Will Electric Vehicles Crash The Grid?


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today

EV Grid Readiness means utilities preparing the power grid for electric vehicles with smart charging, demand response, V2G, managed load, and renewable integration to maintain reliability, prevent outages, and optimize infrastructure investment.

 

Key Points

EV Grid Readiness is utilities' ability to support mass EV charging with smart load control, V2G, and grid upgrades.

✅ Managed charging shifts load off-peak to reduce stress and costs

✅ V2G enables EVs to supply power and balance renewables

✅ Utilities plan upgrades, rate design, and demand response

 

There's little doubt that the automobile industry is beginning the greatest transformation it has ever seen as the American EV boom gathers pace. The internal combustion engine, the heart of the automobile for over 100 years, is being phased out in favor of battery electric powered vehicles. 

Industry experts know that it's no longer a question of will electric vehicles take over, the only question remaining is how quickly will it happen. If electric vehicle adoption accelerates faster than many have predicted, can the power grid, and especially state power grids across the country, handle the additional load needed to "fuel" tens of millions of EVs?

There's been a lot of debate on this subject, with, not surprisingly, those opposed to EVs predicting doomsday scenarios including power outages, increased electricity rates, and frequent calls from utilities asking customers to stop charging their cars.

There have also been articles written that indicate the grid will be able to handle the increased power demand needed to fuel a fully electric transportation fleet. Some even explain how electric vehicles will actually help grid stability overall, not cause problems.

So we decided to go directly to the source to get answers. We reached out to two industry professionals that aren't just armchair experts. These are two of the many people in the country tasked with the assignment of making sure we don't have problems as more and more electric vehicles are added to the national fleet. 

"Let's be clear. No one is forcing anyone to stop charging their EV." - Eric Cahill, speaking about the recent request by a California utility to restrict unnecessary EV charging during peak demand hours when possible

Both Eric Cahill, who is the Strategic Business Planner for the Sacramento Municipal Utility District in California, and John Markowitz, the Senior Director and Head of eMobility for the New York Power Authority agreed to recorded interviews so we could ask them if the grid will be ready for millions of EVs.  

Both Cahill and Markowitz explained that, while there will be challenges, they are confident that their respective districts will be ready for the additional power demand that electric vehicles will require. It's also important to note that the states that they work in, California and New York, with California expected to need a much bigger grid to support the transition, have both banned the sale of combustion vehicles past 2035. 

That's important because those states have the most aggressive timelines to transition to an all-electric fleet, and internationally, whether the UK grid can cope is a parallel question, so if they can provide enough power to handle the increased demand, other states should be able to also. 

We spoke to both Cahill and Markowitz for about thirty minutes each, so the video is about an hour long. We've added chapters for those that want to skip around and watch select topics. 

We asked both guests to explain what they believe some of the biggest challenges are, including how energy storage and mobile chargers could help, if 2035 is too aggressive of a timeline to ban combustion vehicles, and a number of other EV charging and grid-related questions. 

Neither of our guests seemed to indicate that they were worried about the grid crashing, or that 2035 was too soon to ban combustion vehicles. In fact, they both indicated that, since they know this is coming, they have already begun the planning process, with proper management in place to ensure the lights stay on and there are no major electricity disruptions caused by people charging their cars. 

So check out the video and let us know your thoughts. This has been a hot topic of discussion for many years now. Now that we've heard from the people in charge of providing us the power to charge our EVs, can we finally put the concerns to rest now? As always, leave your comments below; we want to hear your opinions as well.

 

Related News

Related News

Electric truck fleets will need a lot of power, but utilities aren't planning for it

Electric Fleet Grid Planning aligns utilities, charging infrastructure, distribution upgrades, and substation capacity to meet megawatt loads from medium- and heavy-duty EV trucks and buses, enabling managed charging, storage, and corridor fast charging.

 

Key Points

A utility plan to upgrade feeders and substations for EV fleets, coordinating charging, storage, and load management.

✅ Plans distribution, substation, and transformer upgrades

✅ Supports managed charging and on-site storage

✅ Aligns utility investment with fleet adoption timelines

 

As more electric buses and trucks enter the market, future fleets will require a lot of electricity for charging and will challenge state power grids over time. While some utilities in California and elsewhere are planning for an increase in power demand, many have yet to do so and need to get started.

This issue is critical, because freight trucks emit more than one-quarter of all vehicle emissions. Recent product developments offer growing opportunities to electrify trucks and buses and slash their emissions (see our recent white paper). And just last week, a group of 15 states plus D.C. announced plans to fully electrify truck sales by 2050. Utilities will need to be ready to power electric fleets.

Electric truck fleets need substantial power
Power for trucks and buses is generally more of an issue than for cars because trucks typically have larger batteries and because trucks and buses are often parts of fleets with many vehicles that charge at the same location. For example, a Tesla Model 3 battery stores 54-75 kWh; a Proterra transit bus battery stores 220-660 kWh. In Amsterdam, a 100-bus transit fleet is powered by a set of slow and fast chargers that together have a peak load of 13 MW (megawatts). This is equivalent to the power used by a typical large factory. And they are thinking of expanding the fleet to 250 buses.

California utilities are finding that grid capacity is often adequate in the short term, but that upgrade needs likely will grow in the medium term.
Many other fleets also will need a lot of "juice." For example, a rough estimate of the power needed to serve a fleet of 200 delivery vans at an Amazon fulfillment center is about 4 MW. And for electric 18-wheelers, chargers may need up to 2 MW of power each; a recent proposal calls for charging stations every 100 miles along the U.S. West Coast’s I-5 corridor, highlighting concerns about EVs and the grid as each site targets a peak load of 23.5 MW.

Utilities need distribution planning
These examples show the need for more power at a given site than most utilities can provide without planning and investment. Meeting these needs often will require changes to primary and secondary power distribution systems (feeders that deliver power to distribution transformers and to end customers) and substation upgrades. For large loads, a new substation may be needed. A paper recently released by the California Electric Transportation Coalition estimates that for loads over 5 MW, distribution system and substation upgrades will be needed most of the time. According to the paper, typical utility costs are $1 million to $9 million for substation upgrades, $150,000 to $6 million for primary distribution upgrades, and $5,000 to $100,000 for secondary distribution upgrades. Similarly, Black and Veatch, in a paper on Electric Fleets, also provides some general guidance, shown in the table below, while recognizing that each site is unique.

California policy pushes utilities toward planning
In California, state agencies and a statewide effort called CALSTART have been funding demonstration projects and vehicle and charger purchases for several years to support grid stability as electrification ramps up. The California Air Resources Board voted in June to phase in zero-emission requirements for truck sales, mandating that, beginning in 2024, manufacturers must increase their zero-emission truck sales to 30-50 percent by 2030 and 40-75 percent by 2035. By 2035, more than 300,000 trucks will be zero-emission vehicles.

California utilities operate programs that work with fleet owners to install the necessary infrastructure for electric vehicle fleets. For example, Southern California Edison operates the Charge Ready Transport program for medium- and heavy-duty fleets. Normally, when customers request new or upgraded service from the utility, there are fees associated with the new upgrade. With Charge Ready, the utility generally pays these costs, and it will sometimes pay half the cost of chargers; the customer is responsible for the other half and for charger installation costs. Sites with at least two electric vehicles are eligible, but program managers report that at least five vehicles are often needed for the economics to make sense for the utility.

One way to do this is to develop and implement a phased plan, with some components sized for future planned growth and other components added as needed. Southern California Edison, for example, has 24 commitments so far, and has a five-year goal of 870 sites, with an average of 10 chargers per site. The utility notes that one charger usually can serve several vehicles and that cycling of charging, some storage, and other load management techniques through better grid coordination can reduce capacity needs (a nominal 10 MW load often can be reduced below 5 MW).

Through this program, utility representatives are regularly talking with fleet operators, and they can use these discussions to help identify needed upgrades to the utility grid. For example, California transit agencies are doing the planning to meet a California Air Resources Board mandate for 100 percent electric or fuel cell buses by 2040; utilities are talking with the agencies and their consultants as part of this process. California utilities are finding that grid capacity is often adequate in the short term, but that upgrade needs likely will grow in the medium term (seven to 10 years out). They can manage grid needs with good planning (school buses generally can be charged overnight and don’t need fast chargers), load management techniques and some energy storage to address peak needs.

Customer conversations drive planning elsewhere
We also spoke with a northeastern utility (wishing to be unnamed) that has been talking with customers about many issues, including fleets. It has used these discussions to identify a few areas where grid upgrades might be needed if fleets electrify. It is factoring these findings into a broader grid-planning effort underway that is driven by multiple needs, including fleets. Even within an integrated planning effort, this utility is struggling with the question of when to take action to prepare the electric system for fleet electrification: Should it act on state or federal policy? Should it act when the specific customer request is submitted, or is there something in between? Recognizing that any option has scheduling and cost allocation implications, it notes that there are no easy answers.

Many utilities need to start paying attention
As part of our research, we also talked with several other utilities and found that they have not yet looked at how fleets might relate to grid planning. However, several of these companies are developing plans to look into these issues in the next year. We also talked with a major truck manufacturer, also wishing to remain unnamed, that views grid limitations as a key obstacle to truck electrification. 

Based on these cases, it appears that fleet electrification can have a substantial impact on electric grids and that, while these impacts are small at present, they likely will grow over time. Fleet owners, electric utilities, and utility regulators need to start planning for these impacts now, so that grid improvements can be made steadily as electric fleets grow. Fleet and grid planning should happen in parallel, so that grid upgrades do not happen sooner or later than needed but are in place when needed, including the move toward a much bigger grid as EV adoption accelerates. These grid impacts can be managed and planned for, but the time to begin this planning is now.

 

Related News

View more

Wind is main source of UK electricity for first time

UK Renewable Energy Milestones: wind outpacing gas, record solar output, offshore wind growth, National Grid data, and a net-zero grid by 2035, despite planning reforms, connection queues, and grid capacity constraints.

 

Key Points

Key UK advances where wind beat gas, solar set records, and policies target a 2035 net-zero electricity grid.

✅ Wind generated one-third of electricity, outpacing gas

✅ Record solar output reported by National Grid in April

✅ Onshore wind easing via planning reforms; grid delays persist

 

In the first three months of this year a third of the country's electricity came from wind farms, with the UK leading the G20 for wind power according to research from Imperial College London has shown.

National Grid has also confirmed that April saw a record period of solar energy generation, and wind generation set new records earlier in the year.

By 2035 the UK aims for all of its electricity to have net zero emissions, though progress stalled in 2019 in some areas.

"There are still many hurdles to reaching a completely fossil fuel-free grid, but wind out-supplying gas for the first time, a sign of wind leading the power mix, is a genuine milestone event," said Iain Staffell, energy researcher at Imperial College and lead author of the report.

The research was commissioned by Drax Electrical Insights, which is funded by Drax energy company.

The majority of the UK's wind power has come from offshore wind farms, and wind generated more electricity than coal in 2016 marking an early shift. Installing new onshore wind turbines has effectively been banned since 2015 in England.

Under current planning rules, companies can only apply to build onshore wind turbines on land specifically identified for development in the land-use plans drawn up by local councils. Prime Minister Rishi Sunak agreed in December to relax these planning restrictions to speed up development.

Scientists say switching to renewable power is crucial to curb the impacts of climate change, with milestones like wind and solar topping nuclear underscoring the shift, which are already being felt, including in the UK, which last year recorded its hottest year since records began.

Solar and wind have seen significant growth in the UK. In the first quarter of 2023, 42% of the UK's electricity came from renewable energy, with 33% coming from fossil fuels like gas and record-low coal shares.

Some new solar and wind sites are waiting up to 10 to 15 years to be connected because of a lack of capacity in the electricity system.

And electricity only accounts for 18% of the UK's total power needs. There are many demands for energy which electricity is not meeting, such as heating our homes, manufacturing and transport.

Currently the majority of UK homes use gas for their heating - the government is seeking to move households away from gas boilers and on to heat pumps which use electricity.

 

Related News

View more

Green energy in 2023: Clean grids, Alberta, batteries areas to watch

Canada 2023 Clean Energy Outlook highlights decarbonization, renewables, a net-zero grid by 2035, hydrogen, energy storage, EV mandates, carbon pricing, and critical minerals, aligning with IRA incentives and provincial policies to accelerate the transition.

 

Key Points

A concise overview of Canada's 2023 path to net-zero: renewables, clean grids, storage, EVs, and hydrogen.

✅ Net-zero electricity regulations target 2035

✅ Alberta leads PPAs and renewables via deregulated markets

✅ Tax credits boost storage, hydrogen, EVs, and critical minerals

 

The year 2022 may go down as the most successful one yet for climate action. It was marked by monumental shifts in energy policy from governments, two COP meetings and heightened awareness of the private sector's duty to act.

In the U.S., the Inflation Reduction Act (IRA) was the largest federal legislation to tackle climate change, injecting $369 billion of tax credits and incentives for clean energy, Biden's EV agenda and carbon capture, energy storage, energy efficiency and research.

The European Union accelerated its green policies to transition away from fossil fuels and overhauled its carbon market. China and India made strides on clean energy and strengthened climate policies. The International Energy Agency made its largest revision yet as renewables continued to proliferate.

The U.S. ratified the Kigali Amendment, one of the strongest global climate policies to date.

Canada was no different. The 2022 Fall Economic Statement was announced to respond to the IRA, offering an investment tax credit for renewables, clean technology and green hydrogen alongside the Canada Growth Fund. The federal government also proposed a 2035 deadline for clean electrical grids and a federal zero-emissions vehicle (ZEV) sales mandate for light-duty vehicles.

With the momentum set, more action is promised in 2023: Canadian governments are expected to unveil firmer details for the decarbonization of electricity grids to meet 2035 deadlines; Alberta is poised to be an unlikely leader in clean energy.

Greater attention will be put on energy storage and critical minerals. Even an expected economic downturn is unlikely to stop the ball that is rolling.

Shane Doig, the head of energy and natural resources at KPMG in Canada, said events in 2022 demonstrated the complexity of the energy transformation and opened “a more balanced conversation around how Canada can transition to a lower carbon footprint, whilst balancing the need for affordable, readily available electricity.”


Expect further developments on clean electricity
2023 shapes up as a crucial year for Canada’s clean electricity grid.

The federal government announced it will pursue a net-zero electricity grid by 2035 under the Clean Electricity Regulations (CER) framework.

It requires mass renewable and clean energy adoption, phasing out fossil fuel electricity generation, rapid electrification and upgrading transmission and storage while accommodating growth in electricity demand.

The first regulations for consultation are expected early in 2023. The plans will lay out pollution regulations and costs for generating assets to accelerate clean energy adoption, according to Evan Pivnick, the clean energy program manager of Clean Energy Canada.

The Independent Energy System Operator of Ontario (IESO) recently published a three-part report suggesting a net-zero conversion for Ontario could cost $400 billion over 25 years, even as the province weighs an electricity market reshuffle to keep up with increasing electricity demand.

Power Utility released research by The Atmospheric Fund that suggests Ontario could reach a net-zero grid by 2035 across various scenarios, despite ongoing debates about Ontario's hydro plan and rate design.

Dale Beguin, executive vice president at the Canadian Climate Institute, said in 2023 he hopes to see more provincial regulators and governments send “strong signals to the utilities” that a pathway to net-zero is realistic.

He recounted increasing talk from investors in facilities such as automotive plants and steel mills who want clean electricity guarantees before making investments. “Clean energy is a comparative advantage,” he said, which puts the imperative on organizations like the IESO to lay out plans for bigger, cleaner and flexible grids.

Beguin and Pivnick said they are watching British Columbia closely because of a government mandate letter setting a climate-aligned energy framework and a new mandate for the British Columbia Utilities Commission. Pivnick said there may be lessons to be drawn for other jurisdictions.

 

Alberta’s unlikely rise as a clean energy leader
Though Alberta sits at the heart of Canada’s oil and gas industry and at the core of political resistance to climate policy, it has emerged as a front runner in renewables adoption.

Billion of dollars for wind and solar projects have flowed into Alberta, as the province charts a path to clean electricity with large-scale projects.

Pivnick said an “underappreciated story” is how Alberta leaned into renewables through its “unique market.” Alberta leads in renewables and power purchase agreements because of its deregulated electricity market.

Unlike most provinces, Alberta enables companies to go directly to solar and wind developers to strike deals, a model reinforced under Kenney's electricity policies in recent years, rather than through utilities. It incentivizes private investment, lowers costs and helps meet increasing demand, which Nagwan Al-Guneid, the director of the Business Renewables Centre - Canada at the Pembina Institute, said is “is the No. 1 reason we see this boom in renewables in Alberta.”

Beguin noted Alberta’s innovative ‘reverse auctions,’ where the province sets a competitive bidding process to provide electricity. It ended up making electricity “way cheaper” due to the economic competitiveness of renewables, while Alberta profited and added clean energy to its grid.

In 2019, the Business Renewables Centre-Canada established a target of 2 GW of renewable energy deals by 2025. The target was exceeded in 2022, which led to a revised goal for 10 GW of renewables by 2030.

Al-Guneid wants to see other jurisdictions help more companies buy renewables. She does not universally prescribe deregulation, however, as other mechanisms such as sleeving exist.

Alberta will update its industrial carbon pricing in 2023, requiring large emitters to pay $65 per tonne of carbon dioxide. The fee climbs $15 per tonne each year until it reaches $175 per tonne in 2030. Al-Guneid said as the tax increases, demand for renewable energy certificates will also increase in Alberta.

Pivnick noted Alberta will have an election in 2023, which could have ramifications for energy policy.

 

Batteries and EV leadership
Manufacturing clean energy equipment, batteries and storage requires enormous quantities of minerals. With the 2022 Fall Economic Statement and the Critical Minerals Strategy, Canada is taking important steps to lead on this front.

Pivnick pointed to battery supply chain investments in Ontario and Quebec as part of Canada’s shift from “a fuel-based (economy) to a materials-based economy” to provide materials necessary for wind turbines and solar panels. The Strategy showed an understanding Canada has a major role to meet its allies’ needs for critical minerals, whether it’s the resources or supply chains.

There is also an opportunity for Canada to forge ahead on energy storage. The Fall Economic Statement proposes a 30 per cent tax credit for investments into energy storage. Pivnick suggested Canada invest further into research and development to explore innovations like green hydrogen and pump storage.

Doig believes Canada is “well poised” for batteries, both in terms of the technology and sustainable mining of minerals like cobalt, lithium and copper. He is bullish for Canada’s electrification based on its clean energy use and increased spending on renewables and energy storage.

He said the federal ZEV mandate will drive increased demand for the power, utilities, and oil and gas industries to respond.

The majority of gas stations, which are owned by the nation’s energy industry, will need to be converted into EV charging stations.

 

Offsetting a recession 
One challenge will be a poor economic forecast in the near term. A short "technical recession" is expected in 2023.

Inflation remains stubbornly high, which has forced the Bank of Canada to hike interest rates. The conditions will not leave any industry unscathed, but Doig said Canada's decarbonization is unlikely to be halted.

“Whilst a recession would slow things down, the concern around energy security definitely helps offset that concern,” he said.

Amid rising trade frictions and tariff threats, energy security is top of mind for governments and private organizations, accelerating the shift to renewables.

Doig said there is a general feeling a recession would be short-lived, meaning it would be unlikely to impact long-term projects in hydrogen, liquified natural gas, carbon capture and wind and solar.

 

Related News

View more

Solar Is Now 33% Cheaper Than Gas Power in US, Guggenheim Says

US Renewable Energy Cost Advantage signals cheaper utility-scale solar and onshore wind versus natural gas, with LCOE declines, tax credits, and climate policy cutting electricity costs for utilities and grids across the United States.

 

Key Points

Cheaper solar and wind than natural gas, driven by LCOE drops, tax credits, and policy, lowering US electricity costs.

✅ Utility-scale solar is about one-third cheaper than gas

✅ Onshore wind costs roughly 44 percent less than natural gas

✅ Policy and tax credits accelerate renewables and cut power prices

 

Natural gas’s dominance as power-plant fuel in the US is fading fast as the cost of electricity generated by US wind and solar projects tumbles and as wind and solar surpass coal in the generation mix, according to Guggenheim Securities.

Utility-scale solar is now about a third cheaper than gas-fired power, while onshore wind is about 44% less expensive, Guggenheim analysts led by Shahriar Pourreza said Monday in a note to clients, a dynamic consistent with falling wholesale power prices in several markets today. 

“Solar and wind now present a deflationary opportunity for electric supply costs,” the analysts said, which “supports the case for economic deployment of renewables across the US,” as the country moves toward 30% wind and solar and one-fourth of total generation in the near term.

Gas prices have surged amid a global supply crunch after Russia’s invasion of Ukraine, while tax-credit extensions and sweeping US climate legislation have brought down the cost of wind and solar, even as renewables surpassed coal in 2022 nationwide. Renewables-heavy utilities like NextEra Energy Inc. and Allete Inc. stand to benefit, and companies that can boost spending on wind and solar, as wind, solar and batteries dominate the 2023 pipeline, will also see faster growth, Guggenheim said.
 

 

Related News

View more

Factory Set to Elevate the United States in the Clean Energy Race

Maxeon IBC Solar Factory USA will scale clean energy with high-efficiency interdigitated back contact panels, DOE-backed manufacturing in Albuquerque, utility-scale supply, domestic production, 3 GW capacity, reduced imports, carbon-free electricity leadership.

 

Key Points

DOE-backed Albuquerque plant making high-efficiency IBC panels, 3 GW yearly, for utility-scale, domestic solar supply.

✅ 3 GW annual capacity; up to 8 million panels produced

✅ IBC cell efficiency up to 24.7% for utility-scale projects

✅ Reduces U.S. reliance on imported panels via domestic manufacturing

 

Solar energy stands as a formidable source of carbon-free electricity, with the No. 3 renewable source in the U.S. offering a clean alternative to traditional power generation methods reliant on polluting fuels. Advancements in solar technology continue to emerge, with a U.S.-based company poised to spearhead progress from a cutting-edge factory in New Mexico.

Maxeon, initially hailing from Silicon Valley in the 1980s, recently ventured into independence after separating from its parent company, SunPower, in 2020. Over the past few years, Maxeon has been manufacturing solar panels in Mexico, Malaysia, and the Philippines, as record U.S. panel shipments underscored rising demand.

Now, with backing from the U.S. Department of Energy's Loans Programs Office, Maxeon is preparing to commence construction on a new facility in Albuquerque in 2024, amid unprecedented growth in solar and storage nationwide. This state-of-the-art factory aims to produce up to 8 million panels annually, featuring the company's interdigitated back contact (IBC) technology, which has the capacity to generate three gigawatts of power each year. Notably, the entire U.S. solar industry completed five gigawatts of panels in 2022, making Maxeon's endeavor particularly ambitious and aligned with Biden's proposed tenfold increase in solar power goals.

Maxeon's presence in the United States holds the potential to reduce the country's reliance on imported panels, particularly from China. The primary focus will be on providing this advanced technology for utility departments, where pairing with increasingly affordable batteries can enhance grid reliability while shifting away from residential and commercial rooftops.

Maxeon has achieved a remarkable milestone in solar efficiency, with its latest IBC technology boasting an efficiency rating of 24.7%, as reported by PV Magazine.

This strategic move to the United States could be a game-changer, not only for Maxeon's success but also for clean power generation in a nation that has traditionally depended on external sources for its supply of solar panels, as energy-hungry Europe turns to U.S. solar equipment makers for solutions. Matt Dawson, Maxeon's Chief Technology Officer, emphasized the importance of achieving the lowest levelized cost of electricity with the lowest overall capital, a feat that China has accomplished in recent years due to the strength of its supply chain. As energy independence becomes a global concern, solar manufacturing is poised to expand beyond China, with Southeast Asia already showing signs of growth, and now the United States and possibly Europe, including Germany's solar boost during the energy crisis, following suit.

 

Related News

View more

Peak Power Receives $765,000 From Canadian Government to Deploy 117 V1G EV Chargers

Peak Power V1G EV chargers optimize smart charging in Ontario, using Synergy technology and ZEVIP support to manage peak demand, enhance grid capacity, and expand EV infrastructure across mixed-use developments with utility-friendly energy management.

 

Key Points

Peak Power's V1G smart chargers use Synergy tech to cut peak load and grow Ontario EV charging access.

✅ 117 chargers funded by NRCAN's ZEVIP program

✅ Synergy tech shifts load off peak to boost grid capacity

✅ Partners: SWTCH Energy and Signature Electric

 

Peak Power, a Canadian climate tech company with a core focus in energy management and energy storage, announces it has received a $765,000 investment through Natural Resources Canada’s (NRCan) Zero Emission Vehicle Infrastructure Program (ZEVIP) to install 117 V1G chargers as Ontario energy storage push intensifies province-wide planning. The total cost of the project is valued at over $1.6 million.

Peak Power will install the V1G chargers across several mixed-use developments in Ontario. Peak Power’s Synergy technology, which is currently used in the company’s successful Peak Drive EV charging project, will underpin the chargers. The Synergy tech will enable the chargers to draw energy from the grid when it’s most widely available and avoid times of peak demand, similar to emerging EV-to-grid integration pilots now, and can also adjust the flow rate at which the cars are charged. The intelligent chargers will reduce strain on the grid, benefiting utilities and electricity users by increasing grid capacity as well as giving EV drivers more locations to charge their vehicles.

As part of ZEVIP, the project supports the federal government’s goals of accelerating the electrification of Canada’s transportation sector. The 117 chargers will encourage adoption of EVs, as drivers have access to expanded infrastructure for charging, and as Ontario streamlines charging-station builds to accelerate deployments. From the perspective of grid operators, the intelligent nature of the Peak Power software will allow more capacity from the grid without requiring major infrastructure upgrades.

Peak Power will work with partners with deep expertise in EV charging to install the chargers. SWTCH Energy is co-developing the software for the EV chargers with Peak Power, while Signature Electric will install the hardware and supporting infrastructure.

“We’re thrilled to support the Canadian government's electrification goals through smart EV charging,” said Matthew Sachs, COO of Peak Power. “The funding from NRCan will enable us to provide drivers with more options for EV charging, while the smart nature of our Synergy tech in the chargers means grid operators don’t have to worry about capacity restraints when EVs are plugged into the grid, with EV owners selling power back offering additional flexibility too. ZEVIP is critical to greater electrification of the country’s infrastructure, and we’re proud to support the initiative.”

“Happy EV Week, Canada. Our government is making electric vehicles more affordable and charging more accessible where Canadians live, work and play, for example through the Ivy and ONroute charging network that supports travel corridors,” said the Honourable Jonathan Wilkinson, Minister of Natural Resources. “Investing in more EV chargers, like the ones announced today in Ontario, will put more Canadians in the driver’s seat on the road to a net-zero future and help achieve our climate goals.”

"I'm pleased to be announcing the deployment of over 100 Electric Vehicle chargers across Ontario with Peak Power,” said Julie Dabrusin, Parliamentary Secretary to the Minister of Natural Resources and to the Minister of Environment and Climate Change, and Member of Parliament for Toronto-Danforth. “This $765,000 investment by the Government of Canada will allow folks in Toronto and across the province to access the infrastructure they need, as B.C. expands EV charging shows national momentum, to drive an EV while fighting climate change. Happy #EVWeek!”

"Limited access to EV charging infrastructure in high-density mixed-used environments remains a key barrier to widespread EV adoption,” said Carter Li, CEO of SWTCH. “SWTCH’s partnership with Peak Power and Signature Electric to deploy V1G technology to these settings will enhance coordination between energy utilities, building operators, and EV drivers to improve building energy efficiency and access to EV charging infrastructure, with charger rebates in B.C. expanding home and workplace options as well.”

“Signature Electric is proud to be a partner on increasing the availability of localized charging for Canadians,” said Mark Marmer, Owner of Signature Electric. “Together, we can scale EV infrastructure to support Canada’s commitment to achieving net-zero emissions by 2050.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified