Ontario to fast-track wind turbine projects

By Toronto Star


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Municipalities will lose the power to decide how close wind turbines can be to residential properties and environmentally sensitive areas under proposed green-energy legislation being tabled at QueenÂ’s Park.

The new rules, a blow to NIMBYism, will also ensure that developers of wind and other renewable-energy projects get construction permits within six months.

It's all part of Premier Dalton McGuinty's plan to streamline approvals for such projects, create certainty for developers and attract more investments that will create green-collar jobs in the province – more than 50,000 jobs over three years, McGuinty has touted.

Energy and Infrastructure Minister George Smitherman, speaking at the Toronto Board of Trade, said the patchwork of municipal guidelines that has evolved over the years has created a cumbersome process for energy developers. He compared it to the patchwork of municipal rules regarding public smoking before the province created an Ontario-wide standard. Similarly, the proposed Green Energy Act will create a provincial standard for wind turbine sites and a "one-window, one-permit" approach to approvals.

"I see municipalities grappling, struggling, with how to balance the desire of local wind proponents against the desire of some local residents," Smitherman said in an interview. "A patchwork quilt is not the best way forward."

The setback distance for turbines – that is, how far they must be from a home or environmentally sensitive area – will be determined through consultation with the public and the environment ministry. Possible distances will be discussed, Smitherman said.

Other items expected to be in the proposed legislation:

The province's Standard Offer Program, which sets standard pricing for electricity from small renewable energy projects, has been scrapped. It will be replaced by a more ambitious program that accommodates wind, biomass, hydroelectric and solar projects.

Homeowners will soon have access to direct grants and low-interest loans to help pay for technology and appliances that make their homes more energy efficient.

New policies will support co-operatives of farmers, homeowners and businesses that want to invest in renewable-energy projects.

The province will also stimulate development of offshore wind farms on the Ontario side of the Great Lakes with the aim of pursuing power-purchase contracts with developers. Toronto Hydro and Trillium Power are two companies planning such projects. "There are wonderful opportunities for offshore wind... there are lots and lots of exciting proposals," Smitherman said. "We're making sure we'll move those proposals along."

Beth Harrington, a spokesperson for Wind Concerns Ontario – a coalition of 29 community groups concerned about potential noise and health effects from wind developments – said the idea of a province-wide standard for turbine standards makes sense. "What we'd like to know is how will the government determine those universal minimum setbacks? What research will it be based on? Are they actually going to listen to the testimony of people living near wind turbines in Ontario?" she said.

Harrington wouldn't say what a reasonable setback distance might be, though the coalition's website suggests a minimum of two kilometres. "The ball is in the government's court," she said.

Richard King, an energy lawyer with Ogilvy Renault, which has represented wind-farm developers in Ontario, attended Smitherman's speech. He said the government is heading in the right direction by uploading responsibilities from municipalities to the province.

"The municipal stuff is frustrating, because there are a lot of procedural rights attached to it that can go on and on even for the smallest aspects of a project," he said.

Related News

Here are 3 ways to find out where your electricity comes from

US energy mix shows how the electric grid blends renewables, fossil fuels, nuclear, and hydro, varying by ISO/RTO markets, utilities, and state policies, affecting carbon emissions, pricing, reliability, and access.

 

Key Points

The US energy mix is the grid's source breakdown by region: fossil fuels, renewables, nuclear, and hydro.

✅ Check ISO or RTO dashboards for real-time generation by fuel source.

✅ Utilities may offer green power plans or RECs at modest premiums.

✅ Energy mix shifts with policy, pricing, and grid reliability needs.

 

There are few resources more important than energy. Sure, you may die if you don't eat for days. But your phone will die if you go too long without charging it. Energy feeds tech, the internet, city infrastructure, refrigerators, lights, and has evolved throughout U.S. history in profound ways. You get the idea. Yet unlike our other common needs, such as food, energy sources aren't exactly front of mind for most people. 

"I think a lot of people don't put a lot of bandwidth into thinking about this part of their lives," said Richard McMahon, the SVP of energy supply and finance at Edison Electric Institute, a trade group that represents investor-owned electric companies in the US. 

It makes sense. For most Americans, electricity is always there, and in many locations, there's not much of a choice involved, even as electricity demand is flat across the U.S. today. You sign up with a utility when you move into a new residence and pay your bills when they're due. 

But there's an important reality that indifference eschews: In 2018, a third of the energy-related carbon-dioxide emissions in the US came from the electric power sector, according to the US Energy Information Administration (EIA). 

A good chunk of that is from the residential sector, which consistently uses more energy than commercial customers, per EIA data.

Just as many people exercise choice when they eat, you typically also have a choice when it comes to your energy supply. That's not to say your current offering isn't what you want, or that switching will be easy or affordable, but "if you're a customer and want power with a certain attribute," McMahon said, "you can pretty much get it wherever you are." 

But first, you need to know the energy mix you have right now. As it turns out, it's not so straightforward. At all.

This brief guide may help. 

For some utility providers, you can find out if it publishes the energy mix online. Dominion Energy, which serves Idaho, North Carolina, Ohio, South Carolina, Utah, Virginia, West Virginia, and Wyoming, provides this information in a colored graphic. 

"Once you figure out who your utility is you can figure out what mix of resources they use," said Heidi Ratz, an electricity markets researcher at the World Resources Institute.

But not all utilities publish this information.

It has to do with their role in the grid and reflects utility industry trends in structure and markets. Some utility companies are vertically integrated; they generate power through nuclear plants or wind farms and distribute those electrons directly to their customers. Other utilities just distribute the power that different companies produce. 

Consider Consolidated Edison, or Con Ed, which distributes energy to parts of New York City. While reporting this story, Business Insider could not find information about the utility's energy mix online. When reached for comment, a spokesperson said, "we're indifferent to where it comes from."

That's because, in New York, distribution utilities like Con Ed often buy energy through a wholesale marketplace.

Take a look at this map. If you live in one of the colored regions, your electricity is sold on a wholesale market regulated by an organization called a regional transmission organization (RTO) or independent system operator (ISO). Distribution utilities like Con Ed often buy their energy through these markets, based on availability and cost, while raising questions about future utility revenue models as prices shift. 

Still, it's pretty easy to figure out where your energy comes from. Just look up the ISO or RTO website (such as NYISO or CAISO). Usually, these organizations will provide energy supply information in near-real time. 

That's exactly what Con Edison (which buys energy on the NYISO marketplace) suggested. As of Friday morning, roughly 40% of the energy on the market place was natural gas or other fossil fuels, 34% was nuclear, and about 22% was hydro. 

If you live in another region governed by an ISO or RTO, such as in most of California, you can do the same thing. Like NYISO, CAISO has a dashboard that shows (again, as of Friday morning) about 36% of the energy on the market comes from natural gas and more than 20% comes from renewables. 

In the map linked above, you'll notice that some of the ISOs and RTOs like MISO encompass enormous regions. That means that even if you figure out where the energy in your market comes from, it's not going to be geographically specific. But there are a couple of ways to drill down even further. 

The Environmental Protection Agency has a straightforward tool called Power Profiler. You can enter your zip code to see the fuel mix in your area. But it's not perfect. The data are from 2016 and, in some regions of the country like the upper Midwest, they aren't much more localized, and some import dirty electricity due to regional trading. 

The World Resources Institute also has a tool that allows you to see the electricity mix by state, based on 2017 data from EIA. These numbers represent power generation, not the electricity actually flowing into your sockets, but they offer a rough idea of what energy resources are operating in your state. 

One option is to check with your utility to see if it has a "green power" offering. Over 600 utilities across the country have one, according to the Climate Reality Project, though they often come at a slightly higher cost. It's typically on the scale of just a few more cents per kilowatt-hour. 

There are also independent, consumer-facing companies like Arcadia and Green Mountain Energy that allow you to source renewable energy, by virtually connecting you to community solar projects or purchasing Renewable Energy Certificates, or RECs, on your behalf, as America goes electric and more options emerge. 

"RECs measure an investment in a clean energy resource," Ratz said, in an email. "The goal of putting that resource on the grid is to push out the need for dirtier resources."

The good news: Even if you do nothing, your energy mix will get cleaner. Coal production has fallen to lows not seen since the 1980s, amid disruptions in coal and nuclear sectors that affect reliability and costs, while renewable electricity generation has doubled since 2008. So whether you like it or not, you'll be roped into the clean energy boom one way or another. 

 

Related News

View more

Electric shock: China power demand drops as coronavirus shutters plants

China Industrial Power Demand 2020 highlights COVID-19 disruption to electricity consumption as factory output stalls; IHS Markit estimates losses equal to Chile's usage, impacting thermal coal, LNG, and Hubei's industrial load.

 

Key Points

An analysis of COVID-19's hit to China's electricity use, cutting industry demand and fuel needs for coal and LNG.

✅ 73 billion kWh loss equals Chile's annual power use

✅ Cuts translate to 30m tonnes coal or 9m tonnes LNG

✅ Hubei peak load 21 percent below plan amid shutdowns

 

China’s industrial power demand in 2020 may decline by as much as 73 billion kilowatt hours (kWh), according to IHS Markit, as the outbreak of the coronavirus has curtailed factory output and prevented some workers from returning to their jobs.

FILE PHOTO: Smoke is seen from a cooling tower of a China Energy ultra-low emission coal-fired power plant during a media tour, in Sanhe, Hebei province, China July 18, 2019. REUTERS/Shivani Singh
The cut represents about 1.5% of industrial power consumption in China. But, as the country is the world’s biggest electricity consumer and analyses of China's electricity appetite routinely underscore its scale, the loss is equal to the power used in the whole of Chile and it illustrates the scope of the disruption caused by the outbreak.

The reduction is the energy equivalent of about 30 million tonnes of thermal coal, at a time when China aims to reduce coal power production, or about 9 million tonnes of liquefied natural gas (LNG), IHS said. The coal figure is more than China’s average monthly imports last year while the LNG figure is a little more than one month of imports, based on customs data.

China has tried to curtail the spread of the coronavirus that has killed more than 1,400 and infected over 60,000 by extending the Lunar New Year holiday for an extra week and encouraging people to work from home, measures that contributed to a global dip in electricity demand as well.

Last year, industrial users consumed 4.85 trillion kWh electricity, accounting for 67% of the country’s total, even as India's electricity demand showed sharp declines in the region.

Xizhou Zhou, the global head of power and Renewables at IHS Markit, said that in a severe case where the epidemic goes on past March, China’s economic growth will be only 4.2% during 2020, down from an initial forecast of 5.8%, while power consumption will climb by only 3.1%, down from 4.1% initially, even as power cuts and blackouts raise concerns.

“The main uncertainty is still how fast the virus will be brought under control,” said Zhou, adding that the impact on the power sector will be relatively modest from a full-year picture in 2020, even though China's electric power woes are already clouding solar markets.

In Hubei province, the epicenter of the virus outbreak, the peak power load at the end of January was 21% less than planned, mirroring how Japan's power demand was hit during the outbreak, data from Wood Mackenzie showed.

Industrial operating rates point to a firm reduction in power consumption in China.

Utilization rates at plastic processors are between 30% and 60% and the low levels are expected to last for another two week, according to ICIS China.

Weaving machines at textile plants are operating at below 10% of capacity, the lowest in five years, ICIS data showed. China is the world’s biggest textile and garment exporter.

 

Related News

View more

Sask. sets new record for power demand

SaskPower Summer Power Demand Record hits 3,520 MW as heat waves drive electricity consumption; grid capacity, renewables expansion, and energy efficiency tips highlight efforts to curb greenhouse gas emissions while meeting Saskatchewan's growing load.

 

Key Points

The latest summer peak load in Saskatchewan: 3,520 MW, driven by heat, with plans to expand capacity and lower emissions.

✅ New peak surpasses last August by 50 MW to 3,520 MW.

✅ Capacity target: 7,000 MW by 2030 with more renewables.

✅ Tips: AC settings, close blinds, delay heat-producing chores.

 

As the mercury continues to climb in Saskatchewan, where Alberta's summer electricity record offers a regional comparison, SaskPower says the province has set a new summer power demand record.

The Crown says the new record is 3,520 megawatts. It’s an increase of 50 megawatts over the previous record, or enough electricity for 50,000 homes.

“We’ve seen both summer and winter records set every year for a good while now. And if last summer is any indication, we could very well see another record before temperatures cool off heading into the fall,” said SaskPower Vice President of Transmission and Industrial Services Kory Hayko in a written release. “It’s not impossible we’ll break this record again in the coming days. It’s SaskPower’s responsibility to ensure that Saskatchewan people and businesses have the power they need to thrive. That’s what drives our investment of $1 billion every year, as outlined in our annual report, to modernize and grow the province’s electrical system.”

The previous summer consumption record of 3,740 megawatts was set last August, and similar extremes in the Yukon electricity demand highlight broader demand pressures this year. The winter demand record remains higher at 3,792 megawatts, set on Dec. 29, 2017.

SaskPower says it plans to expand its generation capacity from 4,500 megawatts now to 7,000 megawatts in 2030, with a focus on decreasing greenhouse gas emissions and doubling renewable electricity by 2030 as part of its strategy.

To reduce power bills, the Crown suggests turning down or programming air conditioning when residents aren’t home, inspecting the air conditioner to make sure it is operating efficiently, keeping blinds closed to keep out direct sunlight, delaying chores that produce heat and making sure electronics are turned off when people leave the room.

The new record beats the previous summer peak of 3,470 MW, set last August after also being broken twice in July. The winter demand record is still higher at 3,792 MW, which was set on December 29, 2017. To meet growing power demand, and amid projections that Manitoba's electrical demand could double in the next 20 years, SaskPower is expanding its generation capacity from approximately 4,500 MW now to 7,000 MW by 2030 while also reducing greenhouse gas emissions by 40 per cent from 2005 levels. To accomplish this, we will be significantly increasing the amount of renewables on our system.

Cooling and heating represents approximately a quarter of residential power bills. To reduce consumption and power bills during heat waves, SaskPower’s customers can:

Turn down or program the air conditioning when no one is home (for every degree that air conditioning is lowered for an eight-hour period, customers can save up to two per cent on their power costs);

Consider having their air conditioning unit inspected to make sure it is operating efficiently;

Keep the heat out by closing blinds and drapes, especially those with direct sunlight;

Delay chores that produce heat and moisture, like dishwashing and laundering, until the cooler parts of the day or evening; and

As with any time of the year, make sure lights, televisions and other electronics are turned off when no one's in the room. For example, a modern gaming console can use as much power as a refrigerator.

 

Related News

View more

Shell’s strategic move into electricity

Shell's Industrial Electricity Supply Strategy targets UK and US industrial customers, leveraging gas-to-power, renewables, long-term PPAs, and energy transition momentum to disrupt utilities, cut costs, and secure demand in the evolving electricity market.

 

Key Points

Shell will sell power directly to industrial clients, leveraging gas, renewables, and PPAs to secure demand and pricing.

✅ Direct power sales to industrials in UK and US

✅ Leverages gas-to-power, renewables, and flexible sourcing

✅ Targets long-term PPAs, price stability, and demand security

 

Royal Dutch Shell’s decision to sell electricity direct to industrial customers is an intelligent and creative one. The shift is strategic and demonstrates that oil and gas majors are capable of adapting to a new world as the transition to a lower carbon economy develops. For those already in the business of providing electricity it represents a dangerous competitive threat. For the other oil majors it poses a direct challenge on whether they are really thinking about the future sufficiently strategically.

The move starts small with a business in the UK that will start trading early next year, in a market where the UK’s second-largest electricity operator has recently emerged, signaling intensifying competition. Shell will supply the business operations as a first step and it will then expand. But Britain is not the limit — Shell recently announced its intention of making similar sales in the US. Historically, oil and gas companies have considered a move into electricity as a step too far, with the sector seen as oversupplied and highly politicised because of sensitivity to consumer price rises. I went through three reviews during my time in the industry, each of which concluded that the electricity business was best left to someone else. What has changed? I think there are three strands of logic behind the strategy.

First, the state of the energy market. The price of gas in particular has fallen across the world over the last three years to the point where the International Energy Agency describes the current situation as a “glut”. Meanwhile, Shell has been developing an extensive range of gas assets, with more to come. In what has become a buyer’s market it is logical to get closer to the customer — establishing long-term deals that can soak up the supply, while options such as storing electricity in natural gas pipes gain attention in Europe. Given its reach, Shell could sign contracts to supply all the power needed by the UK’s National Health Service or with the public sector as a whole as well as big industrial users. It could agree long-term contracts with big businesses across the US.

To the buyers, Shell offers a high level of security from multiple sources with prices presumably set at a discount to the market. The mutual advantage is strong. Second, there is the transition to a lower carbon world. No one knows how fast this will move, but one thing is certain: electricity will be at the heart of the shift with power demand increasing in transportation, industry and the services sector as oil and coal are displaced. Shell, with its wide portfolio, can match inputs to the circumstances and policies of each location. It can match its global supplies of gas to growing Asian markets, including China’s 2060 electricity share projections, while developing a renewables-based electricity supply chain in Europe. The new company can buy supplies from other parts of the group or from outside. It has already agreed to buy all the power produced from the first Dutch offshore wind farm at Egmond aan Zee.

The move gives Shell the opportunity to enter the supply chain at any point — it does not have to own power stations any more than it now owns drilling rigs or helicopters. The third key factor is that the electricity market is not homogenous. The business of supplying power can be segmented. The retail market — supplying millions of households — may be under constant scrutiny, as efforts to fix the UK’s electricity grid keep infrastructure in the headlines, with suppliers vilified by the press and governments forced to threaten price caps but supplying power to industrial users is more stable and predictable, and done largely out of the public eye. The main industrial and commercial users are major companies well able to negotiate long-term deals.

Given its scale and reputation, Shell is likely to be a supplier of choice for industrial and commercial consumers and potentially capable of shaping prices. This is where the prospect of a powerful new competitor becomes another threat to utilities and retailers whose business models are already under pressure. In the European market in particular, electricity pricing mechanisms are evolving and public policies that give preference to renewables have undermined other sources of supply — especially those produced from gas. Once-powerful companies such as RWE and EON have lost much of their value as a result. In the UK, France and elsewhere, public and political hostility to price increases have made retail supply a risky and low-margin business at best. If the industrial market for electricity is now eaten away, the future for the existing utilities is desperate.

Shell’s move should raise a flag of concern for investors in the other oil and gas majors. The company is positioning itself for change. It is sending signals that it is now viable even if oil and gas prices do not increase and that it is not resisting the energy transition. Chief executive Ben van Beurden said last week that he was looking forward to his next car being electric. This ease with the future is rather rare. Shareholders should be asking the other players in the old oil and gas sector to spell out their strategies for the transition.

 

Related News

View more

Alberta creates fund to help communities hit by coal phase-out

Alberta Coal Community Transition Fund backs renewables, natural gas, and economic diversification, offering grants, workforce retraining, and community development to municipalities and First Nations as Alberta phases out coal-fired power by 2030.

 

Key Points

A provincial grant helping coal-impacted communities diversify, retrain workers, and transition to renewables by 2030.

✅ Grants for municipalities and First Nations

✅ Supports diversification and job retraining

✅ Focus on renewables, natural gas, and new sectors

 

The Coal Community Transition Fund is open to municipalities and First Nations affected as Alberta phases out coal-fired electricity by 2030 under the federal coal plan to focus on renewables and natural gas.

Economic Development Minister Deron Bilous says the government wants to ensure these communities thrive through the transition, aligning with views that fossil-fuel workers support the energy transition across the economy.

“Residents in our communities have concerns about the transition away from coal, even as discussions about phasing out fossil fuels in B.C. unfold nationally,” Rod Shaigec, mayor of Parkland County, said.

“They also have ideas on how we can mitigate the impacts on workers and diversify our economy, including clean energy partnerships to create new employment opportunities for affected workers. We are working to address those concerns and support their ideas. This funding means we can make those ideas a reality in various economic sectors of opportunity.”

The coal-mining town of Hanna, northeast of Calgary, has already received $450,000 through the program to work on economic diversification, exploring options like bridging the Alberta-B.C. electricity gap that could support new industries.

The application deadline for the coal transition fund is the end of November.

A provincial advisory panel is also expected to report back this fall on ways to create new jobs and retrain workers during the coal phase-out.

 

Related News

View more

Pennsylvania Home to the First 100% Solar, Marriott-Branded U.S. Hotel

Courtyard by Marriott Lancaster Solar Array delivers 100% renewable electricity via photovoltaic panels at Greenfield Corporate Center, Pennsylvania, a High Hotels and Marriott sustainability initiative reducing grid demand and selling excess power for efficient operations.

 

Key Points

A $1.5M PV installation powering the 133-room hotel with 100% renewable electricity in Greenfield Center, Lancaster.

✅ 2,700 PV panels generate 1,239,000 kWh annually

✅ First Marriott in the US with 100% solar electricity

✅ $504,900 CFA grant; excess power sold to the utility

 

High Hotels Ltd., a hotel developer and operator, recently announced it is installing a $1.5 million solar array that will generate 100% of the electrical power required to operate one of its existing hotels in Greenfield Corporate Center. The completed installation will make the 133-room Courtyard by Marriott-Lancaster the first Marriott-branded hotel in the United States with 100% of its electricity needs generated from solar power. It is also believed to be the first solar array in the country installed for the sole purpose of generating 100% of the electricity needs of a hotel, mirroring how other firms are commissioning their first solar power plant to meet sustainability goals.

“This is an exciting approach to addressing our energy needs that aligns very well with High’s commitment to environmental stewardship,”

“We’ve been advancing many environmentally responsible practices across our hotel portfolio, including converting the interior and exterior lighting at the Lancaster Courtyard to LED, which will lower electricity demand by 15%,” said Russ Urban, president of High Hotels. “Installing solar is another important step in this progression, and we will look to apply lessons from this as we expand our portfolio of premium select-service hotels.”

The Lancaster-based hotel developer, owner and operator is working in partnership with Marriott International Inc. to realize this vision, in step with major brands announcing new clean energy projects across their portfolios.

The installation of more than 2,700 ballasted photovoltaic panels will fill an area more than two football fields in size. After evaluating several on-site and near-site alternatives, High Hotels decided to install the solar array on the roof of a nearby building in Greenfield Corporate Center. Using the existing roof saves more than three acres of open land and has additional aesthetic benefits, aligning with recommendations for solar farms under consideration by local planners. The solar array will produce 1,239,000 kWh of power for the hotel, which consumes 1,177,000 kWh. Any excess power will be sold to the utility, though affordable solar batteries are making on-site storage increasingly feasible.

High Hotels received a grant of $504,900 from the Commonwealth Financing Authority (CFA) through the Solar Energy Program to complete the project. An independent agency of the Department of Community and Economic Development (DCED), the CFA is responsible for evaluating projects and awarding funds for a variety of economic development programs, including the Solar Energy Program and statewide initiatives like solar-power subscriptions that broaden access. The project will receive a solar renewable energy credit which will be conveyed to the CFA to provide the agency with more funds to offer grants in the future.

“This is a cutting-edge project that is exactly the kind we are looking for to promote the generation and use of solar energy,” said DCED Secretary Dennis Davin. “I am very pleased that the first Marriott in the US to receive 100% of its electric needs through renewable solar energy is located right here in Central Pennsylvania.” Secretary Davin also serves as chairman of the CFA’s board.

Panels for the solar array will be Q Cells manufactured by Hanwha Cells Co., Ltd., headquartered in Seoul, South Korea. Ephrata, Pa.-based Meadow Valley Electric Inc. will install the array in the second and third quarters of 2018 with commissioning targeted for September 2018.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.