AREVA to power ALCANÂ’s new plant in Canada

By Electricity Forum


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
AREVA’s Transmission and Distribution division has been awarded a turnkey contract to build an electricity supply system for ALCAN’s new AP50 plant located in Jonquière, Quebec. The AP50 plant will operate at 500 kilo amperes (kA) and will produce a projected 60,000 tons per year of primary aluminum.

Under the contract worth over 100 million euros, AREVA will build a highvoltage power rectifier station that will convert the incoming alternating current into direct current, required for the aluminum production process. The station will be delivered by September 2009.

AREVAÂ’s Transmission and Distribution division is currently number two worldwide on the aluminum power segment. This contract will help the division reach its global objective for the electro-intensive industries market: to double its order intake by 2010.

AREVA T&D has been partnering with ALCAN for over 30 years and is currently building a power supply system for its production sites located in Saint Jean de Maurienne and Dunkerque in France.

Philippe Guillemot, Chairman and CEO of AREVA T&D, said “This success is the logical continuation of our long-term cooperation with ALCAN. This win also demonstrates our ability to meet the specific needs of electro-intensive industry customers and represents another breakthrough in our strategy to grow on this market.”

Related News

COVID-19 crisis shows need to keep electricity options open, says Birol

Electricity Security and Firm Capacity underpin reliable supply, balancing variable renewables with grid flexibility via gas plants, nuclear power, hydropower, battery storage, and demand response, safeguarding telework, e-commerce, and critical healthcare operations.

 

Key Points

Ability to meet demand by combining firm generation and flexible resources, keeping grids stable as renewables grow.

✅ Balances variable renewables with dispatchable generation

✅ Rewards flexibility via capacity markets and ancillary services

✅ Enhances grid stability for critical loads during low demand

 

The huge disruption caused by the coronavirus crisis, and the low-carbon electricity lessons drawn from it, has highlighted how much modern societies rely on electricity and how firm capacity, such as that provided by nuclear power, is a crucial element in ensuring supply, International Energy Agency (IEA) Executive Director Fatih Birol said.

In a commentary posted on LinkedIn, Birol said: "The coronavirus crisis reminds us of electricity's indispensable role in our lives. It's also providing insights into how that role is set to expand and evolve in the years and decades ahead."

Reliable electricity supply is crucial for teleworking, e-commerce, operating ventilators and other medical equipment, among all its other uses, he said, adding that the hundreds of millions of people who live without any access to electricity are far more vulnerable to disease and other dangers.

"Although new forms of short-term flexibility such as battery storage are on the rise, and initiatives like UK home virtual power plants are emerging, most electricity systems rely on natural gas power plants - which can quickly ramp generation up or down at short notice - to provide flexibility, underlining the critical role of gas in clean energy transitions," Birol said.

"Today, most gas power plants lose money if they are used only from time to time to help the system adjust to shifts in demand. The lower levels of electricity demand during the current crisis are adding to these pressures. Hydropower, an often forgotten workhorse of electricity generation, remains an essential source of flexibility.

"Firm capacity, including nuclear power in countries that have chosen to retain it as an option, is a crucial element in ensuring a secure electricity supply even as soaring electricity and coal use complicate transitions. Policy makers need to design markets that reward different sources for their contributions to electricity security, which can enable them to establish viable business models."

In most economies that have taken strong confinement measures in response to the coronavirus - and for which the IEA has available data - electricity demand has declined by around 15%, largely as a result of factories and businesses halting operations, and in New York City load patterns were notably reshaped during lockdowns. If electricity demand falls quickly while weather conditions remain the same, the share of variable renewables like wind and solar can become higher than normal, and low-emissions sources are set to cover almost all near-term growth.

"With weaker electricity demand, power generation capacity is abundant. However, electricity system operators have to constantly balance demand and supply in real time. People typically think of power outages as happening when surging electricity demand overwhelms supply. But in fact, some of the most high-profile blackouts in recent times took place during periods of low demand," Birol said.

"When electricity from wind and solar is satisfying the majority of demand, and renewables poised to eclipse coal by 2025 are reshaping the mix, systems need to maintain flexibility in order to be able to ramp up other sources of generation quickly when the pattern of supply shifts, such as when the sun sets. A very high share of wind and solar in a given moment also makes the maintenance of grid stability more challenging."

 

Related News

View more

Berlin Geothermal Plant in El Salvador Set to Launch This Year

El Salvador Geothermal Expansion boosts renewable energy with a 7 MW Berlin binary ORC plant, upgrades at Ahuachapan, and pipeline projects, strengthening clean power capacity, grid reliability, and sustainable growth in Central America.

 

Key Points

A national push adding binary-cycle capacity at Berlin and Ahuachapan, boosting geothermal supply and advancing sites.

✅ 7 MW Berlin binary ORC plant entering service.

✅ Ahuachapan upgrade adds 2 MW, total geothermal 204 MW.

✅ Next: Chinameca, San Miguel, San Vicente, World Bank backed.

 

El Salvador is set to expand its renewable energy capacity with the inauguration of the 7-MW Berlin binary geothermal power plant, slated to go online later this year. This new addition marks a significant milestone in the country’s geothermal energy development, highlighting its commitment to sustainable energy solutions. The plant, which has already been installed and is currently undergoing testing, is expected to boost the nation’s geothermal capacity, contributing to its growing renewable energy portfolio.

The Role of Geothermal Energy in El Salvador’s Energy Mix

Geothermal energy plays a pivotal role in El Salvador's energy landscape. With the combined output from the Ahuachapan and Berlin geothermal plants, geothermal energy now accounts for about 21% of the country's net electricity supply. This makes geothermal the second-largest source of energy generation in El Salvador, underscoring its importance as a reliable and sustainable energy resource alongside emerging options like advanced nuclear microreactor technologies in the broader low-carbon mix.

In addition to the Berlin plant, El Salvador has made significant improvements to its Ahuachapan geothermal power plant. Recent upgrades have increased its generation capacity by 2 MW, further enhancing the country’s geothermal energy output. Together, the Ahuachapan and Berlin plants bring the total installed geothermal capacity to 204 MW, positioning El Salvador as a regional leader in geothermal energy development.

The Berlin Binary Geothermal Plant: A Technological Milestone

The Berlin binary geothermal power plant is especially noteworthy for several reasons. It is the first geothermal power plant to be constructed in El Salvador since 2007, marking a significant step in the country's ongoing efforts to expand its renewable energy infrastructure while reinforcing attention to risk management in light of Hawaii geothermal safety concerns reported elsewhere. The plant utilizes a binary cycle geothermal system, which is known for its efficiency in extracting energy from lower temperature geothermal resources, making it an ideal solution for regions like Berlin, where geothermal resources are abundant but at lower temperatures.

The plant was built by Turboden, an Italian company specializing in organic Rankine cycle (ORC) technology. The binary cycle system operates by transferring heat from the geothermal fluid to a secondary fluid, which then drives a turbine to generate electricity. This system allows for the efficient use of geothermal resources that might otherwise be too low in temperature for traditional geothermal plants, enabling pairing with thermal storage demonstration solutions to optimize output.

Future Geothermal Developments in El Salvador

El Salvador is not stopping with the Berlin geothermal plant. The country is actively working on other geothermal projects, including those in Chinameca, San Miguel, and San Vicente. These developments are expected to add 50 MW of additional capacity in their first phase, reflecting a broader shift as countries pursue hydrogen-ready power plants to reduce emissions, with a second phase, supported by the World Bank, planned to add another 100 MW.

The Chinameca, San Miguel, and San Vicente projects represent the next wave of geothermal development in El Salvador. When completed, these plants will significantly increase the country’s geothermal capacity, further diversifying its energy mix and reducing reliance on fossil fuels, and will require ongoing grid upgrades, a task complicated elsewhere by Germany grid expansion challenges highlighted in Europe.

International Support and Collaboration

El Salvador’s geothermal development efforts are supported by various international partners, including the World Bank, which has been instrumental in financing the expansion of geothermal projects, as utilities such as SaskPower geothermal plans in Canada explore comparable pathways. This collaboration highlights the global recognition of El Salvador’s potential in geothermal energy and its efforts to position itself as a hub for geothermal energy development in Central America.

Additionally, the country’s expertise in geothermal energy, especially in binary cycle technology, has attracted international attention. El Salvador’s progress in the geothermal sector could serve as a model for other countries in the region that are looking to harness their geothermal resources to reduce energy costs and promote sustainable energy development.

The upcoming launch of the Berlin binary geothermal power plant is a testament to El Salvador’s commitment to sustainable energy. As the country continues to expand its geothermal capacity, it is positioning itself as a leader in renewable energy in the region. The binary cycle technology employed at the Berlin plant not only enhances energy efficiency but also demonstrates El Salvador’s ability to adapt and innovate within the renewable energy sector.

With the continued development of projects in Chinameca, San Miguel, and San Vicente, and ongoing international collaboration, El Salvador’s geothermal energy sector is set to play a crucial role in the country’s energy future. As global demand for clean energy grows, exemplified by U.S. solar capacity additions this year, El Salvador’s investments in geothermal energy are helping to build a more sustainable, resilient, and energy-independent future.

 

Related News

View more

France hopes to keep Brussels sweet with new electricity pricing scheme

France Electricity Pricing Mechanism aligns with EU rules, leveraging nuclear energy and EDF profits, avoiding Contracts for Difference, redistributing windfalls to industry and households, targeting €70/MWh amid electricity market reform and Brussels oversight.

 

Key Points

A framework to keep power near €70/MWh by reclaiming EDF windfalls and redistributing them under EU market rules.

✅ Targets average price near €70/MWh from 2026

✅ Skims EDF profits above €78-80 and €110/MWh thresholds

✅ Aligns with EU rules; avoids nuclear CfDs and state aid clashes

 

France has unveiled a new electricity pricing mechanism, hoping to defuse months of tension over energy subsidies with Brussels and its neighbors.

The strain has included a Franco-German fight over EU electricity reform with Germany accusing France of wanting to subsidize its industry via artificially low energy prices, while Paris maintained it should have the right to make the most of its relatively cheap nuclear energy. That fight has now been settled.

On Tuesday, the French government presented a new mechanism — complex, and still-to-be-detailed — to bring the average price of electricity closer to €70 per megawatt hour (MWh) as of 2026, amid Europe's electricity market revamp efforts.

"The agreement has been defined to comply with European rules and avoid difficulties with the European Commission," said France's Economy and Finance Minister Bruno Le Maire, noting that France had ruled out other "simpler" options that would have caused tension with Brussels.

For example, France has not yet envisaged the use of state-backed investment schemes called Contracts for Difference (CfD), which were the main source of discord in talks with Germany on the electricity market reform and the EU push for more fixed-price contracts in generation. The compromise agreed by EU ministers last month gives the Commission the power to monitor CfDs in the nuclear sector.

"France wanted to limit as much as possible the European Commission's nuisance power," said Phuc-Vinh Nguyen, an energy expert at the Jacques Delors Institute think tank in Paris.

The announcement came weeks after French President Emmanuel Macron promised that France would "take back control" of its electricity prices to allow its industry to make the most of the country's relatively cheap nuclear energy.

Germany, by contrast, has moved to support energy-intensive industries with an industrial electricity subsidy, underscoring the policy divergence.

“The price of electricity has always been a major competitive advantage for the French nation, and it must remain so,” Le Maire said.

Under the new mechanism, part of a broader deal on electricity prices between the state and EDF, the government will seize EDF profits above certain thresholds and redistribute them directly to industry and households to bring prices closer to the desired level. Specifically, the government will redistribute 50 percent of EDF’s additional profits if prices rise above €78-€80 per MWh, and 90 percent of extra profits if prices rise above €110 per MWh.

The move also marks a new step in the government's power grab at EDF, after the company was fully nationalized earlier this year.

For years, France has been discussing an EDF reform with the Commission in order to address concerns by Brussels regarding disguised state aid to the company. In particular, the Commission wanted assurances that any state aid given to nuclear would be kept separate from those parts of the business subject to competition, such as renewable energy development.

An economy ministry official close to Le Maire argued that the new pricing mechanism would settle matters with Brussels on that front. A Commission spokesperson said Brussels was in contact with France on the file, but declined further comment.

The mechanism will replace the existing EU-mandated energy pricing mechanism, dubbed ARENH, which was set to expire at the end of 2025, and which has forced EDF to sell some of its electricity to competitors at a fixed low price since 2010, and comes amid contested electricity market reforms at EU level.

The new system could benefit EDF because it won't be bound to sell energy at a lower price, but instead will be allowed to auction off its energy to competitors. On the other hand, the redistribution system would deprive the company of some profits when electricity prices are higher. No wonder, then, that negotiations between the government and EDF have been "difficult," as Le Maire put it.

 

Related News

View more

Electricity Market Headed for a Reshuffle as Province Vows Overhaul

Alberta Electricity Market Overhaul will add renewables like wind and solar, curb price volatility tied to natural gas, boost competition, and reward energy efficiency, while safeguarding grid reliability and investor confidence through a transition roadmap.

 

Key Points

Alberta's 2027 market redesign adds renewables, boosts competition, and cuts volatility to protect reliability.

✅ Integrates wind and solar to meet climate and affordability goals.

✅ Increases competition and efficiency; reduces price volatility.

✅ Plans transition measures to maintain reliability and investment.

 

Alberta's electricity market is on the precipice of a significant transformation. The province, long reliant on fossil fuels for power generation, has committed to a market overhaul by 2027. This ambitious plan promises to shake up the current system, but industry players are wary of a lengthy period of uncertainty that could stifle much-needed investment in the sector.

The impetus for change stems from a confluence of factors. Soaring energy bills for consumers, reflecting rising electricity prices across the province, coupled with concerns about Alberta's environmental footprint, have pressured the government to seek a more sustainable and cost-effective electricity system. The current market, heavily influenced by natural gas prices, has been criticized for volatility and a lack of incentive for renewable energy development.

The details of the new electricity market design are still being formulated. However, the government has outlined some key objectives. One priority is to incorporate more renewable energy sources like wind and solar power into the grid. This aligns with Alberta's climate change goals and could lead to cleaner electricity generation, supporting the province's path to clean electricity in the coming years.

Another objective is to introduce more competition within the market. The current system is dominated by a few large players, and the government hopes increased competition will drive down prices for consumers, as the market needs more competition to function efficiently.

While the potential benefits of the overhaul are undeniable, industry leaders are apprehensive about the transition period, with a Calgary retailer urging the government to scrap the overhaul amid uncertainty. The lack of clarity surrounding the new market design creates uncertainty for power companies. This could discourage investment in new generation facilities, both renewable and traditional, potentially leading to supply shortages in the future.

John Kousinioris, CEO of TransAlta, a major Alberta power generator, expressed these concerns. "We need a clear roadmap for the future," he stated. "Uncertainty makes it difficult to justify significant investments in new power plants, which are essential to ensure a reliable electricity supply for Albertans."

The government acknowledges the need to minimize disruption during the transition. They have promised to engage in consultations with industry stakeholders throughout the redesign process, as the province changes how it produces and pays for electricity to support long-term stability. Additionally, measures may be implemented to ensure a smooth transition and provide some level of certainty for investors.

The success of Alberta's electricity market overhaul will depend on several factors. Striking a balance between environmental sustainability, affordability, and energy security will be crucial. The government must design a system that incentivizes investment in new, cleaner power generation while maintaining reliable electricity supply at a reasonable cost for consumers.

The role of natural gas, a dominant player in Alberta's current electricity mix, is another point of contention. While the government aims to incorporate more renewables, natural gas is likely to remain a part of the equation for some time. Determining the appropriate role for natural gas in the future market will be a critical decision.

The upcoming years will be a period of significant change for Alberta's electricity market. The province's commitment to a cleaner and more competitive system holds promise, but navigating the transition effectively will be a complex challenge. Open communication, collaboration between stakeholders, and a well-defined roadmap for the future will be essential for ensuring a successful electricity market overhaul and a brighter energy future for Alberta.

 

Related News

View more

Analysis: Out in the cold: how Japan's electricity grid came close to blackouts

Japan Electricity Crunch exposes vulnerabilities in a liberalised power market as LNG shortages, JEPX price spikes, snow-hit solar, and weak hedging strain energy security and retail providers amid cold snap demand and limited reserve capacity.

 

Key Points

A winter demand shock and LNG shortfalls sent JEPX to records, exposing gaps in hedging, data, and energy security.

✅ JEPX wholesale prices spiked to an all-time high

✅ LNG inventories and procurement proved insufficient

✅ Snow disabled solar; new entrants lacked hedging

 

Japan's worst electricity crunch since the aftermath of the Fukushima crisis has exposed vulnerabilities in the country's recently liberalised power market, although some of the problems appear self-inflicted.

Power prices in Japan hit record highs last month, mirroring UK peak power prices during tight conditions, as a cold snap across northeast Asia prompted a scramble for supplies of liquefied natural gas (LNG), a major fuel for the country's power plants. Power companies urged customers to ration electricity to prevent blackouts, although no outages occurred.

The crisis highlighted how many providers were unprepared for such high demand. Experts say LNG stocks were not topped up ahead of winter and snow disabled solar power farms, while China's power woes strained solar supply chains.

The hundreds of small power companies that sprang up after the market was opened in 2016 have struggled the most, saying the government does not disclose the market data they need to operate. The companies do not have their own generators, instead buying electricity on the wholesale market.

Prices on the Japan Electric Power Exchange (JEPX) hit a record high of 251 yen ($2.39) per kilowatt hour in January, equating to $2,390 per megawatt hour of electricity, above record European price surges seen recently and the highest on record anywhere in the world. One megawatt hour is roughly what an average home in the U.S. would consume over 35 days.

But the vast majority of the new, smaller companies are locked into low, fixed rates they set to lure customers from bigger players, crushing them financially during a price spike like the one in January.

More than 50 small power providers wrote on Jan. 18 to Japan's industry minister, Hiroshi Kajiyama, who oversees the power sector, asking for more accessible data on supply and demand, reserve capacity and fuel inventories.

"By organising and disclosing this information, retail electricity providers will be able to bid at more appropriate prices," said the companies, led by Looop Co.

They also called on Kajiyama to require transmission and distribution companies to pass on some of the unexpected profits from price spikes to smaller operators.

The industry ministry said it had started releasing more timely market data, and is reviewing the cause of the crunch and considering changes, echoing calls by Fatih Birol to keep electricity options open amid uncertainty.

Japan reworked its power markets after the Fukushima nuclear disaster in 2011, liberalizing the sector in 2016 while pushing for more renewables.

But Japan is still heavily reliant on LNG and coal, and only four of 33 nuclear reactors are operating. The power crisis has led to growing calls to restart more reactors.

Kazuno Power, a small retail provider controlled by a municipality of the same name in northern Japan, where abundant renewable energy is locally produced, buys electricity from hydropower stations and JEPX.

During the crunch, the company had to pay nearly 10 times the usual price, Kazuno Power president Takao Takeda said in an interview. Like most other new providers, it could not pass on the costs, lost money, and folded. The local utility has taken over its customers.

"There is a contradiction in the current system," Takeda said. "We are encouraged to locally produce power for local consumption as well as use more renewable energy, but prices for these power supplies are linked to wholesale prices, which depend on the overall power supply."

The big utilities, which receive most of their LNG on long-term contracts, blamed the power shortfall on a tight spot market and glitches at generation units.

"We were not able to buy as much supply as we wanted from the spot market because of higher demand from South Korea and China, where power cuts have tightened supply," Kazuhiro Ikebe, the head of the country's electricity federation, said recently.

Ikebe is also president of Kyushu Electric Power, which supplies the southern island of Kyushu.

Utilities took extreme measures - from burning polluting fuel oil in coal plants to scavenging the dregs from empty LNG tankers - to keep the grid from breaking down.

"There is too much dependence on JEPX for procurement," said Bob Takai, the local head of European Energy Exchange, where electricity pricing reforms are being discussed, and which started offering Japan power futures last year. He added that new entrants were not hedging against sharp price moves.

Three people, who requested anonymity because of the sensitivity of the matter, were more blunt. One called the utilities arrogant in assuming they could find LNG cargoes in a pinch. Prices were already rising as China snapped up supplies, the sources noted.

"You had volatility caused by people saying 'Oh, well, demand is going to be weak because of coronavirus impacts' and then saying 'we can rely more on solar than in the past,' but solar got snowed out," said a senior executive from one generator. "We have a problem of who is charge of energy security in Japan."

Inventories of LNG, generally about two weeks worth of supplies, were also not topped up enough to prepare for winter, a market analyst said.

The fallout from the crunch has become more apparent in recent days, with new power companies like Rakuten Inc suspending new sales and Tokyo Gas, along with traditional electricity utilities, issuing profit downgrades or withdrawing their forecasts.

Although prices have fallen sharply as temperatures warmed up slightly and more generation units have come back online, the power generator executive said, "we are not out of the woods yet."
 

 

Related News

View more

Schneider Electric Aids in Notre Dame Restoration

Schneider Electric Notre Dame Restoration delivers energy management, automation, and modern electrical infrastructure, boosting safety, sustainability, smart monitoring, efficient lighting, and power distribution to protect heritage while reducing consumption and future-proofing the cathedral.

 

Key Points

Schneider Electric upgrades Notre Dame's electrical systems to enhance safety, sustainability, automation, and efficiency.

✅ Energy management modernizes power distribution and lighting.

✅ Advanced safety and monitoring reduce fire risk.

✅ Sustainable automation lowers consumption while preserving heritage.

 

Schneider Electric, a global leader in energy management and automation, exemplified by an AI and technology partnership in Paris, has played a significant role in the restoration of the Notre Dame Cathedral in Paris following the devastating fire of April 2019. The company has contributed by providing its expertise in electrical systems, ensuring the cathedral’s systems are not only restored but also modernized with energy-efficient solutions. Schneider Electric’s technology has been crucial in rebuilding the cathedral's electrical infrastructure, focusing on safety, sustainability, and preserving the iconic monument for future generations.

The fire, which caused widespread damage to the cathedral’s roof and spire, raised concerns about both the physical restoration and the integrity of the building’s systems, including rising ransomware threats to power grids that affect critical infrastructure. As Notre Dame is one of the most visited and revered landmarks in the world, the restoration process required advanced technical solutions to meet the cathedral’s complex needs while maintaining its historical authenticity.

Schneider Electric's contribution to the project has been multifaceted. The company’s solutions helped restore the electrical systems in a way that reduces the energy consumption of the building, improving sustainability without compromising the historical essence of the structure. Schneider Electric worked closely with architects, engineers, and restoration experts to implement innovative energy management technologies, such as advanced power distribution, lighting systems, and monitoring solutions like synchrophasor technology for enhanced grid visibility.

In addition to energy-efficient solutions, Schneider Electric’s efforts in safety and automation have been vital. The company provided expertise in reinforcing the electrical safety systems, leveraging digital transformer stations to improve reliability, which is especially important in a building as old as Notre Dame. The fire highlighted the importance of modern safety systems, and Schneider Electric’s technology ensures that the restored cathedral will be better protected in the future, with advanced monitoring systems capable of detecting any anomalies or potential hazards.

Schneider Electric’s involvement also aligns with its broader commitment to sustainability and energy efficiency, echoing calls to invest in a smarter electricity infrastructure across regions. By modernizing Notre Dame’s electrical infrastructure, the company is helping the cathedral move toward a more sustainable future. Their work represents the fusion of cutting-edge technology and historic preservation, ensuring that the building remains an iconic symbol of French culture while adapting to the modern world.

The restoration of Notre Dame is a massive undertaking, with thousands of workers and experts from various fields involved in its revival. Schneider Electric’s contribution highlights the importance of collaboration between heritage conservationists and modern technology companies, and reflects developments in HVDC technology in Europe that are shaping modern grids. The integration of such advanced energy management solutions allows the cathedral to function efficiently while maintaining the integrity of its architectural design and historical significance.

As the restoration progresses, Schneider Electric’s efforts will continue to support the cathedral’s recovery, with the ultimate goal of reopening Notre Dame to the public, reflecting best practices in planning for growing electricity needs in major cities. Their role in this project not only contributes to the physical restoration of the building but also ensures that it remains a symbol of resilience, cultural heritage, and the importance of combining tradition with innovation.

Schneider Electric’s involvement in the restoration of Notre Dame Cathedral is a testament to how modern technology can be seamlessly integrated into historic preservation efforts. The company’s work in enhancing the cathedral’s electrical systems has been crucial in restoring and future-proofing the monument, ensuring that it will continue to be a beacon of French heritage for generations to come.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified