Lakeview^^s win is another^^s loss
By Toronto Star
NFPA 70e Training
Our customized live online or in‑person group training can be delivered to your staff at your location.
- Live Online
- 6 hours Instructor-led
- Group Training Available
By Toronto Star
Our customized live online or in‑person group training can be delivered to your staff at your location.
Puerto Rico Tesla Solar Power enables resilient microgrids using batteries, renewable energy, and energy storage to rebuild the hurricane-damaged grid, reduce fossil fuels, cut costs, and accelerate recovery with scalable solar-plus-storage solutions.
A solar-plus-storage plan using Tesla microgrids and batteries to restore Puerto Rico's cleaner, resilient power.
✅ Microgrids cut diesel reliance and harden critical facilities.
✅ Batteries stabilize the grid and shave peak demand costs.
✅ Scalable solar enables faster, modular disaster recovery.
Puerto Rico’s governor Ricardo Rossello has said that he will speak to Elon Musk after the Tesla inventor said his innovative solar and battery systems could be used to restore electricity on the island.
Mr Musk was mentioned in a tweet, referencing an article discussing ways to restore Puerto Rico’s power grid, which was knocked out by Hurricane Maria on September 20.
Restoring the ageing and already-weakened network has proved slow: as of Friday 90 per cent of the island remained without power. The island’s electricity company was declared bankrupt in July.
Mr Musk was asked: “Could @ElonMusk go in and rebuild #PuertoRico’s electricity system with independent solar & battery systems?”
The South African entrepreneur replied: “The Tesla team has done this for many smaller islands around the world, but there is no scalability limit, so it can be done for Puerto Rico too.
“Such a decision would be in the hands of the PR govt, PUC, any commercial stakeholders and, most importantly, the people of PR.”
His suggestion was seized upon by Mr Rossello, who then tweeted: “@ElonMusk Let's talk. Do you want to show the world the power and scalability of your #TeslaTechnologies?
“PR could be that flagship project.”
Mr Musk replied that he was happy to talk.
Restoring power to the battered island is a priority for the government, and improving grid resilience remains critical, with hospitals still running on generators and the 3.5 million people struggling with a lack of refrigeration or air conditioning.
Radios broadcast messages advising people how to keep their insulin cool, and doctors are concerned about people not being able to access dialysis.
And, with its power grid wiped out, the Caribbean island could totally rethink the way it meets its energy needs, drawing on examples like a resilient school microgrid built locally.
“This is an opportunity to completely transform the way electricity is generated in Puerto Rico and the federal government should support this,” said Judith Enck, the former administrator for the region with the environmental protection agency.
“They need a clean energy renewables plan and not spending hurricane money propping up the old fossil fuel infrastructure.”
Forty-seven per cent of Puerto Rico’s power needs were met by burning oil last year - a very expensive and outdated method of electricity generation. For the US as a whole, petroleum accounted for just 0.3 per cent of all electricity generated in 2016 even as the grid isn’t yet running on 100% renewable energy nationwide.
The majority of the rest of Puerto Rico’s energy came courtesy of coal and natural gas, with renewables, which later faced pandemic-related setbacks, accounting for only two per cent of electricity generation.
“In that time of extreme petroleum prices, the utility was borrowing money and buying oil in order to keep those plants operating,” said Luis Martinez, a lawyer at natural resources defense council and former special aide to the president of Puerto Rico’s environmental quality board.
“That precipitated the bankruptcy that followed. It was in pretty poor shape before the storm. Once the storm got there, it finished the job.”
But Mr Martinez told the website Earther that it might be difficult to secure the financing for rebuilding Puerto Rico with renewables from FEMA (Federal Emergency Management Agency) funds.
“A lot of distribution lines were on wood poles,” he said.
“Concrete would make them more resistant to winds, but that would potentially not be authorized under the use of FEMA funds.
"We’re looking into if some of those requirements can be waived so rebuilding can be more resilient.”
Clean Energy Tax Incentives could expand under Democratic proposals, including ITC, PTC, and EV tax credits, boosting renewable energy, energy storage, and grid modernization within a broader infrastructure package influenced by Green New Deal goals.
Federal incentives like ITC, PTC, and EV credits that cut costs and speed renewables, storage, and grid upgrades.
✅ Proposes permanence for ITC, PTC, and EV tax credits
✅ Could accelerate solar, wind, storage, and grid upgrades
✅ Passage depends on bipartisan infrastructure compromise
The 115th U.S. Congress has not even adjourned for the winter, and already a newly resurgent Democratic Party is making demands that reflect its majority status in the U.S. House come January.
Climate appears to be near the top of the list. Last Thursday, Senator Chuck Schumer (D-NY), the Democratic Leader in the Senate, sent a letter to President Trump demanding that any infrastructure package taken up in 2019 include “policies and funding to transition to a clean energy economy and mitigate the risks that the United States is already facing due to climate change.”
And in a list of policies that Schumer says should be included, the top item is “permanent tax incentives for domestic production of clean electricity and storage, energy efficient homes and commercial buildings, electric vehicles, and modernizing the electric grid.”
In concrete terms, this could mean an extension of the Investment Tax Credit (ITC) for solar and energy storage, the Production Tax Credit (PTC) for wind and the federal electric vehicle (EV) tax credit program as well.
Pressure from the Left
This strong statement on climate change, clean energy and infrastructure investment comes as at least 30 incoming members of the U.S. House of Representatives have signed onto a call for the creation of a committee to explore a “Green New Deal” and to move the nation to 100% renewable energy by 2030.*
It also comes as Schumer has come under fire by activists for rumors that he plans to replace Senator Maria Cantwell (D-Washington) with coal state Democrat Joe Manchin (D-West Virginia) as the top Democrat on the Senate Energy and Natural Resources Committee.
As such, one possible way to read these moves is that centrist leaders like Schumer are responding to pressure from an energized and newly elected Left wing of the Democratic Party. It is notable that Schumer’s program includes many of the aims of the Green New Deal, while avoiding any explicit use of that phrase.
Implications of a potential ITC extension
The details of levels and timelines are important here, particularly for the ITC.
The ITC was set to expire at the end of 2016, but was extended in legislative horse-trading at the end of 2015 to a schedule where it remains at 30% through the end of 2019 and then steps down for the next three years, and disappears entirely for residential projects. Since that extension the IRS has issued guidance around the use of co-located energy storage, as well as setting a standard under which PV projects can claim the ITC for the year that they begin construction.
This language around construction means that projects can start work in 2019, complete in 2023 and still claim the 30% ITC, and this may be why we at pv magazine USA are seeing an unprecedented boom in project pipelines across the United States.
Of course, if the ITC were to become permanent some of those projects would be pushed out to later years. But as we saw in 2016, despite an extension of the ITC many projects were still completed before the deadline, leading to the largest volume of PV installed in the United States in any one year to date.
This means that if the ITC were extended by the end of 2020, we could see the same thing all over again – a boom in projects created by the expected sunset, and then after a slight lull a continuation of growth.
Or it is possible that a combination of raw economics, increased investor and utility interest, and accelerating renewable energy mandates will cause solar growth rates to continue every year, and that any changes in the ITC will only be a bump against a larger trend.
While the basis for expiration of the EV tax credit is the number of vehicles sold, not any year, both the battery storage and EV industries, which many see at an inflection point, could see similar effects if the ITC and EV tax credits are made permanent.
Will consensus be reached?
It is also unclear that any such infrastructure package will be taken up by Republicans, or that both parties will be able to come to a compromise on this issue. While the U.S. Congress passed an infrastructure bill in 2017, given the sharp and growing differences between the two parties, and divergent trade approaches such as the 100% tariff on Chinese-made EVs, it is not clear that they will be able to come to a meaningful compromise during the next two years.
Yukon Renewable Energy Funding backs wind turbines, grid-scale battery storage, and transmission line upgrades, cutting diesel dependence, lowering greenhouse gas emissions, and strengthening Yukon Energy's isolated grid for remote communities, local jobs, and future growth.
Federal support for Yukon projects adding wind, battery storage, and grid upgrades to cut diesel use and emissions.
✅ Three 100 kW wind turbines will power Destruction Bay.
✅ 8 MW battery storage smooths peaks and reduces diesel.
✅ Mayo-McQuesten 138 kV line upgrade boosts reliability.
Kluane First Nation in Yukon will receive a total of $3.1 million in funding from the federal government to install and operate wind turbines that will help reduce the community’s diesel reliance.
According to a release, the community will integrate three 100-kilowatt turbines in Destruction Bay, Yukon, providing a renewable energy source for their local power grid that will reduce greenhouse gas emissions and create local jobs in the community.
A $2-million investment from Natural Resources Canada came from the Clean Energy for Rural and Remote Communities Program, part of the Government of Canada’s Investing in Canada infrastructure plan, which supports green energy solutions across jurisdictions. Crown-Indigenous Relations’ and Northern Affairs Canada also contributed a $1.1-million investment from the Northern REACHE Program.
Also, the Government of Canada announced more than $39.2 million in funding for two Yukon Energy projects that will increase the reliability of Yukon’s electrical grid, including exploration of a potential connection to the B.C. grid to bolster resiliency, and help build the robust energy system needed to support future growth. The investment comes from the government’s Green Infrastructure Stream (GIS) of the Investing in Canada infrastructure plan.
Project 1: Grid-scale battery storage
The federal government is investing $16.5 million in Yukon Energy’s construction of a new battery storage system in Yukon. Once completed, the 8 MW battery will be the largest grid-connected battery in the North, and one of the largest in Canada, alongside major Ontario battery projects underway.
The new battery is a critical investment in Yukon Energy’s ability to meet growing demands for power and securing Yukon’s energy future. As an isolated grid, one of the largest challenges Yukon Energy faces is meeting peak demands for power during winter months, as electrification grows with EV adoption in the N.W.T. and beyond.
When complete, the new system will store excess electricity generated during off-peak periods, complementing emerging vehicle-to-grid integration approaches, and provide Yukoners with access to more power during peak periods. This new energy storage system will create a more reliable power supply and help reduce the territory’s reliance on diesel fuel. Over the 20-year life of project, the new battery is expected to reduce carbon emissions in Yukon by more than 20,000 tonnes.
A location for the new battery energy storage system has not been identified. Yukon Energy will begin permitting of the project in 2020 with construction targeted to be complete by mid-2023.
Project 2: Replacing and upgrading the Mayo to McQuesten Transmission Line
Yukon Energy has received $22.7 million in federal funding to proceed with Stage 1 of the Stewart to Keno City Transmission Project – replacing and upgrading the 65 year-old transmission line between Mayo and McQuesten. The project also includes the addition of system protection equipment at the Stewart Crossing South substation. The Yukon government, through the Yukon Development Corporation, has already provided $3.5 million towards planning for the project.
Replacing the Mayo to McQuesten transmission line is critical to Yukon Energy’s ability to deliver safe and reliable electricity to customers in the Mayo and Keno regions, mirroring broader regional transmission initiatives that enhance grid resilience, and to support economic growth in Yukon. The transmission line has reached end-of-life and become increasingly unreliable for customers in the area.
The First Nation of Na-Cho Nyak Dun has expressed their support of this project. The project has also been approved by the Yukon Environmental and Socio-Economic Assessment Board.
Yukon Energy will begin replacing and upgrading the 31 km transmission line between Mayo and McQuesten in 2020. Construction is expected to be complete in late 2020. When finished, the new 138 kV transmission line will provide more reliable electricity to customers in the Mayo and Keno regions and be equipped to support industrial growth and development in the area, including the Victoria Gold Mine, with renewable power from the Yukon grid.
Planning work for the remainder of the Stewart to Keno City Transmission Project has been completed. Yukon Energy continues to explore funding opportunities that are needed to proceed with other stages of the project.
Illinois Zero Emission Credits support nuclear plants via tradable credits tied to wholesale electricity prices, carbon costs, created by the Future Energy Jobs Bill to avert Exelon closures and sustain low-carbon power.
State credits that value nuclear power's zero-carbon output, priced by market and carbon metrics to keep plants running.
✅ Pegged to wholesale prices, carbon costs, and state averages.
✅ Created by Future Energy Jobs Bill to prevent plant retirements.
✅ Supports Exelon Quad Cities and Clinton nuclear facilities.
Nuclear plants have produced over half of Illinois electricity generation since 2010, but the states two largest plants would have been retired amid the debate over saving nuclear plants if the state had not created a zero emission credit (ZEC) mechanism to support the facilities.
The two plants, Quad Cities and Clinton, collectively delivered more than 12 percent of the states electricity generation over the past several years. In May 2016, however, Exelon, the owner of the plants, announced that they had together lost over $800 million dollars over the previous six years and revealed plans to retire them in 2017 and 2018, similar to the Three Mile Island closure later announced for 2019 by its owner.
In December 2016, Illinois passed the Future Energy Jobs Bill, which established a zero emission credit (ZEC) mechanism
to support the plants financially. Exelon then cancelled its plans to retire the two facilities.
The ZEC is a tradable credit that represents the environmental attributes of one megawatt-hour of energy produced from the states nuclear plants. Its price is based on a number of factors that include wholesale electricity market prices, nuclear generation costs, state average market prices, and estimated costs of the long-term effects of carbon dioxide emissions.
The bill is set to take effect in June, but faces multiple court challenges as some utilities have expressed concerns that the ZEC violates the commerce clause and affects federal authority to regulate wholesale energy prices, amid gas-fired competition in nearby markets that shapes the revenue outlook.
Illinois ranks first in the United States for both generating capacity and net electricity generation from nuclear power, a resource many see as essential for net-zero emissions goals, and accounts for approximately one-eighth of the nuclear power generation in the nation.
Ontario SMR BWRX-300 leads Canada in next-gen nuclear energy at Darlington, with GE Vernova and Hitachi, delivering clean, reliable power via modular design, passive safety, scalability, and lower costs for grid integration.
Ontario SMR BWRX-300 is a 300 MW modular boiling water reactor at Darlington with passive safety and clean power.
✅ 300 MW BWR supplies power for about 300,000 homes
✅ Passive safety enables safe shutdown without external power
✅ Modular design reduces costs and speeds grid integration
Ontario has initiated the construction of Canada's first small modular nuclear reactor (SMR), supported by OPG's SMR commitment to deployment, marking a significant milestone in the province's energy strategy. This development positions Ontario at the forefront of next-generation nuclear technology within the G7 nations.
The project, known as the Darlington New Nuclear Project, is being led by Ontario Power Generation (OPG) in collaboration with GE Vernova and Hitachi Nuclear Energy, and through its OPG-TVA partnership on new nuclear technology development. The chosen design is the BWRX-300, a 300-megawatt boiling water reactor that is approximately one-tenth the size and complexity of traditional nuclear reactors. The first unit is expected to be operational by 2029, with plans for additional units to follow.
Each BWRX-300 reactor is projected to supply electricity to about 300,000 homes, contributing to Ontario's efforts, which include the decision to refurbish Pickering B for additional baseload capacity, to meet the anticipated 75% increase in electricity demand by 2050. The compact design of the SMR allows for easier integration into existing infrastructure, reducing the need for extensive new transmission lines.
The economic impact of the project is substantial. The construction of four such reactors is expected to create up to 18,000 jobs and contribute approximately $38.5 billion CAD to the Canadian economy, reflecting the economic benefits of nuclear projects over 65 years. The modular nature of SMRs also allows for scalability, with each additional unit potentially reducing costs through economies of scale.
Safety is a paramount consideration in the design of the BWRX-300. The reactor employs passive safety features, meaning it can safely shut down without the need for external power or operator intervention. This design enhances the reactor's resilience to potential emergencies, aligning with stringent regulatory standards.
Ontario's commitment to nuclear energy is further demonstrated by its plans for four SMRs at the Darlington site. This initiative reflects a broader strategy to diversify the province's energy mix, incorporating clean and reliable power sources to complement renewable energy efforts.
While the development of SMRs in Ontario is a significant step forward, it also aligns with the Canadian nuclear initiative positioning Canada as a leader in the global nuclear energy landscape. The successful implementation of the BWRX-300 could serve as a model for other nations exploring advanced nuclear technologies.
Ontario's groundbreaking work on small modular nuclear reactors represents a forward-thinking approach to energy generation. By embracing innovative technologies, the province is not only addressing future energy demands but also, through the Pickering NGS life extension, contributing to the global transition towards sustainable and secure energy solutions.
European Electricity Market Trends 2020 highlight decarbonisation, rising renewables, EV adoption, shifting energy mix, COVID-19 impacts, fuel switching, hydro, wind and solar growth, gas price dynamics, and wholesale electricity price increases.
EU power in 2020 saw lower emissions, more renewables, EV growth, demand shifts, and higher wholesale prices.
✅ Power sector CO2 down 14% on higher renewables, lower coal
✅ Renewables 39% vs fossil 36%; hydro, wind, solar expanded
✅ EV share hit 17%; wholesale prices rose with gas, ETS costs
According to the Market Observatory for Energy DG Energy report, the COVID-19 pandemic and favorable weather conditions are the two key drivers of the trends experienced within the European electricity market in 2020. However, the two drivers were exceptional or seasonal.
The key trends within Europe’s electricity market include:
1. Decrease in power sector’s carbon emissions
As a result of the increase in renewables generation and decrease in fossil-fueled power generation in 2020, the power sector was able to reduce its carbon footprint by 14% in 2020. The decrease in the sector’s carbon footprint in 2020 is similar to trends witnessed in 2019 when fuel switching was the main factor behind the decarbonisation trend.
However, most of the drivers in 2020 were exceptional or seasonal (the pandemic, warm winter, high
hydro generation). However, the opposite is expected in 2021, with the first months of 2021 having relatively cold weather, lower wind speeds and higher gas prices, with stunted hydro and nuclear output also cited, developments which suggest that the carbon emissions and intensity of the power sector could rise.
The European Union is targeting to completely decarbonise its power sector by 2050 through the introduction of supporting policies such as the EU Emissions Trading Scheme, the Renewable Energy Directive and legislation addressing air pollutant emissions from industrial installations, with expectations that low-emissions sources will cover most demand growth in the coming years.
According to the European Environment Agency, Europe halved its power sector’s carbon emissions in 2019 from 1990 levels.
2. Changes in energy consumption
EU consumption of electricity fell by -4% as majority of industries did not operate at full level during the first half of 2020. Although majority of EU residents stayed at home, meaning an increase in residential energy use, rising demand by households could not reverse falls in other sectors of the economy.
However, as countries renewed COVID-19 restrictions, energy consumption during the 4th quarter was closer to the “normal levels” than in the first three quarters of 2020.
The increase in energy consumption in the fourth quarter of 2020 was also partly due to colder temperatures compared to 2019 and signs of surging electricity demand in global markets.
3. Increase in demand for EVs
As the electrification of the transport system intensifies, the demand for electric vehicles increased in 2020 with almost half a million new registrations in the fourth quarter of 2020. This was the highest figure on record and translated into an unprecedented 17% market share, more than two times higher than in China and six times higher than in the United States.
However, the European Environment Agency (EEA)argues that the EV registrations were lower in 2020 compared to 2019. EEA states that in 2019, electric car registrations were close to 550 000 units, having reached 300 000 units in 2018.
4. Changes in the region’s energy mix and increase in renewable energy generation
The structure of the region’s energy mix changed in 2020, according to the report.
Owing to favorable weather conditions, hydro energy generation was very high and Europe was able to expand its portfolio of renewable energy generation such that renewables (39%) exceeded the share of fossil fuels (36%) for the first time ever in the EU energy mix.
Rising renewable generation was greatly assisted by 29 GW of wind and solar capacity additions in 2020, which is comparable to 2019 levels. Despite disrupting the supply chains of wind and solar resulting in project delays, the pandemic did not significantly slow down renewables’ expansion.
In fact, coal and lignite energy generation fell by 22% (-87 TWh) and nuclear output dropped by 11% (-79 TWh). On the other hand, gas energy generation was not significantly impacted owing to favorable prices which intensified coal-to-gas and lignite-to-gas switching, even as renewables crowd out gas in parts of the market.
5. Retirement of coal energy generation intensify
As the outlook for emission-intensive technologies worsens and carbon prices rise, more and more early coal retirements have been announced. Utilities in Europe are expected to continue transitioning from coal energy generation under efforts to meet stringent carbon emissions reduction targets and as they try to prepare themselves for future business models that they anticipate to be entirely low-carbon reliant.
6. Increase in wholesale electricity prices
In recent months, more expensive emission allowances, along with rising gas prices, have driven up wholesale electricity prices on many European markets to levels last seen at the beginning of 2019. The effect was most pronounced in countries that are dependent on coal and lignite. The wholesale electricity prices dynamic is expected to filter through to retail prices.
The rapid sales growth in the EVs sector was accompanied by expanding charging infrastructure. The number of high-power charging points per 100 km of highways rose from 12 to 20 in 2020.
Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.
Explore 50+ live, expert-led electrical training courses –