Constellation profits boosted with EDF venture

By Industrial Info Resources


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Constellation Energy Group Incorporated recently reported fourth-quarter and full-year results for the 2009 fiscal year. The company posted an annual net income of $4.5 billion, compared to a $1.3 billion loss in fiscal year 2008.

Year-over-year comparisons are difficult, as the company experienced several structural and financial changes in 2009. Constellation had originally planned a merger with MidAmerican Energy Holdings Company in 2009, but subsequently cancelled the merger (and paid a $175 million termination fee) in order to form a joint venture with EDF Development Incorporated , a wholly owned subsidiary of Electricite de France SA (EDF) The deal closed in November, and Constellation sold 49.99% of its nuclear fleet to EDF for $4.5 billion, raising the company's earnings for the fiscal year.

The joint venture, known as Constellation Energy Nuclear Group LLC, has three nuclear power facilities in its fleet: the 1,750-megawatt (MW) Calvert Cliffs Nuclear Power Plant in Lusby, Maryland; the 1,758-MW Nine Mile Point Nuclear Station in Lycoming, New York; and the 581-MW R.E. Ginna Nuclear Power Plant in Ontario, New York, which Constellation purchased in 2004.

Including a planned $9 billion, 1,600-MW unit addition at the Calvert Cliffs facility, Industrial Info is currently tracking more than $10 billion of active projects of Constellation Energy Group. The Calvert Cliffs Unit 3 addition project is one of 19 nuclear projects that applied for a portion of $18.5 billion in federal loan guarantees. Earlier this month, $8.8 billion in loan guarantees was provided to the Southern Company for construction of units 3 and 4 of the company's Vogtle nuclear power station.

"The DOE loan guarantee remains one of the critical components in funding this investment, and we are hopeful that a positive decision will be forthcoming," said President and CEO Mayo Shattuck in a conference call regarding the earnings.

Set to kick off next month is the estimated $50 million uprating project of the Unit 2 reactor at the company's Nine Mile Point Nuclear Station in Lycoming, New York. The multi-phase project involves equipment replacement and overhaul, as well as control system upgrades, and will add 158 MW to the unit. The $50 million project is set to begin in March and will take about two years to complete.

Related News

Canada Faces Critical Crunch in Electrical Supply

Canada Electricity Supply Crunch underscores grid reliability risks, aging infrastructure, and rising demand, pushing upgrades in transmission, energy storage, smart grid technology, and renewable energy integration to protect industry, consumers, and climate goals.

 

Key Points

A nationwide power capacity shortfall stressing the grid, raising outage risks and slowing the renewable transition.

✅ Demand growth and aging infrastructure strain transmission capacity

✅ Smart grid, storage, and interties improve reliability and flexibility

✅ Accelerated renewables and efficiency reduce fossil fuel reliance

 

Canada, known for its vast natural resources and robust energy sector, is now confronting a significant challenge: a crunch in electrical supply. A recent report from EnergyNow.ca highlights the growing concerns over Canada’s electricity infrastructure, revealing that the country is facing a critical shortage that could impact both consumers and industries alike. This development raises pressing questions about the future of Canada’s energy landscape and its implications for the nation’s economy and environmental goals.

The Current Electrical Supply Dilemma

According to EnergyNow.ca, Canada’s electrical supply is under unprecedented strain due to several converging factors. One major issue is the rapid pace of economic and population growth, particularly in urban centers. This expansion has increased demand for electricity, putting additional pressure on an already strained grid. Compounding this issue are aging infrastructure and a lack of sufficient investment in modernizing the electrical grid to meet current and future needs, with interprovincial frictions such as the B.C. challenge to Alberta's export restrictions further complicating coordination.

The report also points out that Canada’s reliance on certain types of energy sources, including fossil fuels, exacerbates the problem. While the country has made strides in renewable energy, including developments in clean grids and batteries across provinces, the transition has not kept pace with the rising demand for electricity. This imbalance highlights a crucial gap in Canada’s energy strategy that needs urgent attention.

Economic and Social Implications

The shortage in electrical supply has significant economic and social implications. For businesses, particularly those in energy-intensive sectors such as manufacturing and technology, the risk of power outages or unreliable service can lead to operational disruptions and financial losses. Increased energy costs due to supply constraints could also affect profit margins and competitiveness on both domestic and international fronts, with electricity exports at risk amid trade tensions.

Consumers are not immune to the impact of this electrical supply crunch. The potential for rolling blackouts or increased energy prices, as debates over electricity rates and innovation continue nationwide, can strain household budgets and affect overall quality of life. Additionally, inconsistent power supply can affect essential services, including healthcare facilities and emergency services, highlighting the critical nature of reliable electricity for public safety and well-being.

Investment and Infrastructure Upgrades

Addressing the electrical supply crunch requires significant investment in infrastructure and technology, and recent tariff threats have boosted support for Canadian energy projects that could accelerate these efforts. The EnergyNow.ca report underscores the need for modernizing the electrical grid to enhance capacity and resilience. This includes upgrading transmission lines, improving energy storage solutions, and expanding the integration of renewable energy sources such as wind and solar power.

Investing in smart grid technology is also essential. Smart grids use digital communication and advanced analytics to optimize electricity distribution, detect outages, and manage demand more effectively. By adopting these technologies, Canada can better balance supply and demand, reduce the risk of blackouts, and improve overall efficiency in energy use.

Renewable Energy Transition

Transitioning to renewable energy sources is a critical component of addressing the electrical supply crunch. While Canada has made progress in this area, the pace of change needs to accelerate under the new Clean Electricity Regulations for 2050 that set long-term targets. Expanding the deployment of wind, solar, and hydroelectric power can help diversify the energy mix and reduce reliance on fossil fuels. Additionally, supporting innovations in energy storage and grid management will enhance the reliability and sustainability of renewable energy.

The EnergyNow.ca report highlights several ongoing initiatives and projects aimed at increasing renewable energy capacity. However, these efforts must be scaled up and supported by both public policy and private investment to ensure that Canada can meet its energy needs and climate goals.

Policy and Strategic Planning

Effective policy and strategic planning are crucial for addressing the electrical supply challenges, with an anticipated electricity market reshuffle in at least one province signaling change ahead. Government action is needed to support infrastructure investment, incentivize renewable energy adoption, and promote energy efficiency measures. Collaborative efforts between federal, provincial, and municipal governments, along with private sector stakeholders, will be key to developing a comprehensive strategy for managing Canada’s electrical supply.

Public awareness and engagement are also important. Educating consumers about energy conservation practices and encouraging the adoption of energy-efficient technologies can contribute to reducing overall demand and alleviating some of the pressure on the electrical grid.

Conclusion

Canada’s electrical supply crunch is a pressing issue that demands immediate and sustained action. The growing demand for electricity, coupled with aging infrastructure and a lagging transition to renewable energy, poses significant challenges for the country’s economy and daily life. Addressing this issue will require substantial investment in infrastructure, advancements in technology, and effective policy measures. By taking a proactive and collaborative approach, Canada can navigate this crisis and build a more resilient and sustainable energy future.

 

Related News

View more

Cape Town to Build Own Power Plants, Buy Additional Electricity

Cape Town Renewable Energy Plan targets 450+ MW via solar, wind, and battery storage, cutting Eskom reliance, lowering greenhouse gas emissions, stabilizing electricity prices, and boosting grid resilience through municipal procurement, PPAs, and city-owned plants.

 

Key Points

A municipal plan to procure over 450 MW, cut Eskom reliance, stabilize prices, and reduce Cape Town emissions.

✅ Up to 150 MW from private plants within the city

✅ 300 MW to be purchased from outside Cape Town later

✅ City financing 100-200 MW of its own generation

 

Cape Town is seeking to secure more than 450 megawatts of power from renewable sources to cut reliance on state power utility Eskom Holdings SOC Ltd., where wind procurement cuts were considered during lockdown, and reduce greenhouse gas emissions.

South Africa’s second-biggest city is looking at a range of options, including geothermal exploration in comparable markets, and expects the bulk of the electricity to be generated from solar plants, Kadri Nassiep, the city’s executive director of energy and climate change, said in an interview.

On July 14 the city of 4.6 million people released a request for information to seek funding to build its own plants. This month or next it will seek proposals for the provision of as much as 150 megawatts from privately owned plants, largely solar additions, to be built and operated within the city, he said. As much as 300 megawatts may also be purchased at a later stage from plants outside of Cape Town, according to Nassiep.

The city could secure finance to build 100 to 200 megawatts of its own generation capacity, Nassiep said. “We realized that it is important for the city to be more in control around the pricing of the power,” he added.

Power Outages

Cape Town’s foray into the securing of power from sources other than Eskom comes after more than a decade of intermittent electricity outages, while elsewhere in Africa coal projects face scrutiny from lenders, because the utility can’t meet national demand. The government last year said municipalities could find alternative suppliers.

Earlier this month Ethekwini, the municipal area that includes the city of Durban, issued a request for information for the provision of 400 megawatts of power, similar to BC Hydro’s call for power driven by EV uptake.

The City of Johannesburg will in September seek information and proposals for the construction of a 150-megawatt solar plant, reflecting moves like Ontario’s new wind and solar procurements to tackle supply gaps, 50 megawatts of rooftop solar panels and the refurbishment of an idle gas-fired plant that could generate 20 megawatts, it said in June. It will also seek information for the installation of 100 megawatts of battery storage.

Cape Town, which uses a peak of 1,800 megawatts of electricity in winter, hopes to start generating some of its own power next year, aligning with SaskPower’s 2030 renewables plan seen in Canada, according to a statement that accompanied its request for financing proposals.
 

 

Related News

View more

Wartsila to Power USA’s First Battery-Electric High-Speed Ferries

San Francisco Battery-Electric Ferries will deliver zero-emission, high-speed passenger service powered by Wartsila electric propulsion, EPMS, IAS, batteries, and shore power, advancing maritime decarbonization under the REEF program and USCG Subchapter T standards.

 

Key Points

They are the first US zero-emission high-speed passenger ferries using integrated electric propulsion and shore power

✅ Dual 625 kW motors enable up to 24-knot service speeds

✅ EPMS, IAS, DC hub, and shore power streamline operations

✅ Built to USCG Subchapter T for safety and compliance

 

Wartsila, a global leader in sustainable marine technology, has been selected to supply the electric propulsion system for the United States' first fully battery-electric, zero-emission high-speed passenger ferries. This significant development marks a pivotal step in the decarbonization of maritime transport, aligning with California's ambitious environmental goals, including recent clean-transport investments across ports and corridors.

A Leap Toward Sustainable Maritime Transport

The project, commissioned by All American Marine (AAM) on behalf of San Francisco Bay Ferry, involves the construction of three 150-passenger ferries, reflecting broader U.S. advances like the Washington State Ferries hybrid upgrade now underway. These vessels will operate on new routes connecting the rapidly developing neighborhoods of Treasure Island and Mission Bay to downtown San Francisco. The ferries are part of the Rapid Electric Emission Free (REEF) Ferry Program, a comprehensive initiative by San Francisco Bay Ferry to transition its fleet to zero-emission propulsion technology. The first vessel is expected to join the fleet in early 2027.

Wärtsilä’s Role in the Project

Wärtsilä's involvement encompasses the supply of a comprehensive electric propulsion system, including the Energy and Power Management System (EPMS), integrated automation system (IAS), batteries, DC hub, transformers, electric motors, and shore power supply. This extensive scope underscores Wärtsilä’s expertise in providing integrated solutions for emission-free marine transportation. The company's extensive global experience in developing and supplying integrated systems and solutions for zero-emission high-speed vessels, as seen with electric ships on the B.C. coast operating today, was a key consideration in the selection process.

Technical Specifications of the Ferries

The ferries will be 100 feet (approximately 30 meters) in length, with a beam of 26 feet and a draft of 5.9 feet. Each vessel will be powered by dual 625-kilowatt electric motors, enabling them to achieve speeds of up to 24 knots. The vessels will be built to U.S. Coast Guard Subchapter T standards, ensuring compliance with stringent safety regulations.

Environmental and Operational Benefits

The transition to battery-electric propulsion offers numerous environmental and operational advantages. Electric ferries produce zero emissions during operation, as demonstrated by Berlin's electric ferry deployments, significantly reducing the carbon footprint of maritime transport. Additionally, electric propulsion systems are generally more efficient and require less maintenance compared to traditional diesel engines, leading to lower operational costs over the vessel's lifespan.

Broader Implications for Maritime Decarbonization

This project is part of a broader movement toward sustainable maritime transport in the United States. San Francisco Bay Ferry has also approved the purchase of two larger 400-passenger battery-electric ferries for transbay routes, further expanding its commitment to zero-emission operations. The agency has secured approximately $200 million in funding from local, state, and federal sources, echoing infrastructure bank support seen in B.C., to support these initiatives, including vessel construction and terminal electrification.

Wartsila’s involvement in this project highlights the company's leadership in the maritime industry's transition to sustainable energy solutions, including hybrid-electric pathways like BC Ferries' new hybrids now in service. With a proven track record in supplying integrated systems for zero-emission vessels, Wärtsilä is well-positioned to support the global shift toward decarbonized maritime transport.

As the first fully battery-electric high-speed passenger ferries in the United States, these vessels represent a significant milestone in the journey toward sustainable and environmentally responsible maritime transportation, paralleling regional advances such as the Kootenay Lake electric-ready ferry entering service. The collaboration between Wärtsilä, All American Marine, and San Francisco Bay Ferry exemplifies the collective effort required to realize a zero-emission future for the maritime industry.

The deployment of these battery-electric ferries in San Francisco Bay not only advances the city's environmental objectives but also sets a precedent for other regions to follow. With continued innovation and collaboration, the maritime industry can look forward to a future where sustainable practices are the standard, not the exception.

 

Related News

View more

Alliant aims for carbon-neutral electricity, says plans will save billions for ratepayers

Alliant Energy Net-Zero Carbon Plan outlines carbon-neutral electricity by 2050, coal retirements by 2040, major solar and wind additions, gas transition, battery storage, hydrogen, and carbon credits to reduce emissions and lower customer costs.

 

Key Points

Alliant Energy's strategy to reach carbon-neutral power by 2050 via coal phaseout, renewables, storage, and offsets.

✅ Targets net-zero electricity by 2050

✅ Retires all coal by 2040; expands solar and wind

✅ Uses storage, hydrogen, and offsets to bridge gaps

 

Alliant Energy has joined a small but growing group of utilities aiming for carbon-neutral electricity by 2050.

In a report released Wednesday, the Madison-based company announced a goal of “net-zero carbon dioxide emissions” from its electricity generation along with plans to eliminate all coal-powered generation by 2040, a decade earlier than the company’s previous target.

Alliant, which is pursuing plans that would make it the largest solar energy generator in Wisconsin, said it is on track to cut its 2005 carbon emissions in half by 2030.

Both goals are in line with targets an international group of scientists warn is necessary to avoid the most catastrophic impacts of climate change. But reducing greenhouse gasses was not the primary motivation, said executive vice president and general counsel Jim Gallegos.

“The primary driver is focused on our customers and communities and setting them up … to be competitive,” Gallegos said. “We do think renewables are going to do it better than fossil fuels.”

Alliant has told regulators it can save customers up to $6.5 billion over the next 35 years by adding more than 1,600 megawatts of renewable generation, closing one of its two remaining Wisconsin coal plants and taking other undisclosed actions.

In a statement, Alliant chairman and CEO John Larsen said the goal is part of broader corporate and social responsibility efforts “guided by our strategy and designed to deliver on our purpose — to serve customers and build stronger communities.”

Coal out; gas remains
The goal applies only to Alliant’s electricity generation — the company has no plans to stop distributing natural gas for heating — and is “net-zero,” meaning the company could use some form of carbon capture or purchase carbon credits to offset continuing emissions.

The plan relies heavily on renewable generation — seen in regions embracing clean power across North America — including the addition of up to 1,000 megawatts of new Wisconsin solar plants by the end of 2023 and 1,000 megawatts of Iowa wind generation added over the past four years — as well as natural gas generators to replace its aging coal fleet.

But Jeff Hanson, Alliant’s director of sustainability, said eliminating or offsetting all carbon emissions will require new tools, such as battery storage or possibly carbon-free fuels such as hydrogen, and awareness of the Three Mile Island debate over the role of nuclear power in the mix.

“Getting to the 2040 goals, that’s all based on the technologies of today,” Hanson said. “Can we get to net zero today? The challenge would be a pretty high bar to clear.”

Gallegos said the plan does not call for the construction of more large-scale natural gas generators like the recently completed $700 million West Riverside Energy Center in Beloit, though natural gas will remain a key piece of Alliant’s generation portfolio.

Alliant announced plans in May to close its 400-megawatt Edgewater plant in Sheboygan by the end of 2022, echoing how Alberta is retiring coal by 2023 as markets shift, but has not provided a date for the shutdown of the jointly owned 1,100-megawatt Columbia Energy Center near Portage, which received about $1 billion worth of pollution-control upgrades in the past decade.

Alliant’s Iowa subsidiary plans to convert its 52-year-old, 200-megawatt Burlington plant to natural gas by the end of next year and a pair of small coal-fired generators in Linn County by 2025. That leaves the 250-megawatt plant in Lansing, which is now 43 years old, and the 734-megawatt Ottumwa plant as the remaining coal-fired generators, even as others keep a U.S. coal plant running indefinitely elsewhere.

Earlier this year, the utility asked regulators to approve a roughly $900 million investment in six solar farms across the state with a total capacity of 675 megawatts, similar to plans in Ontario to seek new wind and solar to address supply needs. The company plans to apply next year for permission to add up to 325 additional megawatts.

Alliant said the carbon-neutral plan, which entails closing Edgewater along with other undisclosed actions, would save customers between $2 billion and $6.5 billion through 2055 compared to the status quo.

Tom Content, executive director of the Citizens Utility Board, said the consumer advocacy group wants to ensure that ratepayers aren’t forced to continue paying for coal plants that are no longer needed while also paying for new energy sources and would like to see a bigger role for energy efficiency and more transparency about the utilities’ pathways to decarbonization.

‘They could do better’
Environmental groups said the announcement is a step in the right direction, though they say utilities need to do even more to protect the environment and consumers.

Amid competition from cheaper natural gas and renewable energy and pressure from environmentally conscious investors, U.S. utilities have been closing coal plants at a record pace in recent years, as industry CEOs say a coal comeback is unlikely in the U.S., a trend that is expected to continue through the next decade.

“This is not industry leadership when we’re talking about emission reductions,” said Elizabeth Katt Reinders, regional campaign director for the Sierra Club, which has called on Alliant to retire the Columbia plant by 2026.

Closing Edgewater and Columbia would get Alliant nearly halfway to its emissions goals while saving customers more than $250 million over the next decade, according to a Sierra Club study released earlier this year.

“Retiring Edgewater was a really good decision. Investing in 1,000 megawatts of new solar is game-changing for Wisconsin,” Katt Reinders said. “In the same breath we can say this emissions reduction goal is unambitious. Our analysis has shown they can do far more far sooner.”

Scott Blankman, a former Alliant executive who now works as director of energy and air programs for Clean Wisconsin, said Alliant should not run the Columbia plant for another 20 years.

“If they’re saying they’re looking to get out of coal by 2040 in Wisconsin I’d be very disappointed,” Blankman said. “I do think they could do better.”

Alliant is the 15th U.S. investor-owned utility to set a net-zero target, according to the Natural Resources Defense Council, joining Madison Gas and Electric, which announced a similar goal last year. Minnesota-based Xcel Energy, which serves customers in western Wisconsin, was the first large investor-owned utility to set such a target, as state utilities report declining returns in coal operations.

 

Related News

View more

Ontario pitches support for electric bills

Ontario CEAP Program provides one-time electricity bill relief for residential consumers via local utilities, supports low-income households, aligns with COVID-19 recovery rates, and complements time-of-use pricing options and the winter disconnection ban.

 

Key Points

A one-time electricity bill credit for eligible Ontario households affected by COVID-19, available via local utilities.

✅ Apply through your local distribution company or utility

✅ One-time credit for overdue electricity bills from COVID-19

✅ Complements TOU options, OER, and winter disconnection ban

 

Applications for the CEAP program for Ontario residential consumers has opened. Residential customers across the province can now apply for funding through their local distribution company/utility.

On June 1st, our government announced a suite of initiatives to support Ontario’s electricity consumers amid changes for electricity consumers during the pandemic, including a $9 million investment to support low-income Ontarians through the COVID-19 Energy Assistance Program (CEAP). CEAP will provide a one-time payment to Ontarians who are struggling to pay down overdue electricity bills incurred during the COVID-19 outbreak.

These initiatives include:

  • $9 million for the COVID-19 Energy Assistance Program (CEAP) to support consumers struggling to pay their energy bills during the pandemic. CEAP will provide one-time payments to consumers to help pay down any electricity bill debt incurred over the COVID19 period. Applications will be available through local utilities in the upcoming months;
  • $8 million for the COVID-19 Energy Assistance Program for Small Business (CEAP-SB) to provide support to businesses struggling with bill payments as a result of the outbreak; and
  • An extension of the Ontario Energy Board’s winter disconnection ban until July 31, 2020 to ensure no one is disconnected from their natural gas or electricity service during these uncertain times.


More information about applications for the CEAP for Small Business will be coming later this summer, as electricity rates are about to change across Ontario for many customers.

In addition, the government recently announced that it will continue the suspension of time-of-use (TOU) electricity rates and, starting on June 1, 2020, customers will be billed based on a new fixed COVID-19 hydro rate of 12.8 cents per kilowatt hour. The COVID-19 Recovery Rate, which some warned in analysis could lead to higher hydro bills will be in place until October 31, 2020.

Later in the pandemic, Ontario set electricity rates at the off-peak price until February 7 to provide additional relief.

“Starting November 1, 2020, our government has announced Ontario electricity consumers will have the option to choose between time-of-use and tiered electricity pricing plan, following the Ontario Energy Board’s new rate plan prices and support thresholds announcement. We are proud to soon offer Ontarians the ability to choose an electricity plan that best suits for their lifestyle,” said Jim McDonell, MPP for Stormont–Dundas–South Glengarry.

The government will continue to subsidize electricity bills by 31.8 per cent through the Ontario Electricity Rebate.

The government is providing approximately $5.6 billion in 2020-21 as part of its existing electricity cost relief programs and conservation initiatives such as the Peak Perks program to help ensure more affordable electricity bills for eligible residential, farm and small business consumers.

 

Related News

View more

Ontario explores possibility of new, large scale nuclear plants

Ontario Nuclear Expansion aims to meet rising electricity demand and decarbonization goals, complementing renewables with energy storage, hydroelectric, and SMRs, while reducing natural gas reliance and safeguarding grid reliability across the province.

 

Key Points

A plan to add large nuclear capacity to meet demand, support renewables, cut gas reliance, and maintain grid reliability

✅ Adds firm, low-carbon baseload to complement renewables

✅ Reduces reliance on natural gas during peak and outages

✅ Requires public and Indigenous engagement on siting

 

Ontario is exploring the possibility of building new, large-scale nuclear plants in order to meet increasing demand for electricity and phase out natural gas generation.

A report late last year by the Independent Electricity System Operator found that the province could fully eliminate natural gas from the electricity system by 2050, starting with a moratorium in 2027, but it will require about $400 billion in capital spending and more generation including new, large-scale nuclear plants.

Decarbonizing the grid, in addition to new nuclear, will require more conservation efforts, more renewable energy sources and more wind and solar power sources and more energy storage, the report concluded.

The IESO said work should start now to assess the reliability of new and relatively untested technologies and fuels to replace natural gas, and to set up large, new generation sources such as nuclear plants and hydroelectric facilities.

The province has not committed to a natural gas moratorium or phase-out, or to building new nuclear facilities other than its small modular reactor plans, but it is now consulting on the prospect.

A document recently posted to the government’s environmental registry asks for input on how best to engage the public and Indigenous communities on the planning and location of new generation and storage facilities.

Building new nuclear plants is “one pathway” toward a fully electrified system, Energy Minister Todd Smith said in an interview.

“It’s a possibility, for sure, and that’s why we’re looking for the feedback from Ontarians,” he said. “We’re considering all of the next steps.”

Environmental groups such as Environmental Defence oppose new nuclear builds, as well as the continued reliance on natural gas.

“The IESO’s report is peddling the continued use of natural gas under the guise of a decarbonization plan, and it takes as a given the ramping up of gas generation and continues to rely on gas generated electricity until 2050, which is embarrassingly late,” said Lana Goldberg, Environmental Defence’s Ontario climate program manager.

“Building new nuclear is absurd when we have safe and much cheaper alternatives such as wind and solar power.”

The IESO has said the flexibility natural gas provides, alongside new gas plants, is needed to keep the system stable while new and relatively untested technologies are explored and new infrastructure gets built, but also as an electricity supply crunch looms.

Ontario is facing a shortfall of electricity with the Pickering nuclear station set to be retired, others being refurbished, and increasing demands including from electric vehicles, new electric vehicle and battery manufacturing, electric arc furnaces for steelmaking, and growth in the greenhouse and mining industries.

The government consultation also asks whether “additional investment” should be made in clean energy in the short term in order to decrease reliance on natural gas, “even if this will increase costs to the electricity system and ratepayers.”

But Smith indicated the government isn’t keen on higher costs.

“We’re not going to sacrifice reliability and affordability,” he said. “We have to have a reliable and affordable system, otherwise we won’t have people moving to electrification.”

The former Liberal government faced widespread anger over high hydro bills _ highlighted often by the Progressive Conservatives, then in Opposition — driven up in part by long-term contracts at above-market rates with clean power producers secured to spur a green energy transition.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.