CO2 capture project begins in Beijing

By Industrial Info Resources


NFPA 70e Training - Arc Flash

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Huaneng Beijing Thermal Power Plant's carbon-dioxide-capturing project, China's first project for capturing carbon dioxide (CO2) from the flue gas of a coal-fired power plant, was put into successful operation on July 16.

In order to improve the air quality in Beijing, the Huaneng Group and the municipal government of Beijing signed an agreement to promote research on capturing and disposing of CO2 on August 31, 2007. Construction of the CO2-capturing project at the Huang Beijing power plant began December 2007. Engineering of the project was carried out by Xi'an Thermal Engineering Research Institute, a subsidiary of the Huaneng Group. All equipment used in the project was made in China. The project has an annual production capacity of 3,000 metric tons of 99.9% pure CO2.

The project has been listed as an international cooperation project by the governments of Australia and China. During construction, support and cooperation were received from Australia's Commonwealth Scientific and Industrial Research Organization.

As the largest power producer in China, the Huaneng Group has taken the lead in building the CO2-capture project, which serves as a research and development platform for the capture and storage of CO2. The project will help lead the country in saving resources and improving environmental quality.

Related News

Canada's nationwide climate success — electricity

Canada Clean Electricity leads decarbonization, slashing power-sector emissions through coal phase-out, renewables like hydro, wind, and solar, and nuclear. Provinces cut carbon intensity, enabling electrification of transport and buildings toward net-zero goals.

 

Key Points

Canada Clean Electricity is the shift to low-emission power by phasing out coal and scaling renewables and nuclear.

✅ 38% cut in electricity emissions since 2005; 84% fossil-free power.

✅ Provinces lead coal phase-out; carbon intensity plummets.

✅ Enables EVs, heat pumps, and building electrification.

 

It's our country’s one big climate success so far.

"All across Canada, electricity generation has been getting much cleaner. It's our country’s one big climate success so far,"

To illustrate how quickly electric power is being cleaned up, what's still left to do, and the benefits it brings, I've dug into Canada's latest emissions inventory and created a series of charts below.

 

The sector that could

Climate pollution by Canadian economic sector, 2005 to 2017My first chart shows how Canada's economic sectors have changed their climate pollution since 2005.

While most sectors have increased their pollution or made little progress in the climate fight, our electricity sector has shined.

As the green line shows, Canadians have eliminated an impressive 38 per cent of the climate pollution from electricity generation in just over a decade.

To put these shifts into context, I've shown Canada's 2020 climate target on the chart as a gray star. This target was set by the Harper government as part of the global Copenhagen Accord. Specifically, Canada pledged to cut our climate pollution 17 per cent below 2005 levels under evolving Canadian climate policy frameworks of the time.

As you can see, the electricity sector is the only one to have done that so far. And it didn’t just hit the target — it cut more than twice as much.

Change in Canada's electricity generation, 2005 to 2017My next chart shows how the electricity mix changed. The big climate pollution cuts came primarily from reductions in coal burning, highlighting the broader implications of decarbonizing Canada's electricity grid for fuel choices.

The decline in coal-fired power was replaced (and then some) by increases in renewable electricity and other zero-emissions sources — hydro, wind, solar and nuclear.

As a result, Canada's overall electricity generation is now 84 per cent fossil free.

 

Every province making progress

A primary reason why electricity emissions fell so quickly is because every province worked to clean up Canada's electricity together.

Change in Canadian provincial electricity carbon intensity, 2005 to 2017

My next chart illustrates this rare example of Canada-wide climate progress. It shows how quickly the carbon-intensity of electricity generation has declined in different provinces.

(Note: carbon-intensity is the amount of climate pollution emitted per kilowatt-hour of electricity generated: gCO2e/kWh).

Ontario clearly led the way with an amazing 92 per cent reduction in climate pollution per kWh in just twelve years. Most of that came from ending the burning of coal in their power plants. But a big chunk also came from cutting in half the amount of natural gas they burn for electricity.

Manitoba, Quebec and B.C. also made huge improvements.

Even Alberta and Saskatchewan, which were otherwise busy increasing their overall climate pollution, made progress in cleaning up their electricity.

These real-world examples show that rapid and substantial climate progress can happen in Canada when a broad-spectrum of political parties and provinces decide to act.

Most Canadians now have superclean electricity

As a result of this rapid cleanup, most Canadians now have access to superclean energy.

Canadian provincial electricity carbon intensity in 2017

 

Who has it? And how clean is it?

The biggest climate story here is the superclean electricity generated by the four provinces shown on the left side — Quebec, Manitoba, B.C. and Ontario. Eighty per cent of Canadians live in these provinces and have access to this climate-safe energy source.

Those living in Alberta and Saskatchewan, however, still have fairly dirty electricity — as shown in orange on the right — and options like bridging the electricity gap between Alberta and B.C. could accelerate progress in the West.

A lot more cleanup must happen here before the families and businesses in these provinces have a climate-safe energy supply.

 

What's left to do?

Canada's electricity sector has two big climate tasks remaining: finishing the cleanup of existing power and generating even more clean energy to replace fossil fuels like the gasoline and natural gas used by vehicles, factories and other buildings.

 

Finishing the clean up

Climate pollution from Canadian provincial electricity 2005 and 2017

As we saw above, more than a third of the climate pollution from electricity has already been eliminated. That leaves nearly two-thirds still to clean up.

Back in 2005, Canada's total electricity emissions were 125 million tonnes (MtCO2).

Over the next twelve years, emissions fell by more than a third (-46 MtCO2). Ontario did most of the work by cutting 33 MtCO2. Alberta, New Brunswick and Nova Scotia made the next biggest cuts of around 4 MtCO2 each.

Now nearly eighty million tonnes of climate pollution remain.

As you can see, nearly all of that now comes from Alberta and Saskatchewan. As a result, continuing Canada's climate progress in the power sector now requires big cuts in the electricity emissions from these two provinces.

 

Generating more clean electricity

The second big climate task remaining for Canada's electricity is to generate more clean electricity to replace the fossil fuels burned in other sectors. My next chart lets you see how big a task this is.

 

Clean electricity generation by Canadian province, 2017

It shows how much climate-safe electricity is currently generated in major provinces. This includes zero-emissions renewables (blue bars) and nuclear power (pale blue).

Quebec tops the list with 191 terawatt-hours (TWh) per year. While impressive, it only accounts for around half of the energy Quebecers use. The other half still comes from climate-damaging fossil fuels and to replace those, Quebec will need to build out more clean energy.

The good news here is that electricity is more efficient for most tasks, so fossil fuels can be replaced with significantly less electric energy. In addition, other efficiency and reduction measures can further reduce the amount of new electricity needed.

Newfoundland and Labrador is in the best situation. They are the only province that already generates more climate-safe electricity than they would need to replace all the fossil fuels they burn. They currently export most of that clean electricity.

At the other extreme are Alberta and Saskatchewan. These provinces currently produce very little climate-safe energy. For example, Alberta's 7 TWh of climate-safe electricity is only enough to cover 1 per cent of the energy used in the province.

All told, Canadians currently burn fossil fuels for three-quarters of the energy we use. To preserve a safe-and-sane climate, most provinces will soon need lots more clean electricity in the race to net-zero to replace the fossil fuels we burn.

How soon will they need it?

According to the most recent report from the International Panel on Climate Change (IPCC), avoiding a full-blown climate crisis will require humanity to cut emissions by 45 per cent over the next decade.

 

Using electricity to clean up other sectors

Finally, let's look at how electricity can help clean up two of Canada’s other high-emission sectors — transportation and buildings.

 

Cleaning up transportation

Transportation is now the second biggest climate polluting sector in Canada (after the oil and gas industry). So, it’s a top priority to reduce the amount of gasoline we use.

Canadian provincial electricity carbon intensity in 2017, plus gasoline equivalent

Switching to electric vehicles (EVs) can reduce transportation emissions by a little, or a lot. It depends on how clean the electricity supply is.

To make it easy to compare gasoline to each province's electricity I've added a new grey-striped zone at the top of the carbon-intensity chart.

This new zone shows that burning gasoline in cars and trucks has a carbon-intensity equivalent to more than 1,000 gCO2e/kWh. (If you are interested in the details of this and other data points, see the geeky endnotes.)

The good news is that every province's electricity is now much cleaner than gasoline as a transportation fuel.

In fact, most Canadians have electricity that is at least 95 per cent less climate polluting than gasoline. Electrifying vehicles in these provinces virtually eliminates those transportation emissions.

Even in Alberta, which has the dirtiest electricity, it is 20 per cent cleaner than gasoline. That's a help, for sure. But it also means that Albertans must electrify many more vehicles to achieve the same emissions reductions as regions with cleaner electricity.

In addition to reducing climate pollution, switching transportation to electricity brings other big benefits:

It reduces air pollution in cities — a major health hazard.

It cuts the energy required for transportation by 75 per cent — because electric motors are so much more efficient.

It reduces fuel costs up to 80 per cent — saving tens of thousands of dollars.

And for gasoline-importing provinces, using local electricity keeps billions of fuel dollars inside their provincial economy.

As an extra bonus, it makes it hard for companies to manipulate the price or for outsiders to "turn off the taps.”

 

Cleaning up buildings

Canada's third biggest source of climate pollution is the buildings sector.

Burning natural gas for heating is the primary cause. So, reducing the amount of fossil gas burned in buildings is another top climate requirement.

Canadian provincial electricity carbon intensity in 2017, plus gasoline and nat gas heating equivalent

Heating with electricity is a common alternative. However, it's not always less climate polluting. It depends on how clean the electricity is.

To compare these two heating sources, look at the lower grey-striped zone I've added to the chart.

It shows that heating with natural gas has a carbon-intensity of 200 to 300 gCO2 per kWh of heat delivered. High-efficiency gas furnaces are at the lower end of this range.

As you can see, for most Canadians, electric heat is now the much cleaner choice — nearly eliminating emissions from buildings. But in Alberta and Saskatchewan, electricity is still too dirty to replace natural gas heat.

The climate benefits of electric heat can be improved further by using the newer high-efficiency air-source heat pump technologies like mini-splits. These can heat using one half to one third of the electricity of standard electric baseboard heaters. That means it is possible to use electricity that is a bit dirtier than natural gas and still deliver cleaner heating. As a bonus, heat pumps can free up a lot of existing electricity supply when used to replace existing electric baseboards.

 

Electrify everything

You’ve probably heard people say that to fight climate breakdown, we need to “electrify everything.” Of course, the electricity itself needs to be clean and what we’ve seen is that Canada is making important progress on that front. The electricity industry, and the politicians that prodded them, all deserve kudos for slashing emissions at more than twice the rate of any other sector.

We still need to finish the cleanup job, but we also need to turn our sights to the even bigger task ahead: requiring that everything fossil fuelled — every building, every factory, every vehicle — switches to clean Canadian power.

 

Related News

View more

Opinion: Fossil-fuel workers ready to support energy transition

Canada Net-Zero Transition unites energy workers, R&D, and clean tech to decarbonize steel and cement with hydrogen, scale renewables, and build hybrid storage, delivering a just transition that strengthens communities and the economy.

 

Key Points

A national plan to reach net-zero by 2050 via renewables, hydrogen, decarbonization, and a just transition for workers.

✅ Hydrogen for steel and cement decarbonization

✅ Hybrid energy storage and clean tech R&D

✅ Just transition pathways for energy workers

 

Except for an isolated pocket of skeptics, there is now an almost universal acceptance that climate change is a global emergency that demands immediate and far-reaching action to defend our home and future generations. Yet in Canada we remain largely focused on how the crisis divides us rather than on the potential for it to unite us, despite nationwide progress in electricity decarbonization efforts.

It’s not a case of fossil-fuel industry workers versus the rest, or Alberta versus British Columbia where bridging the electricity gap could strengthen cooperation. We are all in this together. The challenge now is how to move forward in a way that leaves no one behind.

The fossil fuel industry has been — and continues to be — a key driver of Canada’s economy. Both of us had successful careers in the energy sector, but realized, along with an increasing number of energy workers, that the transition we need to cope with climate change could not be accomplished solely from within the industry.

Even as resource companies innovate to significantly reduce the carbon burden of each barrel, the total emission of greenhouse gases from all sources continues to rise. We must seize the opportunity to harness this innovative potential in alternative and complementary ways, mobilizing research and development, for example, to power carbon-intensive steelmaking and cement manufacture from hydrogen or to advance hybrid energy storage systems and decarbonizing Canada's electricity grid strategies — the potential for cross-over technology is immense.

The bottom line is inescapable: we must reach net-zero emissions by 2050 in order to prevent runaway global warming, which is why we launched Iron & Earth in 2016. Led by oilsands workers committed to increasingly incorporating renewable energy projects into our work scope, our non-partisan membership now includes a range of industrial trades and professions who share a vision for a sustainable energy future for Canada — one that would ensure the health and equity of workers, our families, communities, the economy, and the environment.

Except for an isolated pocket of skeptics, there is now an almost universal acceptance that climate change is a global emergency that demands immediate and far-reaching action, including cleaning up Canada's electricity to meet climate pledges, to defend our home and future generations. Yet in Canada we remain largely focused on how the crisis divides us rather than on the potential for it to unite us.

It’s not a case of fossil-fuel industry workers versus the rest, or Alberta versus British Columbia. We are all in this together. The challenge now is how to move forward in a way that leaves no one behind.

The fossil fuel industry has been — and continues to be — a key driver of Canada’s economy. Both of us had successful careers in the energy sector, but realized, along with an increasing number of energy workers, that the transition we need to cope with climate change could not be accomplished solely from within the industry.

Even as resource companies innovate to significantly reduce the carbon burden of each barrel, the total emission of greenhouse gases from all sources continues to rise, underscoring that Canada will need more electricity to hit net-zero, according to the IEA. We must seize the opportunity to harness this innovative potential in alternative and complementary ways, mobilizing research and development, for example, to power carbon-intensive steelmaking and cement manufacture from hydrogen or to advance hybrid energy storage systems — the potential for cross-over technology is immense.

The bottom line is inescapable: we must reach net-zero emissions by 2050 in order to prevent runaway global warming, which is why we launched Iron & Earth in 2016. Led by oilsands workers committed to increasingly incorporating renewable energy projects into our work scope, as calls for a fully renewable electricity grid by 2030 gain attention, our non-partisan membership now includes a range of industrial trades and professions who share a vision for a sustainable energy future for Canada — one that would ensure the health and equity of workers, our families, communities, the economy, and the environment.

 

Related News

View more

Gaza’s sole electricity plant shuts down after running out of fuel

Gaza Power Plant Shutdown underscores the Gaza Strip's fuel ban, Israeli blockade, and electricity crisis, cutting megawatts, disrupting hospitals and quarantine centers, and exposing fragile energy supply, GEDCO warnings, and public health risks.

 

Key Points

An abrupt halt of Gaza's sole power plant due to a fuel ban, deepening the electricity crisis and straining hospitals.

✅ Israeli fuel ban halts Gaza's only power plant

✅ Available supply drops far below 500 MW demand

✅ Hospitals and COVID-19 quarantine centers at risk

 

The only electricity plant in the Gaza Strip shut down yesterday after running out of fuel banned from entering the besieged enclave by the Israeli occupation, Gaza Electricity Distribution Company announced.

“The power plant has shut down completely,” the company said in a brief statement, as disruptions like China power cuts reveal broader grid vulnerabilities.

Israel banned fuel imports into Gaza as part of punitive measures over the launching incendiary balloons from the Strip.

On Sunday, GEDCO warned that the industrial fuel for the electricity plant would run out, mirroring Lebanon's fuel shortage challenges, on Tuesday morning.

Since 2007, the Gaza Strip suffered under a crippling Israeli blockade that has deprived its roughly two million inhabitants of many vital commodities, including food, fuel and medicine, and regional strains such as Iraq's summer electricity needs highlight broader power insecurity.

As a result, the coastal enclave has been reeling from an electricity crisis, similar to when the National Grid warned of short supply in other contexts.

The Gaza Strip needs some 500 megawatts of electricity – of which only 180 megawatts are currently available – to meet the needs of its population, while Iran supplies about 40% of Iraq's electricity in the region.

Spokesman of the Ministry of Health in Gaza, Ashraf Al Qidra, said the lack of electricity undermines offering health services across Gaza’s hospitals.

He also warned that the lack of electricity would affect the quarantine centres used for coronavirus patients, reinforcing the need to keep electricity options open during the pandemic.

Gaza currently has three sources of electricity: Israel, which provides 120 megawatts and is advancing coal use reduction measures; Egypt, which supplies 32 megawatts; and the Strip’s sole power plant, which generates between 40 and 60 megawatts.

 

Related News

View more

Romania enhances safety at Cernavoda, IAEA reports

IAEA OSART Cernavoda highlights strengthened operational safety at Romania’s Cernavoda NPP, citing improved maintenance practices, simulator training, and deficiency reporting, with ongoing actions on spare parts procurement, procedure updates, and chemical control for nuclear compliance.

 

Key Points

An IAEA follow-up mission confirming improved operational safety at Cernavoda NPP, with remaining actions tracked.

✅ Enhanced simulator training and crew performance

✅ Improved field deficiency identification and reporting

✅ Ongoing upgrades to procedures, spares, and chemical control

 

The International Atomic Energy Agency (IAEA) said yesterday that the operator of Romania’s Cernavoda nuclear power plant had demonstrated "strengthened operational safety" by addressing the findings of an initial IAEA review in 2016. The Operational Safety Review Team (OSART) concluded a five-day follow-up mission on 8 March to the Cernavoda plant, which is on the Danube-Black Sea Canal, about 160 km from Bucharest.

The plant's two 706 MWe CANDU pressurised heavy water reactors, reflecting Canadian nuclear projects, came online in 1996 and 2007, respectively.

The OSART team was led by Fuming Jiang, a senior nuclear safety officer at the IAEA, which recently commended China's nuclear security in separate assessments.

"We saw improvements in key areas, such as the procurement of important spare parts, the identification and reporting of some deficiencies, and some maintenance work practices, as evidenced by relevant performance indicators," Jiang said, noting milestones at nuclear projects worldwide this year.

The team observed that several findings from the 2016 review had been fully addressed, including: enhanced operator crew performance during simulator training; better identification and reporting of deficiencies in the field; and improvement in maintenance work practices.

More time is required, it said, to fully implement some actions, including: further improvements in the procurement of important spare parts with relevance to safety; further enhancement in the revision and update of some operating procedures, drawing on lessons from Pickering NGS life extensions undertaken in Ontario; and control and labelling of some plant chemicals.

Dan Bigu, site vice president of Cernavoda NPP, said the 2016 mission had "proven to be very beneficial", adding that the current follow-up mission would "provide further catalyst support to our journey to nuclear excellence".

The team provided a draft report of the mission to the plant's management and a final report will be submitted to the Romanian government, which recently moved to terminate talks with a Chinese partner on a separate nuclear project, within three months.

OSART missions aim to improve operational safety by objectively assessing safety performance, even as the agency reports mines at Ukraine's Zaporizhzhia plant amid ongoing risks, using the IAEA's safety standards and proposing recommendations and suggestions for improvement where appropriate. The follow-up missions are standard components of the OSART programme and, as the IAEA has warned of risks from attacks on Ukraine's power grids, are typically conducted within two years of the initial mission.

 

Related News

View more

Britain Prepares for High Winter Heating and Electricity Costs

UK Energy Price Cap drives household electricity bills and gas prices, as Ofgem adjusts unit rates amid natural gas shortages, Russia-Ukraine disruptions, inflation, recession risks, and limited storage; government support offers only short-term relief.

 

Key Points

The UK Energy Price Cap limits per-unit gas and electricity charges set by suppliers and adjusted by Ofgem.

✅ Reflects wholesale natural gas costs; varies quarterly

✅ Protects consumers from sudden electricity and heating bill spikes

✅ Does not cap total annual spend; usage still determines bills

 

The government organization that controls the cost of energy in Great Britain recently increased what is known as a price cap on household energy bills. The price cap is the highest amount that gas suppliers can charge for a unit of energy.

The new, higher cost has people concerned that they may not be able to pay for their gas and electricity this winter. Some might pay as much as $4,188 for energy next year. Earlier this year, the price cap was at $2,320, and a 16% decrease in bills is anticipated in April.

Why such a change?

Oil and gas prices around the world have been increasing since 2021 as economies started up again after the coronavirus pandemic. More business activities required more fuel.

Then, Russia invaded Ukraine in late February, creating a new energy crisis. Russia limited the amount of natural gas it sent to European countries that needed it to power factories, produce electricity and keep homes warm.

Some energy companies are charging more because they are worried that Russia might completely stop sending gas to European countries. And in Britain, prices are up because the country does not produce much gas or have a good way to store it. As a result, Britain must purchase gas often in a market where prices are high, and ministers have discussed ending the gas-electricity price link to ease bills.

Citibank, a U.S. financial company, believes the higher energy prices will cause inflation in Britain to reach 18 percent in 2023, while EU energy inflation has also been driven higher by energy costs this year. And the Bank of England says an economic slowdown known as a recession will start later this year.

Public health and private aid organizations worry that high energy prices will cause a “catastrophe” as Britons choose between keeping their homes warm and eating enough food.

What can government do?

As prices rise, the British government plans to give people between $450 and $1,400 to help pay for energy costs, while some British MPs push to further restrict the price charged for gas and electricity. But the help is seen by many as not enough.

If the government approves more money for fuel, it will probably not come until September, as the energy security bill moves toward becoming law. That is the time the Conservative Party will select a new leader to replace Prime Minister Boris Johnson.

The Labour Party says the government should increase the amount it provides for people to pay for fuel by raising taxes on energy companies. However, the two politicians who are trying to become the next Prime Minister do not seem to support that idea.

Giovanna Speciale leads an organization called the Southeast London Community Energy group. It helps people pay their bills. She said the money will help but it is only a short-term solution to a bigger problem with Britain’s energy system. Because the system is privately run, she said, “there’s very little that the government can do to intervene in this.”

Other European countries are seeing higher energy costs, but not as high, and at the EU level, gas price cap strategies have been outlined to tackle volatility. In France, gas prices are capped at 2021 levels. In Germany, prices are up by 38 percent since last year. However, the government is reducing some taxes, which will make it easier for the average person to buy gas. In Italy, prices are going up, but the government recently approved over $8 billion to help people pay their energy bills.
 

 

Related News

View more

Opinion: The awesome, revolutionary electric-car revolution that doesn't actually exist

Ecofiscal Commission EV Policy Shift examines carbon pricing limits, endorsing signal boosters like subsidies, EV incentives, and coal bans, amid advisory changes and public pushback, to accelerate emissions cuts beyond market-based taxes and regulations.

 

Key Points

An updated stance recognizing carbon pricing limits and backing EV incentives, subsidies, and rules to reduce emissions.

✅ Carbon pricing plus subsidies, EV incentives

✅ Advisory shift; Jack Mintz departs

✅ Focus on emissions cuts, coal power bans

 

Something strange happened at the Ecofiscal Commission recently. Earlier this month, the carbon-tax advocacy group featured on its website as one of its advisers the renowned Canadian economist (and FP Comment columnist) Jack M. Mintz. The other day, suddenly and without fanfare, Mintz was gone from the website, and the commission’s advisory board.

Advisers come and advisers go, of course, but it turns out there was an impetus for Mintz’s departure. The Ecofiscal Commission in its latest report, dropped just before Canada Day, seemingly shifted from its position that carbon prices were so excellent at mimicking market forces that the tax could repeal and replace virtually the entire vast expensive gallimaufry of subsidies, caps, rules and regulations that are costing Canada a fortune in business and bureaucrats. As some Ecofiscal commissioners wrote just a few months ago, policies that “dictate specific technologies or methods for reducing emissions constrain private choice and increase costs” and were a bad idea.

But, in this latest report, the commission is now musing about the benefits of carbon-tax “signal boosters”: that is, EV subsidies and rules to, for instance, get people to start buying electric vehicles (EVs), as well as bans on coal-fired power. “Even well designed carbon pricing can have limitations,” rationalized the commission. Mintz said he had “misgivings” about the change of tack. He decided it best if he focus his advisory energies elsewhere.

It’s hard to blame the commission for falling like everyone else for the electric-car mania that’s sweeping the nation and the world. Electric cars offer a sexiness that dreary old carbon taxes can never hope to match — especially in light of a new Angus Reid poll last week that showed the majority of Canadians now want governments to shelve any plans for carbon taxes.

So far, because nobody’s really driving these miracle machines, said mania has been limited to breathless news reports about how the electric-vehicle revolution is about to rock our world. EVs comprise just two-tenths of a per cent of all passenger vehicles in North America, despite the media’s endless hype and efforts of green-obsessed governments to cover much of the price tag, like Ontario’s $14,000 rebate for Tesla buyers. In Europe, where virtue-signalling urban environmentalism is the coolest, they’re not feeling the vehicular electricity much more: EVs account for barely one per cent of personal vehicles in France, the U.K. and Germany. When Hong Kong cancelled Tesla rebates in April, sales fell to zero.

Going by the ballyhoo, you’d think EVs were at an inflection point and an unstoppable juggernaut. But it’s one that has yet to even get started. In his 2011 State of the Union address, then president Barack Obama predicted one million electric cars on the road by 2015. Four years later, there wasn’t even a third that many. California offered so many different subsidies for electric vehicles that low-income families could get rebates of up to US$13,500, but it still isn’t even close to reaching its target of having zero-emission vehicles make up 15 per cent of California auto sales by 2025, being stuck at three per cent since 2014. Ontario’s Liberal government last year announced to much laughter its plan to ensure that every family would have at least one zero-emission vehicle (ZEV) by 2024, and Quebec made a plan to make ZEVs worth 15.5 per cent of sales by 2020, while Ottawa’s 2035 EV mandate attracts criticism too. Let’s see how that’s going: Currently, ZEVs make up 0.16 per cent of new vehicle sales in Ontario and 0.38 per cent in Quebec.

The latest sensational but bogus EV news out last week was France’s government announcing the “end of the sale of gasoline and diesel cars by 2040,” and Volvo apparently announcing that as of 2019, all its models would be “electric.” Both announcements made international headlines. Both are baloney. France provided no actual details about this plan (will it literally become a crime to sell a gasoline car? Will hybrids, run partly on gasoline, be allowed?), but more importantly, as automotive writer Ed Wiseman pointed out in The Guardian, a lot will happen in technology and automotive use over the next 23 years that France has no way to predict, with changes in self-driving cars, public car-sharing and fuel technologies. Imagine making rules for today’s internet back in 1994.

Volvo, meanwhile, looked to be recycling and repackaging years-old news to seize on today’s infatuation with electric vehicles to burnish its now Chinese-owned brand. Since 2010, Volvo’s plan has been to focus on engines that were partly electric, with electric turbochargers, but still based on gasoline. Volvo doesn’t actually have an all-electric model, but the gasoline-swigging engine of its popular XC90 SUV is, partly, electrical. When Volvo said all its models would in two years be “electric,” it meant this kind of engine, not that it was phasing out the internal-combustion gasoline engine. But that is what it wanted reporters to think, and judging by all the massive and inaccurate coverage, it worked.

The real story being missed is just how pathetic things look right now for electric cars. Gasoline prices in the U.S. turned historically cheap in 2015 and stayed cheap, icing demand for gasless cars. Tesla, whose founder’s self-promotion had made the niche carmaker magically more valuable than powerhouses like Ford and GM, haemorrhaged US$12 billion in market value last week after tepid sales figures brought some investors back to Earth, even as the company’s new Model 3 began rolling off the line.

Not helping is that environmental claims about environmental cars are falling apart. In June, Tesla was rocked by a controversial Swedish study that found that making one of its car batteries released as much CO2 as eight years of gasoline-powered driving. And Bloomberg reported last week on a study by Chinese engineers that found that electric vehicles, because of battery manufacturing and charging by fossil-fuel-powered electricity sources, emit 50-per-cent more carbon than do internal-combustion engines. Still, the electric-vehicle hype not only continues unabated, it gets bigger and louder every day. If some car company figures out how to harness it, we’d finally have a real automotive revolution on our hands.

Kevin Libin, Financial Post

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified