Japan to allow IAEA inspection of quake-damaged nuclear plant

By Associated Press


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Japan will allow investigators from the U.N. nuclear watchdog to inspect a nuclear power station damaged recently by a powerful earthquake in order to address international safety concerns, an official said.

The Kashiwazaki-Kariwa plant - the world's largest in terms of capacity - suffered a long list of radioactive leaks and malfunctions during the July 16 magnitude-6.8 quake, which killed 10 people and injured more than 1,000.

International Atomic Energy Agency chief Mohamed ElBaradei offered to have his Vienna-based agency dispatch global experts to inspect the damage earlier but Japan rejected the offer, saying it could handle the safety check on its own.

Local officials then petitioned the central government to accept the inspection, saying the plant's problems and leaks had stirred "great unease'' among residents and were tarnishing the state's reputation overseas.

Tokyo decided to accept the IAEA offer from the viewpoint of "international cooperation and information sharing,'' Masahiro Yagi, international chief at the Nuclear and Industrial Safety Agency, said.

"We will work closely with the IAEA to carry out the investigation,'' Chief Cabinet Secretary Yasuhisa Shiozaki told reporters, adding that Japan plans to cooperate "toward ensuring safety in other parts of the world that are also prone to earthquake.''

Plant operator Tokyo Electric Power Co., or TEPCO, and nuclear regulators have stressed the amounts of radioactivity leaked were extremely low and posed no threat to the environment or local residents.

But the damage still raised concerns about the plant's safety, prompting the government to order it shuttered indefinitely until its safety can be confirmed.

Gov. Hirohiko Izumida of Niigata state - home of the Kashiwazaki-Kariwa power plant - also had urged Prime Minister Shinzo Abe and Trade Minister Akira Amari to accept the IAEA inspection to address safety concerns in and outside the country.

Yagi did not say whether the local petition prompted the government decision to accept the IAEA inspection.

The earthquake triggered a wave of malfunctions and damage at the plant, including a fire that charred an electrical transformer, planks that toppled into a pool of spent nuclear fuel and the knocking over of some 400 barrels of atomic waste.

The problems - exacerbated by TEPCO's delays in notifying the public - were capped by news that radioactive water had sloshed out of a tank and was flushed out to sea, and that radioactive material was vented into the air in two separate instances.

Officials at the Kashiwazaki plant have acknowledged they had not foreseen such a powerful quake hitting the facility. They also repeatedly underreported its impact after it hit.

Related News

Ontario Drops Starlink Deal, Eyes Energy Independence

Ontario Starlink Contract Cancellation underscores rising tariffs, trade tensions, and retaliation, as SpaceX's Elon Musk loses a rural broadband deal; Ontario pivots to procurement bans, energy resilience, and nuclear power to boost grid independence.

 

Key Points

Ontario ended a C$100M Starlink deal over U.S. tariffs, prompting a shift to rural broadband alternatives.

✅ Triggered by U.S. tariffs; Ontario adopts retaliatory procurement bans.

✅ Ends plan to connect 15,000 rural homes and businesses with broadband.

✅ Signals push for energy resilience, nuclear power, and grid independence.

 

In a decisive move, Ontario Premier Doug Ford announced the cancellation of a C$100 million contract with Elon Musk's Starlink, a subsidiary of SpaceX, in direct response to U.S. President Donald Trump's imposition of tariffs on Canadian imports. This action underscores the escalating trade tensions between Canada and the United States, a theme highlighted during Ford's Washington meeting on energy tariffs earlier this month, and highlights Ontario's efforts to safeguard its economic interests.

The now-terminated agreement, established in November, aimed to provide high-speed internet access to 15,000 homes and businesses in Ontario's remote areas. Premier Ford's decision to "rip up" the contract signifies a broader strategy to distance the province from U.S.-based companies amid the current trade dispute. He emphasized, "Ontario won't do business with people hell-bent on destroying our economy."

This move is part of a series of retaliatory measures by Canadian provinces, including Ford's threat to cut electricity exports to the U.S., following President Trump's announcement of a 25% tariff on nearly all Canadian imports, excluding oil, which faces a 10% surcharge. These tariffs, set to take effect imminently, have prompted concerns about potential economic downturns in Canada. In response, Prime Minister Justin Trudeau declared that Canada would impose 25% tariffs on C$155 billion worth of U.S. goods, aiming to exert pressure on the U.S. administration to reconsider its stance.

Premier Ford's actions reflect a broader sentiment of economic nationalism, as he also announced a ban on American companies from provincial contracts until the U.S. tariffs are lifted. He highlighted that Ontario's government and its agencies allocate $30 billion annually on procurement, and reiterated his earlier vow to fire the Hydro One CEO and board as part of broader reforms aimed at efficiency.

The cancellation of the Starlink contract raises concerns about the future of internet connectivity in Ontario's rural regions. The original deal with Starlink was seen as a significant step toward bridging the digital divide, offering high-speed internet to underserved communities. With the contract's termination, the province faces the challenge of identifying alternative solutions to fulfill this critical need.

Beyond the immediate implications of the Starlink contract cancellation, Ontario is confronting broader challenges in ensuring the resilience and independence of its energy infrastructure. The province's reliance on external entities for critical services, such as internet connectivity and energy, has come under scrutiny, as Canada's electricity exports are at risk amid ongoing trade tensions and policy uncertainty.

Premier Ford has expressed a commitment to expanding Ontario's capacity to generate nuclear power as a means to bolster energy self-sufficiency. While this strategy aims to reduce dependence on external energy sources, it presents its own set of challenges that critics argue require cleaning up Ontario's hydro mess before new commitments proceed. Developing nuclear infrastructure requires substantial investment, rigorous safety protocols, and long-term planning. Moreover, the integration of nuclear power into the province's energy mix necessitates careful consideration of environmental impacts and public acceptance.

The concept of "Trump-proofing" Ontario's electricity grid involves creating a robust and self-reliant energy system capable of withstanding external political and economic pressures. Achieving this goal entails diversifying energy sources, including building on Ontario's electricity deal with Quebec to strengthen interties, investing in renewable energy technologies, and enhancing grid infrastructure to ensure stability and resilience.

However, the path to energy independence is fraught with complexities. Balancing the immediate need for reliable energy with long-term sustainability goals requires nuanced policy decisions, including Ontario's Supreme Court challenge to the global adjustment fee and related regulatory reviews to clarify cost impacts. Additionally, fostering collaboration between government entities, private sector stakeholders, and the public is essential to navigate the multifaceted challenges associated with overhauling the province's energy framework.

Ontario's recent actions, including the cancellation of the Starlink contract, underscore the province's proactive stance in safeguarding its economic and infrastructural interests amid evolving geopolitical dynamics. While such measures reflect a commitment to self-reliance, they also highlight the intricate challenges inherent in reducing dependence on external entities. As Ontario charts its course toward a more autonomous future, strategic planning, investment in sustainable technologies, and collaborative policymaking will be pivotal in achieving long-term resilience and prosperity.

 

Related News

View more

South Australia rides renewables boom to become electricity exporter

Australia electricity grid transition is accelerating as renewables, wind, solar, and storage drive decentralised generation, emissions cuts, and NEM trade shifts, with South Australia becoming a net exporter post-Hazelwood closure and rooftop solar surging.

 

Key Points

Australia electricity shift to renewables, distributed generation and storage, cutting emissions, reshaping NEM flows.

✅ South Australia now exports power post-Hazelwood closure

✅ Rooftop solar is the fastest-growing NEM generation source

✅ Gas peaking and storage investments balance variable renewables

 

The politics may not change much, but Australia’s electricity grid is changing before our very eyes – slowly and inevitably becoming more renewable, more decentralised, and in step with Australia's energy transition that is challenging the pre-conceptions of many in the industry.

The latest national emissions audit from The Australia Institute, which includes an update on key electricity trends in the national electricity market, notes some interesting developments over the last three months.

The most surprising of those developments may be the South Australia achievement, which shows that since the closure of the Hazelwood brown coal generator in Victoria in March 2017, and as renewables outpacing brown coal in other markets, South Australia has become a net exporter of electricity, in net annualised terms.

Hugh Saddler, lead author of the study, notes that this is a big change for South Australia, which in 1999 and 2000, when it had only gas and local coal, used to import 30% of its electricity demand.

#google#

The fact that wholesale prices in South Australia were higher in other states – then, as they are now – has nothing to with wind and solar, but the fact that it has no low-cost conventional source and a peaky demand profile (then and now).

“The difference today is that the state is now taking advantage of its abundant resources of wind and solar radiation, and the new technologies which have made them the lowest cost sources of new generation, to supply much of its electricity requirements,” Saddler writes.

Other things to note about the flows between states is that Victoria was about equal on imports and exports with its three neighbouring states, despite the closure of Hazelwood. NSW continues to import around 10% of its needs from cheaper providers in Queensland.

Gas-fired generation had increased in the last year or two in South Australia as a result of the Northern closure, but is still below the levels of a decade ago.

But because it is expensive, this is likely to spur more investment in storage.

As for rooftop solar, Saddler notes that the share of residential solar in the grid is still relatively small but, despite excess solar risks flagged by distributors, it is the most steadily growing generation source in the NEM.

That line is expected to grow steadily. By 2040, or perhaps 2050, the share of distributed generation, which includes rooftop solar, battery storage and demand management, is expected to reach nearly half of all Australia’s grid demand.

Saddler, says, however, that the increase in large-scale solar over the last few months is a significant milestone in Australia’s transition towards clean electricity generation, mirroring trends in India's on-grid solar development seen in recent years. (See very top graph).

“Firstly, they are a concrete demonstration that the construction cost advantage, which wind enjoyed over solar until a year or two ago, is gone.

“From now on we can expect new capacity to be a mix of both technologies. Indeed, the Clean Energy Regulator states that it expects solar to account for half of all (new renewable) capacity by 2020, and the US is moving toward 30% from wind and solar as well.”

 

Related News

View more

Wind has become the ‘most-used’ source of renewable electricity generation in the US

U.S. Wind Generation surpassed hydroelectric output in 2019, EIA data shows, becoming the top renewable electricity source, driven by PTC incentives, expanded capacity, and utility-scale projects across states, boosting the national electricity mix.

 

Key Points

U.S. Wind Generation is the nation's top renewable, surpassing hydro as EIA-tracked capacity grows under PTC incentives.

✅ EIA: wind topped hydro in 2019, over 300M MWh generated

✅ PTC credits spurred growth in utility-scale wind projects

✅ 103 GW installed; 77% added in the last decade

 

Last year saw wind power surging in the U.S. to overtake hydroelectric generation for the first time, according to data from the U.S. Energy Information Administration (EIA).

Released Wednesday, the figures from the EIA’s “Electric Power Monthly” report show that yearly wind generation hit a little over 300 million megawatt hours (MWh) in 2019. This was roughly 26 million MWh more than hydroelectric production.

Wind now represents the “most-used renewable electricity generation source” in the U.S., the EIA said, and renewables hit a 28% monthly record in April in later data.

Overall, total renewable electricity generation — which includes sources such as solar's 4.7% share in 2022 as one example, geothermal and landfill gas — at utility scale facilities hit more than 720 million MWh in 2019, compared to just under 707 million MWh in 2018. To put things in perspective, generation from coal came to more than 966 million MWh in 2019, while renewables surpassed coal in 2022 nationally according to later analyses.

According to the EIA’s “Today in Energy” briefing, which was also published Wednesday, generation from wind power has grown “steadily” across the last decade, and by 2020, renewables became the second-most prevalent source in the U.S. power mix.

This, it added, was partly down to the extension of the Production Tax Credit, or PTC, amid favorable government plans supporting solar and wind growth. According to the EIA, the PTC is a system which gives operators a tax credit per kilowatt hour of renewable electricity production. It applies for the first 10 years of a facility’s operation.

At the end of 2019, the country was home to 103 gigawatts (GW) of wind capacity, with 77% of this being installed in the last decade, and wind capacity surpassed hydro in 2016 according to industry data. The U.S. is home 80 GW of hydroelectric capacity, according to the EIA.

“The past decade saw a steady increase in wind capacity across the country and we capped the decade with a monumental achievement for the industry in reaching more than 100 GW,” Tom Kiernan, the American Wind Energy Association’s CEO, said in a statement issued Thursday.

“And more wind energy is coming, as the industry is well into investing $62 billion in new projects over the next few years that put us on the path to achieving 20 percent of the nation’s electricity mix in 2030,” Kiernan went on to state.

“As a result, wind is positioned to remain the largest renewable energy generator in the country for the foreseeable future.”

 

Related News

View more

How offshore wind energy is powering up the UK

UK Offshore Wind Expansion will make wind the main power source, driving renewable energy, offshore projects, smart grids, battery storage, and interconnectors to cut carbon emissions, boost exports, and attract global investment.

 

Key Points

A UK strategy to scale offshore wind, integrate smart grids and storage, cut emissions and drive investment and exports

✅ 30% energy target by 2030, backed by CfD support

✅ 250m industry investment and smart grid build-out

✅ Battery storage and interconnectors balance intermittency

 

Plans are afoot to make wind the UKs main power source for the first time in history amid ambitious targets to generate 30 percent of its total energy supply by 2030, up from 8 percent at present.

A recently inked deal will see the offshore wind industry invest 250 million into technology and infrastructure over the next 11 years, with the government committing up to 557 million in support, under a renewable energy auction that boosts wind and tidal projects, as part of its bid to lower carbon emissions to 80 percent of 1990 levels by 2050.

Offshore wind investment is crucial for meeting decarbonisation targets while increasing energy production, says Dominic Szanto, Director, Energy and Infrastructure at JLL. The governments approach over the last seven years has been to promise support to the industry, provided that cost reduction targets were met. This certainty has led to the development of larger, more efficient wind turbines which means the cost of offshore wind energy is a third of what it was in 2012.

 

Boosting the wind industry

Offshore wind power has been gathering pace in the UK and has grown despite COVID-19 disruptions in recent years. Earlier this year, the Hornsea One wind farm, the worlds largest offshore generator which is located off the Yorkshire coast, started producing electricity. When fully operational in 2020, the project will supply energy to over a million homes, and a further two phases are planned over the coming decade.

Over 10 gigawatts of offshore wind either already has government support or is eligible to apply for it in the near future, following a 10 GW contract award that underscores momentum, representing over 30 billion of likely investment opportunities.

Capital is coming from European utility firms and increasingly from Asian strategic investors looking to learn from the UKs experience. The attractive government support mechanism means banks are keen to lend into the sector, says Szanto.

New investment in the UKs offshore wind sector will also help to counter the growing influence of China. The UK is currently the worlds largest offshore wind market, but by 2021 it will be outstripped by China.

Through its new deal, the government hopes to increase wind power exports fivefold to 2.6 billion per year by 2030, with the UKs manufacturing and engineering skills driving projects in growth markets in Europe and Asia and in developing countries supported by the World Bank support through financing and advisory programs.

Over the next two decades, theres a massive opportunity for the UK to maintain its industry leading position by designing, constructing, operating and financing offshore wind projects, says Szanto. Building on projects such as the Hywind project in Scotland, it could become a major export to countries like the USA and Japan, where U.S. lessons from the U.K. are informing policy and coastal waters are much deeper.

 

Wind-powered smart grids

As wind power becomes a major contributor to the UKs energy supply, which will be increasingly made up of renewable sources in coming decades, there are key infrastructure challenges to overcome.

A real challenge is that the UKs power generation is becoming far more decentralised, with smaller power stations such as onshore wind farms and solar parks and more prosumers residential houses with rooftop solar coupled with a significant rise in intermittent generation, says Szanto. The grid was never designed to manage energy use like that.

One potential part of the solution is to use offshore wind farms in other sites in European waters.

By developing connections between wind projects from neighbouring countries, it will create super-grids that will help mitigate intermittency issues, says Szanto.

More advanced energy storage batteries will also be key for when less energy is generated on still days. There is a growing need for batteries that can store large amounts of energy and smart technology to discharge that energy. Were going through a revolution where new technology companies are working to enable a much smarter grid.

Future smart grids, based on developing technology such as blockchain, might enable the direct trading of energy between generators and consumers, with algorithms that can manage many localised sources and, critically, ensure a smooth power supply.

Investors seeking a higher-yield market are increasingly turning to battery technology, Szanto says. In a future smart grid, for example, batteries could store electricity bought cheaply at low-usage times then sold at peak usage prices or be used to provide backup energy services to other companies.

 

Majors investing in the transition

Its not just new energy technology companies driving change; established oil and gas companies are accelerating spending on renewable energy. Shell has committed to $1-2 billion per year on clean energy technologies out of a $25-30 billion budget, while Equinor plans to spend 15-20 percent of its budget on renewables by 2030.

The oil and gas majors have the global footprint to deliver offshore wind projects in every country, says Szanto. This could also create co-investment opportunities for other investors in the sector especially as nascent wind markets such as the U.S., where the U.S. offshore wind timeline is still developing, and Japan evolve.

European energy giants, for example, have bid to build New Yorks first offshore wind project.

As offshore wind becomes a globalised sector, with a trillion-dollar market outlook emerging, the major fuel companies will have increasingly large roles. They have the resources to undertake the years-long, cost-intensive developments of wind projects, driven by a need for new business models as the world looks beyond carbon-based fuels, says Szanto.

Oil and gas heavyweights are also making wind, solar and energy storage acquisitions BP acquired solar developer Lightsource and car-charging network Chargemaster, while Shell spent $400 million on solar and battery companies.

The public perception is that renewable energy is niche, but its now a mainstream form of energy generation., concludes Szanto.

Every nation in the world is aligned in wanting a decarbonised future. In terms of electricity, that means renewable energy and for offshore wind energy, the outlook is extremely positive.

 

Related News

View more

Federal net-zero electricity regulations will permit some natural gas power generation

Canada Clean Electricity Regulations allow flexible, technology-neutral pathways to a 2035 net-zero grid, permitting limited natural gas with carbon capture, strict emissions standards, and exemptions for emergencies and peak demand across provinces and territories.

 

Key Points

Federal draft rules for a 2035 net-zero grid, allowing limited gas with CCS under strict performance and compliance standards.

✅ Performance cap: 30 tCO2 per GWh annually for gas plants

✅ CCS must sequester 95% of emissions to comply

✅ Emergency and peak demand exemptions permitted

 

After facing pushback from Alberta and Saskatchewan, and amid looming power challenges nationwide, Canada's draft net-zero electricity regulations — released today — will permit some natural gas power generation. 

Environment Minister Steven Guilbeault released Ottawa's proposed Clean Electricity Regulations on Thursday.

Provinces and territories will have a minimum 75-day window to comment on the draft regulations. The final rules are intended to pave the way to a net-zero power grid in Canada, aligning with 2035 clean electricity goals established nationally. 

Calling the regulations "technology neutral," Guilbeault said the federal government believes there's enough flexibility to accommodate the different energy needs of Canada's diverse provinces and territories, including how Ontario is embracing clean power in its planning. 

"What we're talking about is not a fossil fuel-free grid by 2035; it's a net zero grid by 2035," Guilbeault said. 

"We understand there will be some fossil fuels remaining … but we're working to minimize those, and the fossil fuels that will be used in 2035 will have to comply with rigorous environmental and emission standards," he added. 

Some analysts argue that scrapping coal-fired electricity can be costly and ineffective, underscoring the trade-offs in transition planning.

While non-emitting sources of electricity — hydroelectricity, wind and solar and nuclear — should not have any issues complying with the regulations, natural gas plants will have to meet specific criteria.

Those operations, the government said, will need to emit the equivalent of 30 tonnes of carbon dioxide per gigawatt hour or less annually to help balance demand and emissions across the grid.

Federal officials said existing natural gas power plants could comply with that performance standard with the help of carbon capture and storage systems, which would be required to sequester 95 per cent of their emissions.

"In other words, it's achievable, and it is achievable by existing technology," said a government official speaking to reporters Thursday on background and not for attribution.

The regulations will also allow a certain level of natural gas power production without the need to capture emissions. Capturing emissions will be exempted during emergencies and peak periods when renewables cannot keep up with demand. 

Some newer plants might not have to comply with the rules until the 2040s, because the regulations apply to plants 20 years after they are commissioned, which dovetails with net-zero by 2050 commitments from electricity associations. 

The two-decade grace period does not apply to plants that open after the regulations are expected to be finalized in 2025.

 

Related News

View more

Hydro One crews restore power to more than 277,000 customers following damaging storms in Ontario

Hydro One Power Restoration showcases outage recovery after a severe windstorm, with crews repairing downed power lines, broken poles and crossarms, partnering with utilities and contractors to boost grid resilience and promote emergency kit preparedness.

 

Key Points

A coordinated response by Hydro One and partners to repair storm damage, restore outages, strengthen grid resilience.

✅ Crews repaired downed lines, broken poles, and crossarms

✅ Partners and contractors aided rapid outage restoration

✅ Investments improve grid resilience and emergency readiness

 

Hydro One crews have restored power to more than 277,000 customers following back-to-back storms, with impacts felt in communities like Sudbury where local crews worked to reconnect service, including a damaging windstorm on that caused 57 broken poles, 27 broken crossarms, as well as downed power lines and fallen trees on lines. Hydro One crews restored power to more than 140,000 customers within 24 hours of Friday's windstorm, even as Toronto outages persisted for some customers elsewhere.

'We understand power outages bring life to a halt, which is why we are continuously improving our storm response, as employee COVID-19 support demonstrated, while making smart investments in a resilient, reliable and sustainable electricity system to energize life for families, businesses and communities for years to come,' said David Lebeter, Chief Operating Officer, Hydro One. 'We thank our customers for their patience as our crews worked tirelessly, alongside our utility partners and contractors, including Ontario crews in Florida, to restore power as quickly and as safely as possible.'

Hydro One thanks all of its utility partners and contractors who assisted with restoration efforts following the windstorm (alongside similar Quebec outages that highlighted the broader impact), including Durham High Voltage, EPCOR, ERTH Power, K-Line Construction Ltd., Lakeland Power Distribution Ltd., North Bay Hydro, Sproule Powerline Construction Ltd. and Valard Construction.

Hydro One encourages customers to restock their emergency kits following these storms, which utilities such as BC Hydro have also characterized as atypical, and to be aware of support programs like our pandemic relief fund that can help during difficult periods, to ensure they're prepared for an emergency or extended power outage.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.