum, equipping future pilots with the skills and knowledge needed to navigate electric aircraft systems and procedures.

Moreover, the introduction of commercial electric flights in Canada opens new opportunities for aviation enthusiasts, environmental advocates, and stakeholders interested in sustainable transportation solutions. The shift towards e-aviation represents a paradigm shift in how air travel is perceived and executed, emphasizing efficiency, environmental stewardship, and technological innovation.

Looking ahead, Canada's role in advancing e-aviation extends beyond pilot training to include research and development, infrastructure investment, and policy support. Collaborative initiatives with industry partners and international counterparts, including Canada-U.S. collaboration on electrification, will be essential in accelerating the adoption of electric aircraft and establishing a robust framework for sustainable aviation practices.

In conclusion, Canada's first commercial electric flight marks a significant milestone in the journey towards sustainable aviation. By pioneering e-aviation through pilot training and technological innovation, Canada sets a precedent for global leadership in reducing carbon emissions and shaping the future of air transportation. As electric aircraft become more prevalent in the skies, Canada's commitment to sustainability and ambitious EV goals at the national level will continue to drive progress towards a cleaner, greener future for aviation worldwide.

 

Related News

View more

Hydro One: No cut in peak hydro rates yet for self-isolating customers

Hydro One COVID-19 Rate Relief responds to time-of-use pricing, peak rates, and Ontario Energy Board rules as residents stay home, offering a Pandemic Relief Fund, flexible payments, and support for electricity bills amid off-peak adjustments.

 

Key Points

Hydro One's COVID-19 rate relief includes payment flexibility and hardship aid to ease time-of-use bill burdens.

✅ Advocates flexibility on time-of-use and peak rate impacts

✅ Pandemic Relief Fund offers aid and payment options

✅ OEB sets prices; utilities relay concerns and support

 

Hydro One says it is listening to requests by self-isolating residents for reduced kilowatt hour peak rates during the day when most people are home riding out the COVID-19 pandemic.

Peak rates of 20.8 cents per kw/h are twice as high from 7 a.m. to 7 p.m. – except weekends – than off-peak rates of 10.1 cents per kw/h and set by the Ontario Energy Board and not electricity providers such as Hydro One and Elexicon (formerly Veridian).

Frustrated electrical customers have signed their John Henry’s more than 50,000 times to a change.org petition demanding Hydro One temporarily slash rates for those already struggling with work closures and loss of income amid concerns about a potential recovery rate that could raise bills.

Alex Stewart, media relations spokesman for Hydro One, said the corporation is working toward a solution.

“While we are regulated to adhere to time-of-use pricing by the Ontario Energy Board, we’ve heard the concerns about time-of-use pricing and the idea of a fixed COVID-19 hydro rate as many of our customers will stay home to stop the spread of COVID-19,” Stewart told The Intelligencer.

“We continue to advocate for greater choice during this difficult time and are working with everyone in the electricity sector to ensure our customers are heard.”

Stewart said the electricity provider is reaching out to customers to help them during a difficult self-isolating and social distancing period in other ways to bring financial relief.

For example, new hardship measures are now in play by Hydro One to give customers some relief from ballooning electricity bills.

“This is a difficult time for everyone. Hydro One has launched a new Pandemic Relief Fund to support customers affected by the novel coronavirus COVID-19. As part of our commitment to customers, we will offer financial assistance, as well as increased payment flexibility, to customers experiencing hardship,” Stewart said.

“Hydro One is also extending its Winter Relief program to halt disconnections and reconnections to customers experiencing hardship during the coldest months of the year. This is about doing the right thing and offering flexibility to our customers so they have peace of mind and can concentrate on what matters most – keeping their loved ones safe.”

Stewart said customers having difficult times can visit the company’s website for more details at www.HydroOne.com/ReliefFund.

Elexicon Energy, meanwhile, said earlier the former Veridian company is passing along concerns to the OEB but otherwise can’t lower the rates unless directed to do so, as occurred when the province set off-peak pricing temporarily.

Chris Mace, Elexicon corporate communications spokesperson, said, “We don’t have the authority to do that.

“The Ontario Energy Board sets the energy prices. This is in the Ministry of Energy’s hands. We at Elexicon, along with other local distribution companies (LDC), have shared this feedback with the ministry and OEB to come up with some sort of solution or alternative. But this is out of our hands. We can’t shift anything.”

He suggested residents can shift the use of higher-drawing electrical appliances to early morning before 7 or in the evening after 7 p.m. when ultra-low overnight rates may apply.

Families may want to be “mindful whether it be cooking or laundry and so on and holding off on doing those until off-peak hours take effect. We are hearing customers and we have passed along those concerns to the ministry and the OEB.”

Hydro One power tips

Certain electrical uses in the home consumer more power than others, as reflected in Ontario’s electricity cost allocation approach:

62 per cent goes to space heating
19 per cent goes to water heaters
13 per cent goes to appliances
2 per cent goes to space cooling

 

Related News

View more

Alberta's Last Coal Plant Closes, Embracing Clean Energy

Alberta Coal Phase-Out signals a clean energy transition, replacing coal with natural gas and renewables, cutting greenhouse gas emissions, leveraging a carbon levy, and supporting workers in Alberta's evolving electricity market.

 

Key Points

Alberta Coal Phase-Out moves power from coal to lower-emission natural gas and renewables to reduce grid emissions.

✅ Last coal plant closed: Genesee Generating Station, Sept 30, 2023

✅ Shift to natural gas and renewables lowers emissions

✅ Carbon levy and incentives accelerated clean power build-out

 

The closure of the Genesee Generating Station on September 30, 2023, marked a significant milestone in Alberta's energy history, as the province moved to retire coal power by 2023 ahead of its 2030 provincial deadline. The Genesee, located near Calgary, was the province's last remaining coal-fired power plant. Its closure represents the culmination of a multi-year effort to transition Alberta's electricity sector away from coal and towards cleaner sources of energy.

For decades, coal was the backbone of Alberta's electricity grid. Coal-fired plants were reliable and relatively inexpensive to operate. However, coal also has a significant environmental impact. The burning of coal releases greenhouse gases, including carbon dioxide, a major contributor to climate change. Coal plants also produce air pollutants such as sulfur dioxide and nitrogen oxide, which can cause respiratory problems and acid rain, and in some regions electricity is projected to get dirtier as gas use expands.

In recognition of these environmental concerns, the Alberta government began to develop plans to phase out coal-fired power generation in the early 2000s. The government implemented a number of policies to encourage the shift from coal to cleaner energy such as natural gas and renewable energy. These policies included providing financial incentives for the construction of new natural gas plants and renewable energy facilities, as well as imposing a carbon levy on coal-fired generation.

The phase-out of coal was also driven by economic factors. The cost of natural gas has declined significantly in recent years, making it a more competitive fuel source for electricity generation as producers switch to gas under evolving market conditions. Additionally, the Alberta government faced increasing pressure from the federal government to reduce greenhouse gas emissions.

The transition away from coal has not been without its challenges. Coal mining and coal-fired power generation have long been important parts of Alberta's economy. The closure of coal plants has resulted in job losses in the affected communities. The government has implemented programs to help workers transition to new jobs in the clean energy sector.

Despite these challenges, the closure of the Genesee Generating Station is a positive development for Alberta's environment and climate. Coal-fired power generation is one of the largest sources of greenhouse gas emissions in Alberta, and recent wind generation outpacing coal underscores the sector's transformation. The closure of the Genesee is expected to result in a significant reduction in emissions, helping Alberta to meet its climate change targets.

The transition away from coal also presents opportunities for Alberta. The province has vast natural gas resources, which can be used to generate electricity with lower emissions than coal. Alberta is also well-positioned to develop renewable energy sources, such as wind power and solar power. These renewable energy sources can help to further reduce emissions and create new jobs in the clean energy sector.

The closure of the Genesee Generating Station is a significant milestone in Alberta's energy history. It represents the end of an era for coal-fired power generation in the province, a shift mirrored by the UK's last coal station going offline earlier this year. However, it also marks the beginning of a new era for Alberta's energy sector. By transitioning to cleaner sources of energy, Alberta can reduce its environmental impact and create a more sustainable energy future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified