Green light given to Irish wind farm

By Industrial Info Resources


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Irish state-owned heating and energy group Bord na Móna has been given the green light to build an 80-megawatt MW windfarm in Mountlucas, County Offaly.

Based at Bord na Mona's peat-production site, the windfarm will cost an estimated 120 million euros US $152 million and will be capable of generating enough electricity for approximately 45,000 homes. Bord na Mona maintained that the windfarm would offset CO2 emissions by up to 125,000 tonnes per year. The proposed windfarm adds to the company's increased efforts to expand its renewable energy assets. The company's traditional business has involved managing the nation's peat resources, which it has supplied as a fuel to power plants for 50 years.

As it attempts to move beyond the peat-based businesses, the company is diversifying assets by building electricity-generating facilities that include windfarms, flexible gas-fired generation and peaking units.

In January, Bord na Mona announced that it would apply for planning permission to build the 40-MW Bruckana Windfarm near Templetuohy in the south of Ireland. Bruckana Windfarm will be situated on cutaway peat lands and the 16 turbines will generate enough electricity for approximately 20,000 homes and prevent the emission of 55,000 tonnes of greenhouse gases each year.

The proposed development of the Mountlucas Windfarm will consist of the construction of 32 wind turbines with individual capacities of 2.5 MW, access trackways, crane hard-standings, and underground cables running between the turbines and a 110-kilovolt electricity substation. The plant will contribute to the Irish government's goal of generating 40 of the nation's electricity from renewable energy sources by 2020.

Bord na Mona has made an application to EirGrid for connection of the windfarm to the national grid, which will occur in 2011. Construction of the farm will take 18 to 24 months.

In April this year, Bord na Mona received permission from Ireland's planning authority, An Bord Pleanala, to build the 600-MW Derrygreenagh power station, which will consist of two units: a reserve/peaking open-cycle gas turbine unit of about 170 MW and a flexible, combined-cycle gas turbine unit of 430 MW. Construction dates have not been set, and according to Bord na Mona Chief Executive Gabriel D'Arcy, certain obstacles are hindering the project.

"This is a major milestone on the road to bringing this project to fruition," he said. "However, there are still a number of hurdles to be cleared, including obtaining a grid connection offer and an IPPC Integrated Pollution Prevention & Control license for the power station. The completion of these associated consents processes will dictate when the project can progress to the construction stage."

Related News

N.S. approves new attempt to harness Bay of Fundy's powerful tides

Bay of Fundy Tidal Energy advances as Nova Scotia permits Jupiter Hydro to test floating barge platforms with helical turbines in Minas Passage, supporting renewable power, grid-ready pilots, and green jobs in rural communities.

 

Key Points

A Nova Scotia tidal energy project using helical turbines to generate clean power and create local jobs.

✅ Permits enable 1-2 MW prototypes near Minas Passage

✅ Floating barge platforms with patented helical turbines

✅ PPA at $0.50/kWh with Nova Scotia Power

 

An Alberta-based company has been granted permission to try to harness electricity from the powerful tides of the Bay of Fundy.

Nova Scotia has issued two renewable energy permits to Jupiter Hydro.

Backers have long touted the massive energy potential of Fundy's tides -- they are among the world's most powerful -- but large-scale commercial efforts to harness them have borne little fruit so far, even as a Scottish tidal project recently generated enough power to supply nearly 4,000 homes elsewhere.

The Jupiter application says it will use three "floating barge type platforms" carrying its patented technology. The company says it uses helical turbines mounted as if they were outboard motors.

"Having another company test their technology in the Bay of Fundy shows that this early-stage industry continues to grow and create green jobs in our rural communities," Energy and Mines Minister Derek Mombourquette said in a statement.

The first permit allows the company to test a one-megawatt prototype that is not connected to the electricity grid.

The second -- a five-year permit for up to two megawatts -- is renewable if the company meets performance standards, environmental requirements and community engagement conditions.

Mombourquette also authorized a power purchase agreement that allows the company to sell the electricity it generates to the Nova Scotia grid through Nova Scotia Power for 50 cents per kilowatt hour.

On its web site, Jupiter says it believes its approach "will prove to be the most cost effective marine energy conversion technology in the world," even as other regional utilities consider initiatives like NB Power's Belledune concept for turning seawater into electricity.

The one megawatt unit would have screws which are about 5.5 metres in diameter.

The project is required to obtain all other necessary approvals, permits and authorizations.

It will be located near the Fundy Ocean Research Center for Energy in the Minas Passage and will use existing electricity grid connections.

A study commissioned by the Offshore Energy Research Association of Nova Scotia says by 2040, the tidal energy industry could contribute up to $1.7 billion to Nova Scotia's gross domestic product and create up to 22,000 full-time jobs, a transition that some argue should be planned by an independent body to ensure reliability.

Last month, Nova Scotia Power said it now generates 30 per cent of its power from renewables, as the province moves to increase wind and solar projects after abandoning the Atlantic Loop.

The utility says 18 per cent came from wind turbines, nine per cent from hydroelectric and tidal turbines and three per cent by burning biomass across its fleet.

However, over half of the province's electrical generation still comes from the burning of coal or petroleum coke, even as environmental advocates push to reduce biomass use in the mix. Another 13 per cent come from burning natural gas and five per cent from imports.

 

Related News

View more

Heating and Electricity Costs in Germany Set to Rise

Germany 2025 Energy Costs forecast electricity and heating price trends amid gas volatility, renewables expansion, grid upgrades, and policy subsidies, highlighting impacts on households, industries, efficiency measures, and the Energiewende transition dynamics.

 

Key Points

Electricity stabilizes, gas-driven heating stays high; renewables, subsidies, and efficiency measures moderate costs.

✅ Power prices stabilize above pre-crisis levels

✅ Gas volatility keeps heating bills elevated

✅ Subsidies and efficiency upgrades offset some costs

 

As Germany moves into 2025, the country is facing significant shifts in heating and electricity costs. With a variety of factors influencing energy prices, including geopolitical tensions, government policies, and the ongoing transition to renewable energy sources, consumers and businesses alike are bracing for potential changes in their energy bills. In this article, we will explore how heating and electricity costs are expected to evolve in Germany in the coming year and what that means for households and industries.

Energy Price Trends in Germany

In recent years, energy prices in Germany have experienced notable fluctuations, particularly due to the aftermath of the global energy crisis, which was exacerbated by the Russian invasion of Ukraine. This geopolitical shift disrupted gas supplies, which in turn affected electricity prices and strained local utilities across the country. Although the German government introduced measures to mitigate some of the price increases, many households have still felt the strain of higher energy costs.

For 2024, experts predict that electricity prices will likely stabilize but remain higher than pre-crisis levels. While electricity prices nearly doubled in 2022, they have gradually started to decline, and the market has adjusted to the new realities of energy supply and demand. Despite this, the cost of electricity is expected to stay elevated as Germany continues to phase out coal and nuclear energy while ramping up the use of renewable sources, which often require significant infrastructure investments.

Heating Costs: A Mixed Outlook

Heating costs in Germany are heavily influenced by natural gas prices, which have been volatile since the onset of the energy crisis. Gas prices, although lower than the peak levels seen in 2022, are still considerably higher than in the years before. This means that households relying on gas heating can expect to pay more for warmth in 2024 compared to previous years.

The government has implemented measures to cushion the impact of these increased costs, such as subsidies for vulnerable households and efforts to support energy efficiency upgrades. Despite these efforts, consumers will still feel the pinch, particularly in homes that use older, less efficient heating systems. The transition to more sustainable heating solutions, such as heat pumps, remains a key goal for the German government. However, the upfront cost of such systems can be a barrier for many households.

The Role of Renewable Energy and the Green Transition

Germany has set ambitious goals for its energy transition, known as the "Energiewende," which aims to reduce reliance on fossil fuels and increase the share of renewable energy sources in the national grid. In 2024, Germany is expected to see further increases in renewable energy generation, particularly from wind and solar power. While this transition is essential for reducing carbon emissions and improving long-term energy security, the shift comes with its own challenges already documented in EU electricity market trends reports.

One of the main factors influencing electricity costs in the short term is the intermittency of renewable energy sources. Wind and solar power are not always available when demand peaks, requiring backup power generation from fossil fuels or stored energy. Additionally, the infrastructure needed to accommodate a higher share of renewables, including grid upgrades and energy storage solutions, is costly and will likely contribute to rising electricity prices in the near term.

On a positive note, Germany's growing investment in renewable energy is expected to make the country less reliant on imported fossil fuels, particularly natural gas, which has been a major source of price volatility. Over time, as the share of renewables in the energy mix grows, the energy system should become more stable and less susceptible to geopolitical shocks, which could lead to more predictable and potentially lower energy costs in the long run.

Government Interventions and Subsidies

To help ease the burden on consumers, the German government has continued to implement various measures to support households and businesses. One of the key programs is the reduction in VAT (Value Added Tax) on electricity, which has been extended in some regions. This measure is designed to make electricity more affordable for all households, particularly those on fixed incomes facing EU energy inflation pressures that have hit the poorest hardest.

Moreover, the government has been providing financial incentives for households and businesses to invest in energy-efficient technologies, such as insulation and energy-saving heating systems, complementing the earlier 200 billion euro energy shield announced to buffer surging prices. These incentives are intended to reduce overall energy consumption, which could offset some of the rising costs.

The outlook for heating and electricity costs in Germany for 2024 is mixed, even as energy demand hit a historic low amid economic stagnation. While some relief from the extreme price spikes of 2022 may be felt, energy costs will still be higher than they were in previous years. Households relying on gas heating will likely see continued elevated costs, although those who invest in energy-efficient solutions or renewable heating technologies may be able to offset some of the increases. Similarly, electricity prices are expected to stabilize but remain high due to the country’s ongoing transition to renewable energy sources.

While the green transition is crucial for long-term sustainability, consumers must be prepared for potentially higher energy costs in the short term. Government subsidies and incentives will help alleviate some of the financial pressure, but households should consider strategies to reduce energy consumption, such as investing in more efficient heating systems or adopting renewable energy solutions like solar panels.

As Germany navigates these changes, the country’s energy future will undoubtedly be shaped by a delicate balance between environmental goals and the economic realities of transitioning to a greener energy system.

 

Related News

View more

Newsom Vetoes Bill to Codify Load Flexibility

California Governor Gavin Newsom vetoed a bill aimed at expanding load flexibility in state grid planning, citing conflicts with California’s resource adequacy framework and concerns over grid reliability and energy planning uncertainty.

 

Why has Newsom vetoed the Bill to Codify Load Flexibility?

Governor Gavin Newsom’s veto blocks legislation that would have required the California Energy Commission to incorporate load flexibility into the state’s energy planning and policy framework, a move that has stirred debate across the clean energy sector.

✅ Argues the bill conflicts with California’s existing Resource Adequacy system

✅ Draws backlash from clean energy and grid modernization advocates

✅ Exposes ongoing tension over how to manage renewable integration and demand response

 

California Governor Gavin Newsom has vetoed Assembly Bill 44, which would have required the California Energy Commission to evaluate and incorporate load management mechanisms into the state’s energy planning process. The move drew criticism from clean energy advocates who say it undermines efforts to strengthen grid reliability and reduce costs.

The bill directed the commission to adopt “upfront technical requirements and load modification protocols” that would allow load-serving entities to adjust their electrical demand forecasts. Proponents viewed this as a way to modernize California’s grid management, and to explore a revamp of electricity rates to help clean the grid, making it more responsive to demand fluctuations and renewable energy variability.

In his veto statement, Newsom said the bill was incompatible with existing energy planning frameworks, even as a looming electricity shortage remains a concern. “While I support expanding electric load flexibility, this bill does not align with the California Public Utility Commission’s Resource Adequacy framework,” he said. “As a result, the requirements of this bill would not improve electric grid reliability planning and could create uncertainty around energy resource planning and procurement processes.”

Newsom’s decision comes shortly after he signed a broad package of energy legislation that set the stage for a regional Western electricity market and extended the state’s cap-and-trade program. However, that legislative package did not include continued funding for several key grid reliability programs — including what advocates have called the world’s largest virtual power plant, a distributed network of connected devices that can balance electricity demand in real time.

Clean energy supporters saw AB 44 as a crucial step toward integrating these distributed energy resources into long-term grid planning. “With Assembly Bill 44 being vetoed, the state has missed a huge opportunity to advance common-sense policy that would have lowered costs, strengthened the grid, and unlocked the full potential of advanced energy,” said Edson Perez, California lead at Advanced Energy United.

Perez added that the setback increases pressure on lawmakers to take stronger action in the next legislative session. “The pressure is on next session to ensure that California is using all tools in its policy toolbox to build critically needed infrastructure, strengthen the grid, and bring costs down,” he said.

California’s growing use of demand response programs and virtual power plants has been central to its strategy for managing grid stress during heat waves and wildfire seasons. These systems allow utilities and customers to temporarily reduce or shift energy use, helping to prevent blackouts and reduce the need for fossil-fuel peaker plants during peak demand.

A recent report by the Brattle Group found that California’s taxpayer-funded virtual power plant could save ratepayers $206 million between 2025 and 2028 while reducing reliance on gas generation. The study, commissioned by Sunrun and Tesla Energy, highlighted the potential for flexible load management to improve both grid reliability and reduce costs, even as regulators weigh whether the state needs more power plants to ensure reliability.

Despite these findings, Newsom’s veto signals continued tension between state policymakers and clean energy advocates over how best to modernize California’s power grid. While the governor has prioritized large-scale renewable development and regional market integration, critics argue that California’s climate policy choices risk exacerbating reliability challenges and that failing to codify load flexibility could slow progress toward a more adaptive, resilient, and affordable clean energy future.

 

Related Articles

View more

How the dirtiest power station in western Europe switched to renewable energy

Drax Biomass Conversion accelerates renewable energy by replacing coal with wood pellets, sustainable forestry feedstock, and piloting carbon capture and storage, supporting the UK grid, emissions cuts, and a net-zero pathway.

 

Key Points

Drax Biomass Conversion is Drax's shift from coal to biomass with CCS pilots to cut emissions and aid UK's net-zero.

✅ Coal units converted to biomass wood pellets

✅ Sourced from sustainable forestry residues

✅ CCS pilots target lifecycle emissions cuts

 

A power station that used to be the biggest polluter in western Europe has made a near-complete switch to renewable energy, mirroring broader shifts as Denmark's largest energy company plans to end coal by 2023.

The Drax Power Station in Yorkshire, England, used to spew out millions of tons of carbon dioxide a year by burning coal. But over the past eight years, it has overhauled its operations by converting four of its six coal-fired units to biomass. The plant's owners say it now generates 15% of the country's renewable power, as Britain recently went a full week without coal power for the first time.

The change means that just 6% of the utility's power now comes from coal, as the wider UK coal share hits record lows across the national electricity system. The ultimate goal is to stop using coal altogether.

"We've probably reduced our emissions more than any other utility in the world by transforming the way we generate power," Will Gardner, CEO of the Drax Group, told CNN Business.

Subsidies have helped finance the switch to biomass, which consists of plant and agricultural matter and is viewed as a promising substitute for coal, and utilities such as Nova Scotia Power are also increasing biomass use. Last year, Drax received £789 million ($1 billion) in government support.

 

Is biomass good for the environment?

While scientists disagree over the extent to which biomass as a fuel is environmentally friendly, and some environmentalists urge reducing biomass use amid concerns about lifecycle emissions, Drax highlights that its supplies come from from sustainably managed and growing forests.

Most of the biomass used by Drax consists of low-grade wood, sawmill residue and trees with little commercial value from the United States. The material is compressed into sawdust pellets.

Gardner says that by purchasing bits of wood not used for construction or furniture, Drax makes it more financially viable for forests to be replanted. And planting new trees helps offset biomass emissions.

Forests "absorb carbon as they're growing, once they reach maturity, they stop absorbing carbon," said Raphael Slade, a senior research fellow at Imperial College London.

But John Sterman, a professor at MIT's Sloan School of Management, says that in the short term burning wood pellets adds more carbon to the atmosphere than burning coal.

That carbon can be absorbed by new trees, but Sterman says the process can take decades.

"If you're looking at five years, [biomass is] not very good ... If you're looking at a century-long time scale, which is the sort of time scale that many foresters plan, then [biomass] can be a lot more beneficial," says Slade.

 

Carbon capture

Enter carbon capture and storage technology, which seeks to prevent CO2 emissions from entering the atmosphere and has been touted as a possible solution to the climate crisis.

Drax, for example, is developing a system to capture the carbon it produces from burning biomass. But that could be 10 years away.

 

The Coal King is racing to avoid bankruptcy

The power station is currently capturing just 1 metric ton of CO2 emissions per day. Gardner says it hopes to increase this to 10,000 metric tons per day by the mid to late 2020s.

"The technology works but scaling it up and rolling it out, and financing it, are going to be significant challenges," says Slade.

The Intergovernmental Panel on Climate Change shares this view. The group said in a 2018 report that while the potential for CO2 capture and storage was considerable, its importance in the fight against climate change would depend on financial incentives for deployment, and whether the risks of storage could be successfully managed. These include a potential CO2 pipeline break.

In the United Kingdom, the government believes that carbon capture and storage will be crucial to reaching its goal of achieving net-zero greenhouse gas emissions by 2050, even as low-carbon generation stalled in 2019 according to industry analysis.

It has committed to consulting on a market-based industrial carbon capture framework and in June awarded £26 million ($33 million) in funding for nine carbon capture, usage and storage projects, amid record coal-free generation on the British grid.

 

Related News

View more

TagEnergy Launches France’s Largest Battery Storage Platform

TagEnergy France Battery Storage Platform enables grid flexibility, stability, and resilience across France, storing wind and solar power, balancing supply and demand, reducing curtailment, and supporting carbon neutrality with fast-response, utility-scale capacity.

 

Key Points

A utility-scale BESS in France that stores renewable energy to stabilize the grid, boost flexibility, and cut emissions.

✅ Several hundred MW utility-scale capacity for peak shaving.

✅ Fast-response frequency regulation and voltage support.

✅ Reduces fossil peaker use and renewable curtailment.

 

In a significant leap toward enhancing France’s renewable energy infrastructure, TagEnergy has officially launched the country's largest battery storage platform. This cutting-edge project is set to revolutionize the way France manages its electricity grid by providing much-needed flexibility, stability, and resilience, particularly as the country ramps up its use of renewable energy sources and experiences negative prices in France during periods of oversupply,

The new battery storage platform, with a total capacity of several hundred megawatts, will play a crucial role in facilitating the country's transition to a greener, more sustainable energy future. It marks a significant step forward in addressing one of the most pressing challenges of renewable energy: how to store and dispatch power generated from intermittent sources such as wind and solar energy.

The Role of Battery Storage in Renewable Energy

Battery storage systems are key to unlocking the full potential of renewable energy sources. While wind and solar power are increasingly important in reducing reliance on fossil fuels, their intermittent nature—dependent on weather conditions and time of day—presents a challenge for grid operators. Without an efficient way to store surplus energy produced during peak generation periods, when negative electricity prices can emerge, the grid can become unstable, leading to waste or even blackouts.

This is where TagEnergy’s new platform comes into play. The state-of-the-art battery storage system will capture excess energy when production is high, and then release it back into the grid during periods of high demand, supporting peak demand strategies or when renewable generation dips. This capability will smooth out the fluctuations in renewable energy production and ensure a constant, reliable supply of power to consumers. By doing so, the platform will not only stabilize the grid but also increase the overall efficiency and utilization of renewable energy sources.

The Scale and Scope of the Platform

TagEnergy's battery storage platform is one of the largest in France, with a capacity capable of supporting a wide range of energy storage needs across the country. The platform’s size is designed to handle significant energy loads, making it a critical piece of infrastructure for grid stability. The project will primarily focus on large-scale energy storage, but it will also incorporate cutting-edge technologies to ensure fast response times and high efficiency in energy release.

France’s energy mix is undergoing a transformation as the country aims to achieve carbon neutrality by 2050. With ambitious plans to expand renewable energy production, particularly from offshore wind such as North Sea wind potential, solar, and hydropower, energy storage becomes essential for managing supply and demand. The new battery platform is poised to provide the necessary storage capabilities to keep up with this shift toward greener, more sustainable energy production.

Economic and Environmental Impact

The launch of the battery storage platform is a major boon for the French economy, creating jobs and attracting investment in the clean energy sector. The project is expected to generate hundreds of construction and operational jobs, providing a boost to local economies, particularly in the areas where the storage facilities are located.

From an environmental perspective, the platform’s ability to store and release renewable energy will greatly reduce the country’s reliance on fossil fuels, decreasing greenhouse gas emissions. The efficient storage of solar and wind energy will mean that more clean electricity can be used, with solar-plus-storage cheaper than conventional power in Germany underscoring cost competitiveness, even during times when these renewable sources are not producing at full capacity. This will help France meet its energy and climate goals, including reducing carbon emissions by 40% by 2030 and achieving carbon neutrality by 2050.

The development also aligns with broader European Union goals to increase the share of renewables in the energy mix. As EU nations work toward their collective climate commitments, energy storage projects like TagEnergy’s platform will be vital in helping the continent achieve a greener, more sustainable future.

A Step Toward Energy Independence

The new battery storage platform also has the potential to enhance France’s energy independence. By increasing the storage capacity for renewable energy, France will be able to rely less on imported fossil fuels and energy from neighboring countries, particularly during periods of high demand. Energy independence is a key strategic goal for many nations, as it reduces vulnerability to geopolitical tensions and fluctuating energy prices.

In addition to bolstering national security, the platform supports France’s energy transition by facilitating the deployment of more renewable energy. As storage capacity increases, grid operators will be able to integrate larger quantities of intermittent renewable energy without sacrificing reliability. This will enable France to meet its long-term energy goals while also supporting the EU’s ambitious climate targets.

Future of Battery Storage in France and Beyond

TagEnergy’s launch of France’s largest battery storage platform is a monumental achievement in the country’s energy transition. However, it is unlikely to be the last of its kind. The success of this project could pave the way for similar initiatives across France and the wider European market. As battery storage technology advances, and affordable solar batteries scale up, the capacity for storing and utilizing renewable energy will only grow, unlocking new possibilities for clean, affordable power.

Looking ahead, TagEnergy plans to expand its operations and further invest in renewable energy solutions. The French market, along with growing demand for storage solutions across Europe, presents significant opportunities for further development in the energy storage sector. With the continued integration of renewable energy into the grid, large-scale storage platforms will play an increasingly critical role in shaping a low-carbon future.

The launch of TagEnergy’s battery storage platform marks a pivotal moment for France’s renewable energy landscape. By providing critical storage capacity and ensuring the reliable delivery of clean electricity, the platform will help the country meet its ambitious climate and energy goals. As technology advances and the global transition to renewables accelerates, with over 30% of global electricity now coming from renewables, projects like this one will play an essential role in creating a sustainable, low-carbon energy future.

 

Related News

View more

Shell’s strategic move into electricity

Shell's Industrial Electricity Supply Strategy targets UK and US industrial customers, leveraging gas-to-power, renewables, long-term PPAs, and energy transition momentum to disrupt utilities, cut costs, and secure demand in the evolving electricity market.

 

Key Points

Shell will sell power directly to industrial clients, leveraging gas, renewables, and PPAs to secure demand and pricing.

✅ Direct power sales to industrials in UK and US

✅ Leverages gas-to-power, renewables, and flexible sourcing

✅ Targets long-term PPAs, price stability, and demand security

 

Royal Dutch Shell’s decision to sell electricity direct to industrial customers is an intelligent and creative one. The shift is strategic and demonstrates that oil and gas majors are capable of adapting to a new world as the transition to a lower carbon economy develops. For those already in the business of providing electricity it represents a dangerous competitive threat. For the other oil majors it poses a direct challenge on whether they are really thinking about the future sufficiently strategically.

The move starts small with a business in the UK that will start trading early next year, in a market where the UK’s second-largest electricity operator has recently emerged, signaling intensifying competition. Shell will supply the business operations as a first step and it will then expand. But Britain is not the limit — Shell recently announced its intention of making similar sales in the US. Historically, oil and gas companies have considered a move into electricity as a step too far, with the sector seen as oversupplied and highly politicised because of sensitivity to consumer price rises. I went through three reviews during my time in the industry, each of which concluded that the electricity business was best left to someone else. What has changed? I think there are three strands of logic behind the strategy.

First, the state of the energy market. The price of gas in particular has fallen across the world over the last three years to the point where the International Energy Agency describes the current situation as a “glut”. Meanwhile, Shell has been developing an extensive range of gas assets, with more to come. In what has become a buyer’s market it is logical to get closer to the customer — establishing long-term deals that can soak up the supply, while options such as storing electricity in natural gas pipes gain attention in Europe. Given its reach, Shell could sign contracts to supply all the power needed by the UK’s National Health Service or with the public sector as a whole as well as big industrial users. It could agree long-term contracts with big businesses across the US.

To the buyers, Shell offers a high level of security from multiple sources with prices presumably set at a discount to the market. The mutual advantage is strong. Second, there is the transition to a lower carbon world. No one knows how fast this will move, but one thing is certain: electricity will be at the heart of the shift with power demand increasing in transportation, industry and the services sector as oil and coal are displaced. Shell, with its wide portfolio, can match inputs to the circumstances and policies of each location. It can match its global supplies of gas to growing Asian markets, including China’s 2060 electricity share projections, while developing a renewables-based electricity supply chain in Europe. The new company can buy supplies from other parts of the group or from outside. It has already agreed to buy all the power produced from the first Dutch offshore wind farm at Egmond aan Zee.

The move gives Shell the opportunity to enter the supply chain at any point — it does not have to own power stations any more than it now owns drilling rigs or helicopters. The third key factor is that the electricity market is not homogenous. The business of supplying power can be segmented. The retail market — supplying millions of households — may be under constant scrutiny, as efforts to fix the UK’s electricity grid keep infrastructure in the headlines, with suppliers vilified by the press and governments forced to threaten price caps but supplying power to industrial users is more stable and predictable, and done largely out of the public eye. The main industrial and commercial users are major companies well able to negotiate long-term deals.

Given its scale and reputation, Shell is likely to be a supplier of choice for industrial and commercial consumers and potentially capable of shaping prices. This is where the prospect of a powerful new competitor becomes another threat to utilities and retailers whose business models are already under pressure. In the European market in particular, electricity pricing mechanisms are evolving and public policies that give preference to renewables have undermined other sources of supply — especially those produced from gas. Once-powerful companies such as RWE and EON have lost much of their value as a result. In the UK, France and elsewhere, public and political hostility to price increases have made retail supply a risky and low-margin business at best. If the industrial market for electricity is now eaten away, the future for the existing utilities is desperate.

Shell’s move should raise a flag of concern for investors in the other oil and gas majors. The company is positioning itself for change. It is sending signals that it is now viable even if oil and gas prices do not increase and that it is not resisting the energy transition. Chief executive Ben van Beurden said last week that he was looking forward to his next car being electric. This ease with the future is rather rare. Shareholders should be asking the other players in the old oil and gas sector to spell out their strategies for the transition.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified