Couple hopes to beat utilities at their own game

By Aylesbury Today


Arc Flash Training CSA Z462 - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
As oil prices soar to record levels a couple from The Vale has installed a range of equipment to make their house eco-friendly.

Peter and Anne Watts from Charndon have installed an air source heat pump, solar PV panels and special double glazing to help make their home environmentally friendly, hoping to reduce their utility bills.

Mr Watts said: "The whole village is oil. Nobody is getting gas, some might be on electricity only. I was paying £95 a month standing order and about four months previously the company dropped me a line to put it up. I think if I hadn't done what I have done it would have gone up again."

Mrs Watts said: "The first thing we did was improve our insulation. The Government has set up this thing for people over 70 to get free insulation for walls.

"Peter is over 70 so we could got it free.

"Really, we wanted to build our own house, but because we are retired by the time we started making inquiries they would not lend us any money. This was the next best thing."

Next on the list was replacing all the double-glazed windows with more efficient double glazing.

Mrs Watts said: "When the house was built, the windows had a narrow gap between the panes. This is so much wider and also with Pilkington-K glass which has insulation value and we have also had the gap filled with argon gas which is more efficient than a vacuum."

After that they read a newspaper article about air source heat pumps (ASHP), which work by absorbing heat from air outside the house and compressing it to heat water or air to about five times the outside temperature.

Mr Watts said: "For every kilowatt of electricity that (the ASHP) takes to run it is pushing out four kilowatts. They have got these in Norway, Sweden and Canada working down to -20 degrees."

They also have solar PV panels on their roof producing electricity.

Since they were installed on June 13 they have made 219kW of electricity - enough electricity to power an average two-storey house for four days.

Mr Watts said: "Since April 6 you have not needed planning permission to put them up unless you are in a conservation area or it's a listed building.

"We had a maximum grant from the government of £2,500 for the PV panels. To get that you have to satisfy the energy commission that you are doing everything you can to reduce energy."

The Watts also have a compost bin, use low-energy light bulbs and even have a machine which makes logs out of newspapers. When they are put onto a fire they take two hours to burn.

They said after peak sunlight hours they have seen their electricity meter dial going backwards meaning they are producing more electricity than is needed for their house.

Their next step is to get linked up to the National Grid so they can feed back this energy for others to use, the cost of which is then credited to them.

Related News

Ukraine resumes electricity exports despite Russian attacks

Ukraine Electricity Exports resume to the European grid, starting with Moldova and expanding to Poland, Slovakia, and Romania, signaling energy security, grid resilience, added megawatts, and recovery after Russian strikes with support and renewables.

 

Key Points

Ukraine Electricity Exports are resumed sales of surplus power to EU neighbors, reflecting grid recovery and resilience.

✅ Initial deliveries to Moldova; Poland, Slovakia, Romania to follow.

✅ Extra capacity from repairs, warmer demand, and renewables.

✅ Exports may vary amid ongoing Russian strikes risk.

 

Ukraine began resuming electricity exports to European countries on Tuesday, its energy minister said, a dramatic turnaround from six months ago when fierce Russian bombardment of power stations plunged much of the country into darkness in a bid to demoralize the population.

The announcement by Energy Minister Herman Halushchenko that Ukraine was not only meeting domestic consumption demands but also ready to restart exports to its neighbors was a clear message that Moscow’s attempt to weaken Ukraine by targeting its infrastructure did not work.

Ukraine’s domestic energy demand is “100%” supplied, he told The Associated Press in an interview, and it has reserves to export due to the “titanic work” of its engineers and international partners.

Russia ramped up infrastructure attacks in September, when waves of missiles and exploding drones destroyed about half of Ukraine’s energy system. Power cuts were common across the country as temperatures dropped below freezing and tens of millions struggled to keep warm.

Moscow said the strikes were aimed at weakening Ukraine’s ability to defend itself, and has also moved to reactivate the Zaporizhzhia plant through new power lines, while Western officials said the blackouts that caused civilians to suffer amounted to war crimes. Ukrainians said the timing was designed to destroy their morale as the war marked its first anniversary.

Ukraine had to stop exporting electricity in October to meet domestic needs.

Engineers worked around the clock, often risking their lives to come into work at power plants and keep the electricity flowing. Kyiv’s allies also provided help. In December, U.S. Secretary of State Antony Blinken announced $53 million in bilateral aid to help the country acquire electricity grid equipment, and USAID mobile gas turbine plant support, on top of $55 million for energy sector support.

Much more work remains to be done, Halushchenko said. Ukraine needs funding to repair damaged generation and transmission lines, and revenue from electricity exports would be one way to do that.

The first country to receive Ukraine’s energy exports will be Moldova, he said.

Besides the heroic work by engineers and Western aid, warmer temperatures are enabling the resumption of exports by making domestic demand lower, even as Germany’s coal generation shapes regional power flows.

Renewables like solar and wind power also come into play as temperatures rise, taking some pressure off nuclear and coal-fired power plants.

But it’s unclear if Ukraine can keep up exports amid the constant threat of Russian bombardment, with any potential agreement on power plant attacks still uncertain.

“Unfortunately now a lot of things depend on the war,” Halushchenko said. “I would say we feel quite confident now until the next winter.”

Exports to Poland, Slovakia and Romania are also on schedule to resume, he said.

“Today we are starting with Moldova, and we are talking about Poland, we are talking about Slovakia and Romania,” Halushchenko added, noting that how much will depend on their needs.

“For Poland, we have only one line that allows us to export 200 megawatts, but I think this month we will finish another line which will increase this to an additional 400 MW, so these figures could change,” he said.

Export revenue will depend on fluctuating electricity prices in Europe, where stunted hydro and nuclear output may affect recovery. In 2022, while Ukraine was still able to export energy, Ukrainian companies averaged 40 million to 70 million euros a month depending on prices, Halushchenko said.
 

 

Related News

View more

EPA: New pollution limits proposed for US coal, gas power plants reflect "urgency" of climate crisis

EPA Power Plant Emissions Rule proposes strict greenhouse gas limits for coal and gas units, leveraging carbon capture (CCS) under the Clean Air Act to cut CO2 and accelerate decarbonization of the U.S. grid.

 

Key Points

A proposed EPA rule setting CO2 limits for coal and gas plants, using CCS to cut power-sector greenhouse gases.

✅ Applies to existing and new coal and large gas units

✅ Targets near-zero CO2 by 2038 via CCS or retirement

✅ Cites grid, health, and climate benefits; faces legal challenges

 

The Biden administration has proposed new limits on greenhouse gas emissions from coal- and gas-fired power plants, its most ambitious effort yet to roll back planet-warming pollution from the nation’s second-largest contributor to climate change.

A rule announced by the Environmental Protection Agency could force power plants to capture smokestack emissions using a technology that has long been promised but is not used widely in the United States, and arrives amid changes stemming from the NEPA rewrite that affect project reviews.

“This administration is committed to meeting the urgency of the climate crisis and taking the necessary actions required,″ said EPA Administrator Michael Regan.

The plan would not only “improve air quality nationwide, but it will bring substantial health benefits to communities all across the country, especially our front-line communities ... that have unjustly borne the burden of pollution for decades,” Regan said in a speech at the University of Maryland.

President Joe Biden, whose climate agenda includes a clean electricity standard as a key pillar, called the plan “a major step forward in the climate crisis and protecting public health.”

If finalized, the proposed regulation would mark the first time the federal government has restricted carbon dioxide emissions from existing power plants, following a Trump-era replacement of Obama’s power plant overhaul, which generate about 25% of U.S. greenhouse gas pollution, second only to the transportation sector. The rule also would apply to future electric plants and would avoid up to 617 million metric tons of carbon dioxide through 2042, equivalent to annual emissions of 137 million passenger vehicles, the EPA said.

Almost all coal plants — along with large, frequently used gas-fired plants — would have to cut or capture nearly all their carbon dioxide emissions by 2038, the EPA said, a timeline that echoed concerns raised during proposed electricity pricing changes in the prior administration. Plants that cannot meet the new standards would be forced to retire.

The plan is likely to be challenged by industry groups and Republican-leaning states, much like litigation over the Affordable Clean Energy rule unfolded in recent years. They have accused the Democratic administration of overreach on environmental regulations and warn of a pending reliability crisis for the electric grid. The power plant rule is one of at least a half-dozen EPA rules limiting power plant emissions and wastewater treatment rules.

“It’s truly an onslaught” of government regulation “designed to shut down the coal fleet prematurely,″ said Rich Nolan, president and CEO of the National Mining Association.

Regan denied that the power plant rule was aimed at shutting down the coal sector, but acknowledged — even after the end to the 'war on coal' rhetoric — “We will see some coal retirements.”

 

Related News

View more

Energy Security Support to Ukraine

U.S. Energy Aid to Ukraine delivers emergency electricity grid equipment, generators, transformers, and circuit breakers, supports ENTSO-E integration, strengthens energy security, and advances decarbonization to restore power and heat amid Russian attacks.

 

Key Points

U.S. funding and equipment stabilize Ukraine's power grid, strengthen energy security, and advance ENTSO-E integration.

✅ $53M for transformers, breakers, surge arresters, disconnectors

✅ $55M for generators and emergency heat to municipalities

✅ ENTSO-E integration, cybersecurity, nuclear safety support

 

In the midst of Russia’s continued brutal attacks against Ukraine’s energy infrastructure, Secretary of State Blinken announced today during a meeting of the G7+ on the margins of the NATO Ministerial in Bucharest that the United States government is providing over $53 million to support acquisition of critical electricity grid equipment. This equipment will be rapidly delivered to Ukraine on an emergency basis to help Ukrainians persevere through the winter, as the country prepares for winter amid energy challenges. This supply package will include distribution transformers, circuit breakers, surge arresters, disconnectors, vehicles and other key equipment.

This new assistance is in addition to $55 million in emergency energy sector support for generators and other equipment to help restore emergency power and heat to local municipalities impacted by Russia’s attacks on Ukraine’s power system, while both sides accuse each other of energy ceasefire violations that complicate repairs. We will continue to identify additional support with allies and partners, and we are also helping to devise long-term solutions for grid restoration and repair, along with our assistance for Ukraine’s effort to advance the energy transition and build an energy system decoupled from Russian energy.

Since Russia’s further invasion on February 24, working together with Congress, the Administration has provided nearly $32 billion in assistance to Ukraine, including $145 million to help repair, maintain, and strengthen Ukraine’s power sector in the face of continued attacks. We also have provided assistance in areas such as EU integration and regional electricity trade, including electricity imports to stabilize supply, natural gas sector support to maximize resource development, support for nuclear safety and security, and humanitarian relief efforts to help Ukrainians to overcome the impacts of energy shortages.

Since 2014, the United States has provided over $160 million in technical support to strengthen Ukraine’s energy security, including to strengthen EU interconnectivity, increase energy supply diversification, and promote investments in energy efficiency, renewable energy, and clean energy technologies and innovation.  Much of this support has helped prepare Ukraine for its eventual interconnection with Europe’s ENTSO-E electricity grid, aligning with plans to synchronize with ENTSO-E across the integrated power system, including the island mode test in February 2022 that not only demonstrated Ukraine’s progress in meeting the EU’s technical requirements, but also proved to be critical considering Russia’s subsequent military activity aimed at disrupting power supplies and distribution in Ukraine.

 

Department of Energy (DOE)

  • With the increased attacks on Ukraine’s electricity grid and energy infrastructure in October, DOE worked with the Ukrainian Ministry of Energy and DOE national laboratories to collate, vet, and help prioritize lists of emergency electricity equipment for grid repair and stabilization amid wider global energy instability affecting supply chains.
  • Engaged at the CEO level U.S. private sector and public utilities and equipment manufacturers to identify $35 million of available electricity grid equipment in the United States compatible with the Ukrainian system for emergency delivery. Identified $17.5 million to support purchase and transportation of this equipment.
  • With support from Congress, initiated work on full integration of Ukraine with ENTSO-E to support resumption of Ukrainian energy exports to other European countries in the region, including funding for energy infrastructure analysis, collection of satellite data and analysis for system mapping, and work on cyber security, drawing on the U.S. rural energy security program to inform best practices.
  • Initiated work on a new dynamic model of interdependent gas and power systems of Europe and Ukraine to advance identification and mitigation of critical vulnerabilities.
  • Delivered emergency diesel fuel and other critical materials needed for safe operation of Ukrainian nuclear power plants, as well as initiated the purchase of three truck-mounted emergency diesel backup generators to be delivered to improve plant safety in the event of the loss of offsite power.

U.S. Department of State

  • Building on eight years of technical engagement, the State Department continued to provide technical support to Naftogaz and UkrGasVydobuvannya to advance corporate governance reform, increase domestic gas production, provide strategic planning, and assess critical sub-surface and above-ground technical issues that impact the company’s core business functions.
  • The State Department is developing new programs focused on emissions abatement, decarbonization, and diversification, acknowledging the national security benefits of reducing reliance on fossil fuels to support Ukraine’s ambitious clean energy and climate goals and address the impacts of reduced supplies of natural gas from Russia.
  • The State Department led a decades-long U.S. government engagement to develop and expand natural gas reverse flow (west-to-east) routes to enhance European and Ukrainian energy security. Ukraine is now able to import natural gas from Europe, eliminating the need for Ukraine to purchase natural gas from Gazprom.

 

Related News

View more

Some old dams are being given a new power: generating clean electricity

Hydroelectric retrofits for unpowered dams leverage turbines to add renewable capacity, bolster grid reliability, and enable low-impact energy storage, supporting U.S. and Canada decarbonization goals with lower costs, minimal habitat disruption, and climate resilience.

 

Key Points

They add turbines to existing dams to make clean power, stabilize the grid, and offer low-impact storage at lower cost.

✅ Lower capex than new dams; minimal habitat disruption

✅ Adds firming and storage to support wind and solar

✅ New low-head turbines unlock more retrofit sites

 

As countries race to get their power grids off fossil fuels to fight climate change, there's a big push in the U.S. to upgrade dams built for purposes such as water management or navigation with a feature they never had before — hydroelectric turbines. 

And the strategy is being used in parts of Canada, too, with growing interest in hydropower from Canada supplying New York and New England.

The U.S. Energy Information Administration says only three per cent of 90,000 U.S. dams currently generate electricity. A 2012 report from the U.S. Department of Energy found that those dams have 12,000 megawatts (MW) of potential hydroelectric generation capacity. (According to the National Hydropower Association, 1 MW can power 750 to 1,000 homes. That means 12,000 MW should be able to power more than nine million homes.)

As of May 2019, there were projects planned to convert 32 unpowered dams to add 330 MW to the grid over the next several years.

One that was recently completed was the Red Rock Hydroelectric Project, a 60-year-old flood control dam on the Des Moines River in Iowa that was retrofitted in 2014 to generate 36.4 MW at normal reservoir levels, and up to 55 MW at high reservoir levels and flows. It started feeding power to the grid this spring, and is expected to generate enough annually to supply power to 18,000 homes.

It's an approach that advocates say can convert more of the grid from fossil fuels to clean energy, often with a lower cost and environmental impact than building new dams.

Hydroelectric facilities can also be used for energy storage, complementing intermittent clean energy sources such as wind and solar with pumped storage to help maintain a more reliable, resilient grid.

The Nature Conservancy and the World Wildlife Fund are two environmental groups that oppose new hydro dams because they can block fish migration, harm water quality, damage surrounding ecosystems and release methane and CO2, and in some regions, Western Canada drought has reduced hydropower output as reservoirs run low. But they say adding turbines to non-powered dams can be part of a shift toward low-impact hydro projects that can support expansion of solar and wind power.

Paul Norris, president of the Ontario Waterpower Association, said there's typically widespread community support for such projects in his province amid ongoing debate over whether Ontario is embracing clean power in its future plans. "Any time that you can better use existing assets, I think that's a good thing."

New turbine technology means water doesn't need to fall from as great a height to generate power, providing opportunities at sites that weren't commercially viable in the past, Norris said, with recent investments such as new turbines in Manitoba showing what is possible.

In Ontario, about 1,000 unpowered dams are owned by various levels of government. "With the appropriate policy framework, many of these assets have the potential to be retrofitted for small hydro," Norris wrote in a letter to Ontario's Independent Electricity System Operator this year as part of a discussion on small-scale local energy generation resources.

He told CBC that several such projects are already in operation, such as a 950 kW retrofit of the McLeod Dam at the Moira River in Belleville, Ont., in 2008. 

Four hydro stations were going to be added during dam refurbishment on the Trent-Severn Waterway, but they were among 758 renewable energy projects cancelled by Premier Doug Ford's government after his election in 2018, a move examined in an analysis of Ontario's dirtier electricity outlook and its implications.

Patrick Bateman, senior vice-president of Waterpower Canada, said such dam retrofit projects are uncommon in most provinces. "I don't see it being a large part of the future electricity generation capacity."

He said there has been less movement on retrofitting unpowered dams in Canada compared to the U.S., because:

There are a lot more opportunities in Canada to refurbish large, existing hydro-generating stations to boost capacity on a bigger scale.

There's less growth in demand for clean energy, because more of Canada's grid is already non-carbon-emitting (80 per cent) compared to the U.S. (40 per cent).

Even so, Norris thinks Canadians should be looking at all opportunities and options when it comes to transitioning the grid away from fossil fuels, including retrofitting non-powered dams, especially as a recent report highlights Canada's looming power problem over the coming decades.

"If we're going to be serious about addressing the inevitable challenges associated with climate change targets and net zero, it really is an all-of-the-above approach."

 

Related News

View more

N.B. Power hits pause on large new electricity customers during crypto review

N.B. Power Crypto Mining Moratorium underscores electricity demand risks from bitcoin mining, straining the energy grid and industrial load capacity in New Brunswick, as a cabinet order prioritizes grid reliability, utility planning, and allocation.

 

Key Points

Official pause on new large-scale crypto mining to protect N.B. Power grid capacity, stability, and reliable supply.

✅ Cabinet order halts new large-scale crypto load requests

✅ Review targets grid reliability, planning, and capacity

✅ Non-crypto industrial customers exempt from prolonged pause

 

N.B. Power says a freeze on servicing new, large-scale industrial customers in the province remains in place over concerns that the cryptocurrency sector's heavy electricity use could be more than the utility can handle.

The Higgs government quietly endorsed the moratorium in a cabinet order in March 2022 and ordered a review of how the sector might affect the reliable electricity supply and broader electricity future planning in the province.

The cabinet order, filed with the Energy and Utilities Board, said N.B. Power had "policy, technical and operational concerns about [its] capacity to service the anticipated additional load demand" from energy-intensive customers such as crypto mines.

It said the utility had received "several new large-scale, short-notice service requests" to supply electricity to crypto mining companies that could put "significant pressure" on the existing electricity supply.

The order, signed by Premier Blaine Higgs, said non-crypto companies shouldn't be subject to the pause for any longer than required for the review, amid shifts in regional plans like the Atlantic Loop that are altering timelines. Ws.

The freeze was ordered months after Taal Distributed Information Technologies Inc. announced plans to establish a 50-megawatt bitcoin mining operation and transaction processing facility in Grand Falls.

A town official said this week that the deal never went ahead.

24 hours a day
The Taal facility would have joined a 70-megawatt bitcoin mine in Grand Falls operated by Hive Blockchain Technologies.

Hive's Bitcoin mine comprises four large warehouses containing thousands of computers running 24 hours a day to earn cryptocurrency units.

The combined annual electricity consumption of the two mines would exceed what could be produced by the small modular nuclear reactor being designed by ARC Clean Energy Canada of Saint John, even as Nova Scotia advances efforts to harness the Bay of Fundy's powerful tides for clean power.

Put another way, the two mines would gobble up more than three months' electricity from N.B. Power's coal-fired Belledune generating station under current operations.

 

Related News

View more

How Ukraine Unplugged from Russia and Joined Europe's Power Grid with Unprecedented Speed

Ukraine-ENTSO-E Grid Synchronization links Ukraine and Moldova to the European grid via secure interconnection, matching frequency for stability, resilience, and energy security, enabling cross-border support, islanding recovery, and coordinated load balancing during wartime disruptions.

 

Key Points

Rapid alignment of Ukraine and Moldova into the European grid to enable secure interconnection and system stability.

✅ Matches 50 Hz frequency across interconnected systems

✅ Enables cross-border support and electricity trading

✅ Improves resilience, stability, and energy security

 

On February 24 Ukraine’s electric grid operator disconnected the country’s power system from the larger Russian-operated network to which it had always been linked. The long-planned disconnection was meant to be a 72-hour trial proving that Ukraine could operate on its own and to protect electricity supply before winter as contingencies were tested. The test was a requirement for eventually linking with the European grid, which Ukraine had been working toward since 2017. But four hours after the exercise started, Russia invaded.

Ukraine’s connection to Europe—which was not supposed to occur until 2023—became urgent, and engineers aimed to safely achieve it in just a matter of weeks. On March 16 they reached the key milestone of synchronizing the two systems. It was “a year’s work in two weeks,” according to a statement by Kadri Simson, the European Union commissioner for energy. That is unusual in this field. “For [power grid operators] to move this quickly and with such agility is unprecedented,” says Paul Deane, an energy policy researcher at the University College Cork in Ireland. “No power system has ever synchronized this quickly before.”

Ukraine initiated the process of joining Europe’s grid in 2005 and began working toward that goal in earnest in 2017, as did Moldova. It was part of an ongoing effort to align with Europe, as seen in the Baltic states’ disconnection from the Russian grid, and decrease reliance on Russia, which had repeatedly threatened Ukraine’s sovereignty. “Ukraine simply wanted to decouple from Russian dominance in every sense of the word, and the grid is part of that,” says Suriya Jayanti, an Eastern European policy expert and former U.S. diplomat who served as energy chief at the U.S. embassy in Kyiv from 2018 to 2020.

After the late February trial period, Ukrenergo, the Ukrainian grid operator, had intended to temporarily rejoin the system that powers Russia and Belarus. But the Russian invasion made that untenable. “That left Ukraine in isolation mode, which would be incredibly dangerous from a power supply perspective,” Jayanti says. “It means that there’s nowhere for Ukraine to import electricity from. It’s an orphan.” That was a particularly precarious situation given Russian attacks on key energy infrastructure such as the Zaporizhzhia nuclear power plant and ongoing strikes on Ukraine’s power grid that posed continuing risks. (According to Jayanti, Ukraine’s grid was ultimately able to run alone for as long as it did because power demand dropped by about a third as Ukrainians fled the country.)

Three days after the invasion, Ukrenergo sent a letter to the European Network of Transmission System Operators for Electricity (ENTSO-E) requesting authorization to connect to the European grid early. Moldelectrica, the Moldovan operator, made the same request the following day. While European operators wanted to support Ukraine, they had to protect their own grids, amid renewed focus on protecting the U.S. power grid from Russian hacking, so the emergency connection process had to be done carefully. “Utilities and system operators are notoriously risk-averse because the job is to keep the lights on, to keep everyone safe,” says Laura Mehigan, an energy researcher at University College Cork.

An electric grid is a network of power-generating sources and transmission infrastructure that produces electricity and carries it from places such as power plants, wind farms and solar arrays to houses, hospitals and public transit systems. “You can’t just experiment with a power system and hope that it works,” Deane says. Getting power where it is it needed when it is needed is an intricate process, and there is little room for error, as incidents involving Russian hackers targeting U.S. utilities have highlighted for operators worldwide.

Crucial to this mission is grid interconnection. Linked systems can share electricity across vast areas, often using HVDC technology, so that a surplus of energy generated in one location can meet demand in another. “More interconnection means we can move power around more quickly, more efficiently, more cost effectively and take advantage of low-carbon or zero-carbon power sources,” says James Glynn, a senior research scholar at the Center on Global Energy Policy at Columbia University. But connecting these massive networks with many moving parts is no small order.

One of the primary challenges of interconnecting grids is synchronizing them, which is what Ukrenergo, Moldelectrica and ENTSO-E accomplished last week. Synchronization is essential for sharing electricity. The task involves aligning the frequencies of every energy-generation facility in the connecting systems. Frequency is like the heartbeat of the electric grid. Across Europe, energy-generating turbines spin 50 times per second in near-perfect unison, and when disputes disrupt that balance, slow clocks across Europe can result, reminding operators of the stakes. For Ukraine and Moldova to join in, their systems had to be adjusted to match that rhythm. “We can’t stop the power system for an hour and then try to synchronize,” Deane says. “This has to be done while the system is operating.” It is like jumping onto a moving train or a spinning ride at the playground: the train or ride is not stopping, so you had better time the jump perfectly.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.