Judge orders Duke power plant shutdowns

By All American Patriots


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Judge Larry McKinney issued a ruling in U.S. District Court for the Southern District of Indiana calling for Duke Energy to shut down three units at the companyÂ’s West Terre Haute Wabash River Station no later than September 30.

The majority of the plant’s capacity is unaffected by the ruling, which calls for units 2, 3 and 5 to be retired, while the remaining Duke Energy-owned units at the station – 4 and 6 – will be unaffected. Shutting down units 2, 3 and 5 will remove a combined capacity of 265 megawatts, which is 39 percent of the station’s 677- megawatt power generating capacity.

Following an adverse ruling by a jury in May 2008, Duke Energy had proposed as a remedy that units 2, 3 and 5 be retired in 2012, when the new IGCC plant in Edwardsport comes on line. The courtÂ’s order today accelerates that timetable by two years.

“We are disappointed with the court’s decision to accelerate the shutdown of Wabash River Units 2, 3 and 5,” said Duke Energy Chief Legal Officer Marc Manly. “But even though disappointed, I will reiterate our satisfaction that after 10 years of litigation, the company’s position regarding power plant projects was vindicated in the vast majority of instances about which the government originally complained. We will continue to review the Court’s ruling and evaluate our options.”

The judge also ruled:

• The company will not have to install additional emissions reduction equipment on units 4 or 6.

• Duke Energy will have to surrender sulfur dioxide (SO2) allowances for the period between May 22, 2008 and Sept. 20, 2009. This amount is significantly less than requested by the government.

• Judge McKinney reduced the government’s proposed fine on Beckjord Station from $1.32 million to $687,500.

“The units at Wabash River impacted by this decision are more than 50 years old," said James L. Turner, president and chief operating officer of Duke Energy’s Franchised Electric & Gas segment. “This order should not have an impact on Duke Energy’s operation in 2009 because of changes we already made to our operating plans following the jury’s verdict last summer. However, we will have to re-evaluate our plans for meeting peak demand the next two summers and work with the Midwest Independent System Operator to ensure we have an adequate plan for the reliable operation of the system.”

In addition to the new coal gasification plant, Duke Energy will have invested nearly $5 billion to substantially reduce emissions of sulfur dioxide, nitrogen oxide and other pollutants from the companyÂ’s coal-based power plants in the five states it serves. The net result of these investments will be a reduction of sulfur dioxide and nitrogen oxide emissions by approximately 70 percent across Duke EnergyÂ’s five-state service area by 2010.

Duke Energy IndianaÂ’s operations provide 6,500 megawatts of electricity capacity to approximately 775,000 customers, making it the stateÂ’s largest electric supplier.

Related News

EIA: Pennsylvania exports the most electricity, California imports the most from other states

U.S. Electricity Trade by State, 2013-2017 highlights EIA grid patterns, interstate imports and exports, cross-border flows with Canada and Mexico, net exporters and importers, and market regions like ISOs and RTOs shaping consumption and generation.

 

Key Points

Brief EIA overview of interstate and cross-border power flows, ranking top net importers and exporters.

✅ Pennsylvania was the largest net exporter, averaging 59 million MWh.

✅ California was the largest net importer, averaging 77 million MWh.

✅ Top cross-border: NY, CA, VT, MN, MI imports; WA, TX, CA, NY, MT exports.

 

According to the U.S. Energy Information Administration (EIA) State Electricity Profiles, from 2013 to 2017, Pennsylvania was the largest net exporter of electricity, while California was the largest net importer.

Pennsylvania exported an annual average of 59 million megawatt-hours (MWh), while California imported an average of 77 million MWh annually.

Based on the share of total consumption in each state, the District of Columbia, Maryland, Massachusetts, Idaho and Delaware were the five largest power-importing states between 2013 and 2017, highlighting how some clean states import 'dirty' electricity as consumption outpaces local generation. Wyoming, West Virginia, North Dakota, Montana and New Hampshire were the five largest power-exporting states. Wyoming and West Virginia were net power exporting states between 2013 and 2017.

New York, California, Vermont, Minnesota and Michigan imported the most electricity from Canada or Mexico on average from 2013 to 2017, reflecting the U.S. look to Canada for green power during that period. Similarly, Washington, Texas, California, New York, and Montana exported the most electricity to Canada or Mexico, on average, during the same period.

Electricity routinely flows among the Lower 48 states and, to a lesser extent, between the United States and Canada and Mexico. From 2013 to 2017, Pennsylvania was the largest net exporter of electricity, sending an annual average of 59 million megawatthours (MWh) outside the state. California was the largest net importer, receiving an average of 77 million MWh annually.

Based on the share of total consumption within each state, the District of Columbia, Maryland, Massachusetts, Idaho, and Delaware were the five largest power-importing states between 2013 and 2017. Wyoming, West Virginia, North Dakota, Montana, and New Hampshire were the five largest power-exporting states. States with major population centers and relatively less generating capacity within their state boundaries tend to have higher ratios of net electricity imports to total electricity consumption, as utilities devote more to electricity delivery than to power production in many markets.

Wyoming and West Virginia were net power exporting states (they exported more power to other states than they consumed) between 2013 and 2017. Customers residing in these two states are not necessarily at an economic disadvantage or advantage compared with customers in neighboring states when considering their electricity bills and fees and market dynamics. However, large amounts of power trading may affect a state’s revenue derived from power generation.

Some states also import and export electricity outside the United States to Canada or Mexico, even as Canada's electricity exports face trade tensions today. New York, California, Vermont, Minnesota, and Michigan are the five states that imported the most electricity from Canada or Mexico on average from 2013 through 2017. Similarly, Washington, Texas (where electricity production and consumption lead the nation), California, New York, and Montana are the five states that exported the most electricity to Canada or Mexico, on average, for the same period.

Many states within the continental United States fall within integrated market regions, referred to as independent system operators or regional transmission organizations. These integrated market regions allow electricity to flow freely between states or parts of states within their boundaries.

EIA’s State Electricity Profiles provide details about the supply and disposition of electricity for each state, including net trade with other states and international imports and exports, and help you understand where your electricity comes from more clearly.

 

Related News

View more

Rio Tinto Completes Largest Off-Grid Solar Plant in Canada's Northwest Territories

Rio Tinto Off-Grid Solar Power Plant showcases renewable energy at the Diavik Diamond Mine in Canada's Northwest Territories, cutting diesel use, lowering carbon emissions, and boosting remote mining resilience with advanced photovoltaic technology.

 

Key Points

A remote solar PV plant at Diavik mine supplying clean power while cutting diesel use, carbon emissions, and costs.

✅ Largest off-grid solar in Northwest Territories

✅ Replaces diesel generators during peak solar hours

✅ Enhances sustainability and lowers operating costs

 

In a significant step towards sustainable mining practices, Rio Tinto has completed the largest off-grid solar power plant in Canada’s Northwest Territories. This groundbreaking achievement not only highlights the company's commitment to renewable energy, as Canada nears 5 GW of solar capacity nationwide, but also sets a new standard for the mining industry in remote and off-grid locations.

Located in the remote Diavik Diamond Mine, approximately 220 kilometers south of the Arctic Circle, Rio Tinto's off-grid solar power plant represents a technological feat in harnessing renewable energy in challenging environments. The plant is designed to reduce reliance on diesel fuel, traditionally used to power the mine's operations, and mitigate carbon emissions associated with mining activities.

The decision to build the solar power plant aligns with Rio Tinto's broader sustainability goals and commitment to reducing its environmental footprint. By integrating renewable energy sources like solar power, a strategy that renewable developers say leads to better, more resilient projects, the company aims to enhance energy efficiency, lower operational costs, and contribute to global efforts to combat climate change.

The Diavik Diamond Mine, jointly owned by Rio Tinto and Dominion Diamond Mines, operates in a remote region where access to traditional energy infrastructure is limited, and where, despite lagging solar demand in Canada, off-grid solutions are increasingly vital for reliability. Historically, diesel generators have been the primary source of power for the mine's operations, posing logistical challenges and environmental impacts due to fuel transportation and combustion.

Rio Tinto's investment in the off-grid solar power plant addresses these challenges by leveraging abundant sunlight in the Northwest Territories to generate clean electricity directly at the mine site. The solar array, equipped with advanced photovoltaic technology, which mirrors deployments such as Arvato's first solar plant in other sectors, is capable of producing a significant portion of the mine's electricity needs during peak solar hours, reducing reliance on diesel generators and lowering overall carbon emissions.

Moreover, the completion of the largest off-grid solar power plant in Canada's Northwest Territories underscores the feasibility and scalability of renewable energy solutions, from rooftop arrays like Edmonton's largest rooftop solar to off-grid systems in remote and resource-intensive industries like mining. The success of this project serves as a model for other mining companies seeking to enhance sustainability practices and operational resilience in challenging geographical locations.

Beyond environmental benefits, Rio Tinto's initiative is expected to have positive economic and social impacts on the local community. By reducing diesel consumption, the company mitigates air pollution and noise levels associated with mining operations, improving environmental quality and contributing to the well-being of nearby residents and wildlife.

Looking ahead, Rio Tinto's investment in renewable energy at the Diavik Diamond Mine sets a precedent for responsible resource development and sustainable mining practices in Canada, where solar growth in Alberta is accelerating, and globally. As the mining industry continues to evolve, integrating renewable energy solutions like off-grid solar power plants will play a crucial role in achieving long-term environmental sustainability and operational efficiency.

In conclusion, Rio Tinto's completion of the largest off-grid solar power plant in Canada's Northwest Territories marks a significant milestone in the mining industry's transition towards renewable energy. By harnessing solar power to reduce reliance on diesel generators, the company not only improves operational efficiency and environmental stewardship but also adds to momentum from corporate power purchase agreements like RBC's Alberta solar deal, setting a positive example for sustainable development in remote regions. As global demand for responsible mining practices grows, initiatives like Rio Tinto's off-grid solar project demonstrate the potential of renewable energy to drive positive change in resource-intensive industries.

 

Related News

View more

Summerland solar power project will provide electricity

Summerland Solar+Storage Project brings renewable energy to a municipal utility with photovoltaic panels and battery storage, generating 1,200 megawatts from 3,200 panels on Cartwright Mountain to boost grid resilience and local clean power.

 

Key Points

A municipal solar PV and battery system enabling Summerland Power to self-generate electricity on Cartwright Mountain.

✅ 3,200 panels, 20-year batteries, 35-year panel lifespan

✅ Estimated $7M cost, $6M in grants, utility reserve funding

✅ Site near grid lines; 2-year timeline with 18-month lead

 

A proposed solar energy project, to be constructed on municipally-owned property on Cartwright Mountain, will allow Summerland Power to produce some of its own electricity, similar to how Summerside's wind power supplies a large share locally.

On Monday evening, municipal staff described the Solar+Storage project, aligning with insights from renewable power developers that combining resources yields better projects.

The project will include around 3,200 solar panels and storage batteries, giving Summerland Power the ability to generate 1,200 megawatts of electrical power.

This is the amount of energy used by 100 homes over the course of a year.

The solar panels have an estimated life expectancy of 35 years, while the batteries have a life expectancy of 20 years.

“It’s a really big step for a small utility like ours,” said Tami Rothery, sustainability/alternative energy coordinator for Summerland. “We’re looking forward to moving towards a bright, sunny energy future.”

She said the price of solar panels has been dropping, with lower-cost solar contracts reported in Alberta, and the quality and efficiency of the panels has increased in recent years.

The total cost of the project is around $7 million, with $6 million to come from grant funding and the remainder to come from the municipality’s electrical utility reserve fund, while policy changes such as Nova Scotia's solar charge delay illustrate evolving market conditions.

The site, a former public works yard and storage area, was selected from 108 parcels of land considered by the municipality.

She said the site, vacant since the 1970s, is close to main electrical lines and will not be highly visible once the panels are in place, much like unobtrusive rooftop solar arrays in urban settings.

Access to the site is restricted, resulting in natural security to the solar installation.

Jeremy Storvold, general manager of Summerland’s electrical utility, said the site is 2.5 kilometres from the Prairie Valley electrical substation and close to the existing public works yard.

However, some in the audience on Monday questioned the location of the proposed solar installation, suggesting the site would be better suited for affordable housing in the community.

The timeline for the project calls for roughly two years before the work will be completed, since there is an 18-month lead time in order to receive good quality solar panels, reflecting the surge in Alberta's solar growth that is straining supply chains.

 

Related News

View more

Funding Approved for Bruce C Project Exploration

Bruce C Project advances Ontario clean energy with NRCan funding for nuclear reactors, impact assessment, licensing, and Indigenous engagement, delivering reliable baseload power and low-carbon electricity through pre-development studies at Bruce Power.

 

Key Points

A proposed nuclear build at Bruce Power, backed by NRCan funding for studies, licensing, and impact assessment to expand clean power.

✅ Up to $50M NRCan support for pre-development

✅ Focus: feasibility, impact assessment, licensing

✅ Early Indigenous and community engagement

 

Canada's clean energy landscape received a significant boost recently with the announcement of federal funding for the Bruce Power's Bruce C Project. Natural Resources Canada (NRCan) pledged up to $50 million to support pre-development work for this potential new nuclear build on the Bruce Power site. This collaboration between federal and provincial governments signifies a shared commitment to a cleaner energy future for Ontario and Canada.

The Bruce C Project, if it comes to fruition, has the potential to be a significant addition to Ontario's clean energy grid. The project envisions constructing new nuclear reactors at the existing Bruce Power facility, located on the shores of Lake Huron. Nuclear energy is a reliable source of clean electricity generation, as evidenced by Bruce Power's operating record during the pandemic, producing minimal greenhouse gas emissions during operation.

The funding announced by NRCan will be used to conduct crucial pre-development studies. These studies will assess the feasibility of the project from various angles, including technical considerations, environmental impact assessments, and Indigenous and community engagement, informed by lessons from a major refurbishment that required a Bruce reactor to be taken offline, to ensure thorough planning. Obtaining a license to prepare the site and completing an impact assessment are also key objectives for this pre-development phase.

This financial support from the federal government aligns with both national and provincial clean energy goals. The "Powering Canada Forward" plan, spearheaded by NRCan, emphasizes building a clean, reliable, and affordable electricity system across the country. Ontario's "Powering Ontario's Growth" plan echoes these objectives, focusing on investment options, such as the province's first SMR project, to electrify the province's economy and meet its growing clean energy demand.

"Ontario has one of the cleanest electricity grids in the world and the nuclear industry is leading the way," stated Mike Rencheck, President and CEO of Bruce Power. He views this project as a prime example of collaboration between federal and provincial entities, along with the private sector, where recent manufacturing contracts underscore industry capacity.

Nuclear energy, however, remains a topic of debate. While proponents highlight its role in reducing greenhouse gas emissions and providing reliable baseload power, opponents raise concerns about nuclear waste disposal and potential safety risks. The pre-development studies funded by NRCan will need to thoroughly address these concerns as part of the project's evaluation.

Transparency and open communication with local communities and Indigenous groups will also be crucial for the project's success. Early engagement activities facilitated by the funding will allow for open dialogue and address any potential concerns these stakeholders might have.

The Bruce C Project is still in its early stages. The pre-development work funded by NRCan will provide valuable data to determine the project's viability. If the project moves forward, it has the potential to significantly contribute to Ontario's clean energy future, while also creating jobs and economic benefits for local communities and suppliers.

However, the project faces challenges. Public perception of nuclear energy and the lengthy regulatory process are hurdles that will need to be addressed, as debates around the Pickering B refurbishment have highlighted in Ontario. Additionally, ensuring cost-effectiveness and demonstrating the project's long-term economic viability will be critical for securing broader support.

The next few years will be crucial for the Bruce C Project. The pre-development work funded by NRCan will be instrumental in determining its feasibility. If successful, this project could be a game-changer for Ontario's clean energy future, building on the province's Pickering life extensions to strengthen system adequacy, offering a reliable, low-carbon source of electricity for the province and beyond.

 

Related News

View more

Turning thermal energy into electricity

Near-Field Thermophotovoltaics captures radiated energy across a nanoscale gap, using thin-film photovoltaic cells and indium gallium arsenide to boost power density and efficiency, enabling compact Army portable power from emitters via radiative heat transfer.

 

Key Points

A nanoscale TPV method capturing near-field photons for higher power density at lower emitter temperatures.

✅ Nanoscale gap boosts radiative transfer and usable photon flux

✅ Thin-film InGaAs cells recycle sub-band-gap photons via reflector

✅ Achieved ~5 kW/m2 power density with higher efficiency

 

With the addition of sensors and enhanced communication tools, providing lightweight, portable power has become even more challenging, with concepts such as power from falling snow illustrating how diverse new energy-harvesting approaches are. Army-funded research demonstrated a new approach to turning thermal energy into electricity that could provide compact and efficient power for Soldiers on future battlefields.

Hot objects radiate light in the form of photons into their surroundings. The emitted photons can be captured by a photovoltaic cell and converted to useful electric energy. This approach to energy conversion is called far-field thermophotovoltaics, or FF-TPVs, and has been under development for many years; however, it suffers from low power density and therefore requires high operating temperatures of the emitter.

The research, conducted at the University of Michigan and published in Nature Communications, demonstrates a new approach, where the separation between the emitter and the photovoltaic cell is reduced to the nanoscale, enabling much greater power output than what is possible with FF-TPVs for the same emitter temperature.

This approach, which enables capture of energy that is otherwise trapped in the near-field of the emitter is called near-field thermophotovoltaics or NF-TPV and uses custom-built photovoltaic cells and emitter designs ideal for near-field operating conditions, alongside emerging smart solar inverters that help manage conversion and delivery.

This technique exhibited a power density almost an order of magnitude higher than that for the best-reported near-field-TPV systems, while also operating at six-times higher efficiency, paving the way for future near-field-TPV applications, including remote microgrid deployments in extreme environments, according to Dr. Edgar Meyhofer, professor of mechanical engineering, University of Michigan.

"The Army uses large amounts of power during deployments and battlefield operations and must be carried by the Soldier or a weight constrained system," said Dr. Mike Waits, U.S. Army Combat Capabilities Development Command's Army Research Laboratory. "If successful, in the future near-field-TPVs could serve as more compact and higher efficiency power sources for Soldiers as these devices can function at lower operating temperatures than conventional TPVs."

The efficiency of a TPV device is characterized by how much of the total energy transfer between the emitter and the photovoltaic cell is used to excite the electron-hole pairs in the photovoltaic cell, where insights from near-light-speed conduction research help contextualize performance limits in semiconductors. While increasing the temperature of the emitter increases the number of photons above the band-gap of the cell, the number of sub band-gap photons that can heat up the photovoltaic cell need to be minimized.

"This was achieved by fabricating thin-film TPV cells with ultra-flat surfaces, and with a metal back reflector," said Dr. Stephen Forrest, professor of electrical and computer engineering, University of Michigan. "The photons above the band-gap of the cell are efficiently absorbed in the micron-thick semiconductor, while those below the band-gap are reflected back to the silicon emitter and recycled."

The team grew thin-film indium gallium arsenide photovoltaic cells on thick semiconductor substrates, and then peeled off the very thin semiconductor active region of the cell and transferred it to a silicon substrate, informing potential interfaces with home battery systems for distributed use.

All these innovations in device design and experimental approach resulted in a novel near-field TPV system that could complement distributed resources in virtual power plants for resilient operations.

"The team has achieved a record ~5 kW/m2 power output, which is an order of magnitude larger than systems previously reported in the literature," said Dr. Pramod Reddy, professor of mechanical engineering, University of Michigan.

Researchers also performed state-of-the-art theoretical calculations to estimate the performance of the photovoltaic cell at each temperature and gap size, informing hybrid designs with backup fuel cell solutions that extend battery life, and showed good agreement between the experiments and computational predictions.

"This current demonstration meets theoretical predictions of radiative heat transfer at the nanoscale, and directly shows the potential for developing future near-field TPV devices for Army applications in power and energy, communication and sensors," said Dr. Pani Varanasi, program manager, DEVCOM ARL that funded this work.

 

Related News

View more

Neste increases the use of wind power at its Finnish production sites to nearly 30%

Neste wind power agreement boosts renewable electricity in Finland, partnering with Ilmatar and Fortum to supply Porvoo and Naantali sites, cutting Scope 2 emissions and advancing a 2035 carbon-neutral production target via long-term PPAs.

 

Key Points

A PPA to source wind power for sites, cutting Scope 2 emissions and supporting Neste's 2035 carbon-neutral goal.

✅ 10-year PPA with Ilmatar; + Fortum boosts renewable electricity share.

✅ Supplies ~7% of Porvoo-Naantali electricity; capacity >20 MW.

✅ Cuts Scope 2 emissions by ~55 kt CO2e per year toward 2035 neutrality.

 

Neste is committed to reaching carbon neutral production by 2035, mirroring efforts such as Olympus 100% renewable electricity commitments across industry.

As part of this effort, the company is increasing the use of renewable electricity at its production sites in Finland, reflecting trends such as Ireland's green electricity targets across Europe, and has signed a wind power agreement with Ilmatar, a wind power company. The agreement has been made together with Borealis, Neste's long-term partner in the Kilpilahti area in Porvoo, Finland.

As a result of the agreement with Ilmatar, as well as that signed with Fortum at the end of 2019, and in line with global growth such as Enel's 450 MW wind project in the U.S., nearly 30% of the energy used at Neste's production sites in Porvoo and Naantali will be renewable wind power in 2022.

'Neste's purpose is to create a healthier planet for our children. Our two climate commitments play an important role in living up to this ambition, and one of them is to reach carbon neutral production by 2035. It is an enormous challenge and requires several concrete measures and investments, including innovations like offshore green hydrogen initiatives. Wind power, including advances like UK offshore wind projects, is one of the over 70 measures we have identified to reduce our production's greenhouse gas emissions,' Neste's President and CEO Peter Vanacker says.

With the ten year contract, Neste is committed to purchase about one-third of the production of Ilmatar's two wind farms, reflecting broader market moves such as BC Hydro wind deals in Canada. The total capacity of the agreement is more than 20 MW, and the energy produced will correspond to around 7% of the electricity consumption at Neste's sites in Porvoo and Naantali. The wind power deliveries are expected to begin in 2022.

The two wind power agreements help Neste to reduce the indirect greenhouse gas emissions (Scope 2 emissions defined by the Greenhouse Gas Protocol) of electricity purchases at its Finnish production sites, a trend mirrored by Dutch green electricity growth across Europe, annually by approximately 55 kilotons. 55 kt/a CO2e equals annual carbon footprint of more than 8,500 EU citizens.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified