PGE ranks among highest in solar generation

By Business Wire


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Portland General Electric (PGE) was recognized by the Solar Electric Power Association (SEPA) as a utility leader in the integration of solar into its generation portfolio.

In SEPA's report, the "2008 Top Ten Utility Solar Integration Rankings," PGE ranked eighth in the nation — and fourth in the West — in total solar megawatts. The annual rankings are based on the amount of solar electricity installed during the 2008 calendar year. PGE integrated more than 3.5 megawatts AC of solar power into its system, more than tripling the amount of solar resources connected to its system.

"In 2008 Portland General Electric established itself as 'one to watch' regarding utility solar integration," said Julia Hamm, SEPA executive director. "In today's shifting energy landscape, electric utilities face a new challenge in determining how to integrate solar electricity in a way that benefits the utility, its shareholders, and society at large. PGE is one of the utilities leading the charge to find innovative business models that accomplish this goal."

PGE also appeared on several other SEPA rankings for its 2008 solar activity, including:

• Sixth in the nation in total solar megawatts on the utility-side of the meter;

• Eighth in the nation in total solar megawatts on the customer-side of the meter;

• Ninth in the nation for solar watts per customer on utility-side of the meter;

• Eighth in the nation for total solar megawatts and ninth in the nation in total solar watts per customer among investor-owned utilities.

"PGE and our customers are committed to integrating more renewable energy, including solar, into our generation portfolio, which will help us reach the state's renewable energy standards of 25 percent renewables by 2025," said Bill Nicholson, vice president, customers and economic development, PGE.

"We could not have achieved this important milestone without the hard work and determination of our customers, business partners, community leaders, and the state of Oregon. We are all working together to ensure Oregon becomes a solar leader in everything from solar manufacturing to solar installations for our customers."

During 2008, PGE installed two major solar installations in Oregon: the nation's first solar highway project at the I-5/I-205 interchange in Tualatin and the Northwest's largest rooftop installation in Portland.

The solar highway demonstration project, a collaboration by PGE, US Bank and the Oregon Department of Transportation (ODOT), began supplying renewable power in December 2008 to help light the way for drivers at the Interstate 5 and Interstate 205 interchange in Tualatin. The 104-kilowatt photovoltaic system covers about 8,000 square feet — roughly the length of two football fields — and will produce about 112,000 kilowatt hours a year, or 28 percent of the 400,000 kilowatt hours used to light the interchange.

"PGE's exceptional leadership made it possible for Oregon to complete America's first solar highway project," said Allison Hamilton, solar highway project director, ODOT. "No other utility in the nation has made that commitment. Oregon values the innovative public-private partnership pioneered with PGE to power the transportation system of the future."

The 1.1-megawatt rooftop ProLogis solar project, the largest in the Pacific Northwest, began generating solar power in December 2008. The project, which uses "thin-film" solar panels, is installed on the rooftops of three ProLogis distribution warehouses in northeast Portland and covers more than 328,000 square feet.

Currently, PGE has 6.5 megawatts of solar capacity interconnected in PGE's operating area with almost 400 solar "net metering" customers (customers who generate their own electricity), which is enough to power 600 homes and offset 4,322 tons of carbon dioxide emissions per year.

Related News

UK to End Coal Power After 142 Years

UK Coal Phase-Out signals an energy transition, accelerating decarbonization with offshore wind, solar, and storage, advancing net-zero targets, cleaner air, and a just transition for communities impacted by fossil fuel decline.

 

Key Points

A policy to end coal power in the UK, boosting renewables and net-zero goals while improving air quality.

✅ Coal electricity fell from 40% in 2012 to under 3% by 2022

✅ Offshore wind and solar expand capacity; storage enhances reliability

✅ Just transition funds retrain workers and support coal regions

 

The United Kingdom is poised to mark a significant milestone in its energy history by phasing out coal power entirely, ending a reliance that has lasted for 142 years. This decision underscores the UK’s commitment to combating climate change and transitioning toward cleaner energy sources, reflecting a broader global energy transition away from fossil fuels. As the country embarks on this journey, it highlights both the achievements and challenges of moving towards a sustainable energy future.

A Historic Transition

The UK’s relationship with coal dates back to the Industrial Revolution, when coal was the backbone of its energy supply, driving factories, trains, and homes. However, as concerns over air quality and climate change have mounted, the nation has progressively shifted its focus toward renewable energy sources amid a global decline in coal-fired electricity worldwide. The decision to end coal power represents the culmination of this transformation, signaling a definitive break from a past heavily reliant on fossil fuels.

In recent years, the UK has made remarkable strides in reducing its carbon emissions. From 2012 to 2022, coal's contribution to the country's electricity generation plummeted from around 40% to less than 3%, as policies like the British carbon tax took effect across the power sector. This dramatic decline is largely due to the rise of renewable energy sources, such as wind, solar, and hydroelectric power, which have increasingly filled the gap left by coal.

Environmental and Health Benefits

The move away from coal power has significant environmental benefits. Coal is one of the most carbon-intensive energy sources, releasing substantial amounts of carbon dioxide (CO2) and other harmful pollutants into the atmosphere. By phasing out coal, the UK aims to significantly reduce its greenhouse gas emissions and improve air quality, which has been linked to serious health issues such as respiratory diseases and cardiovascular problems.

The UK government has set ambitious net zero policies, aiming to achieve net-zero carbon emissions by 2050. Ending coal power is a critical step in reaching this target, demonstrating leadership on the global stage and setting an example for other countries still dependent on fossil fuels. This transition not only addresses climate change but also promotes a healthier environment for future generations.

The Role of Renewable Energy

As the UK phases out coal, renewable energy sources are expected to play a central role in meeting the country's energy needs. Wind power, in particular, has surged in prominence, with the UK leading the world in offshore wind capacity. In 2020, wind energy surpassed coal for the first time, accounting for over 24% of the country's electricity generation.

Solar energy has also seen significant growth, contributing to the diversification of the UK’s energy mix. The government’s investments in renewable energy infrastructure and technology have facilitated this rapid transition, providing the necessary framework for a sustainable energy future.

Economic Implications

While the transition away from coal power presents environmental benefits, it also carries economic implications. The coal industry has historically provided jobs and economic activity, particularly in regions where coal mining was a mainstay, a dynamic echoed in analyses of the decarbonization of Canada's electricity grid and its regional impacts. As the UK moves toward a greener economy, there is an urgent need to support communities that may be adversely affected by this transition.

To address potential job losses, the government has emphasized the importance of investing in retraining programs and creating new opportunities in the renewable energy sector. This will be vital in ensuring a just transition that supports workers and communities as the energy landscape evolves.

Challenges Ahead

Despite the progress made, the journey toward a coal-free UK is not without challenges. One significant concern is the need for reliable energy storage solutions to complement intermittent renewable sources like wind and solar. Ensuring a stable energy supply during periods of low generation will be critical for maintaining grid reliability.

Moreover, public acceptance and engagement will be crucial, as illustrated by debates over New Zealand's electricity transition and its pace, as the UK navigates this transition. Engaging communities in discussions about energy policies and developments can foster understanding and support for the changes ahead.

Looking to the Future

The UK’s decision to phase out coal power after 142 years marks a significant turning point in its energy policy and environmental strategy. This historic shift not only aligns with the country’s climate goals but also showcases its commitment to a cleaner, more sustainable future.

As the UK continues to invest in renewable energy and transition away from fossil fuels, it sets an important example for other nations, including those on China's path to carbon neutrality, grappling with similar challenges. By embracing this transition, the UK is not only addressing pressing environmental concerns but also paving the way for a greener economy that can thrive in the decades to come.

 

Related News

View more

Siemens Energy to unlock a new era of offshore green hydrogen production

Offshore Wind-to-Hydrogen Integration enables green hydrogen by embedding an electrolyzer in offshore turbines. Siemens Gamesa and Siemens Energy align under H2Mare to decarbonize industry, advance the Paris Agreement, and unlock scalable, off-grid renewable production.

 

Key Points

A method integrating electrolyzers into offshore wind turbines to generate green hydrogen and reduce carbon emissions.

✅ Integrated electrolyzer at turbine base for off-grid operation

✅ Enables scalable, cost-efficient green hydrogen production

✅ Supports decarbonization targets under Paris Agreement

 

To reach the Paris Agreement goals, the world will need vast amounts of green hydrogen and, with offshore wind growth accelerating, wind will provide a large portion of the power needed for its production.

Siemens Gamesa and Siemens Energy announced today that they are joining forces combining their ongoing wind-to-hydrogen developments to address one of the major challenges of our decade - decarbonizing the economy to solve the climate crisis.

The companies are contributing with their developments to an innovative solution that fully integrates an electrolyzer into an offshore wind turbine as a single synchronized system to directly produce green hydrogen. The companies intend to provide a full-scale offshore demonstration of the solution by 2025/2026. The German Federal Ministry of Education and Research, reflecting Germany's clean energy progress, announced today that the developments can be implemented as part of the ideas competition 'Hydrogen Republic of Germany'.

'Our more than 30 years of experience and leadership in the offshore wind industry, coupled with Siemens Energy's expertise in electrolyzers, brings together brilliant minds and cutting-edge technologies to address the climate crisis. Our wind turbines play a huge role in the decarbonization of the global energy system, and the potential of wind to hydrogen means that we can do this for hard-to-abate industries too. It makes me very proud that our people are a part of shaping a greener future,' said Andreas Nauen, Siemens Gamesa CEO.

Christian Bruch, CEO of Siemens Energy, explains: 'Together with Siemens Gamesa, we are in a unique position to develop this game changing solution. We are the company that can leverage its highly flexible electrolyzer technology and create and redefine the future of sustainable offshore energy production. With these developments, the potential of regions with abundant offshore wind, such as the UK offshore wind sector, will become accessible for the hydrogen economy. It is a prime example of enabling us to store and transport wind energy, thus reducing the carbon footprint of economy.'

Over a time frame of five years, Siemens Gamesa plans to invest EUR 80 million and Siemens Energy is targeting to invest EUR 40 million in the developments. Siemens Gamesa will adapt its development of the world's most powerful turbine, the SG 14-222 DD offshore wind turbine to integrate an electrolysis system seamlessly into the turbine's operations. By leveraging Siemens Gamesa's intricate knowledge and decades of experience with offshore wind, electric losses are reduced to a minimum, while a modular approach ensures a reliable and efficient operational set-up for a scalable offshore wind-to-hydrogen solution. Siemens Energy will develop a new electrolysis product to not only meet the needs of the harsh maritime offshore environment and be in perfect sync with the wind turbine, but also to create a new competitive benchmark for green hydrogen.

The ultimate fully integrated offshore wind-to-hydrogen solution will produce green hydrogen using an electrolyzer array located at the base of the offshore wind turbine tower, blazing a trail towards offshore hydrogen production. The solution will lower the cost of hydrogen by being able to run off grid, much like solar-powered hydrogen in Dubai showcases for desert environments, opening up more and better wind sites. The companies' developments will serve as a test bed for making large-scale, cost-efficient hydrogen production a reality and will prove the feasibility of reliable, effective implementation of wind turbines in systems for producing hydrogen from renewable energy.

The developments are part of the H2Mare initiative which is a lighthouse project likely to be supported by the German Federal Ministry of Education and Research ideas competition 'Hydrogen Republic of Germany'. The H2mare initiative under the consortium lead of Siemens Energy is a modular project consisting of multiple sub-projects to which more than 30 partners from industry, institutes and academia are contributing. Siemens Energy and Siemens Gamesa will contribute to the H2Mare initiative with their own developments in separate modular building blocks.

About hydrogen and its role in the green energy transition

Currently 80 million tons of hydrogen are produced each year and production is expected to increase by about 20 million tons by 2030. Just 1% of that hydrogen is currently generated from green energy sources. The bulk is obtained from natural gas and coal, emitting 830 million tons of CO2 per year, more than the entire nation of Germany or the global shipping industry. Replacing this current polluting consumption would require 820 GW of wind generating capacity, 26% more than the current global installed wind capacity. Looking further ahead, many studies suggest that by 2050 production will have grown to about 500 million tons, with a significant shift to green hydrogen already signaled by projects like Brazil's green hydrogen plant now underway. The expected growth will require between 1,000 GW and 4,000 GW of renewable capacity by 2050 to meet demand, and in the U.S. initiatives like DOE hydrogen hubs aim to catalyze this build-out, which highlights the vast potential for growth in wind power.

 

Related News

View more

As Alberta electricity generators switch to gas, power price cap comes under spotlight

Alberta Energy-Only Electricity Market faces capacity market debate, AESO price cap review, and coal-to-gas shifts by TransAlta and Capital Power, balancing reliability with volatility as investment signals evolve across Alberta's grid.

 

Key Points

An energy market paying generators only for electricity sold, with AESO oversight and a price cap guiding new capacity.

✅ AESO reviewing $999 per MW-h wholesale price cap.

✅ UCP retained energy-only; capacity market plan cancelled.

✅ TransAlta and Capital Power shift to coal-to-gas.

 

The Kenney government’s decision to cancel the redesign of Alberta’s electricity system to a capacity market won’t side-track two of the province’s largest power generators from converting coal-fired facilities to burn natural gas as part of Alberta’s shift from coal to cleaner energy overall.

But other changes could be coming to the province’s existing energy-only electricity market — including the alteration of the $999 per megawatt-hour (MW-h) wholesale price cap in Alberta.

The heads of TransAlta Corp. and Capital Power Corp. are proceeding with strategies to convert existing coal-fired power generating facilities to use natural gas in the coming years.

Calgary-based TransAlta first announced in 2017 that it would make the switch, as the NDP government was in the midst of overhauling the electricity sector and wind generation began to outpace coal in the province.

At the time, the Notley government planned to phase out coal-fired power by 2030, even as Alberta moved to retire coal by 2023 in practice, and shift Alberta into an electricity capacity market in 2021.

Such a move, made on the recommendation of the Alberta Electric System Operator (AESO), was intended to reduce price volatility and ensure system reliability.

Under the energy-only market, generators receive payments for electricity produced and sold into the grid. In a capacity market, generators are also paid for having power available on demand, regardless of how often they sell energy into the provincial grid.

The UCP government decided last month to ditch plans for a capacity market after consulting with the sector, saying it would be better for consumers.

On a conference call, TransAlta CEO Dawn Farrell said the company will convert coal-fired generating plants to burn gas, although it may alter the mix between simple conversions and switching to so-called “hybrid” plants.

(A hybrid conversion is a larger and more-expensive switch, as it includes installing a new gas turbine and heat-recovery steam generator, but it creates a highly efficient combined cycle unit.)

“Our view is fundamentally that carbon will be priced over the next 20 years no matter what,” she said Friday.

“We cannot get off coal fast enough in this company, and gas right now in Alberta is extremely inexpensive…

“So our coal-to-gas strategy is completely predicated on our belief that it’s not smart to be in carbon-intensive fuels for the future.”

Elsewhere in Canada, the Stop the Shock campaign has advocated for reviving coal power, underscoring ongoing policy debates.

The company said it’s planning the coal-to-gas conversion and re-powering of some or all of the units at its Keephills and Sundance facilities to gas-fired generation sometime between 2020 and 2023.

Similarly, Capital Power CEO Brian Vaasjo said the Edmonton-based company is moving ahead with a project that will allow it to burn both coal and natural gas at its Genesee generating station, even as Ontario’s energy minister sought to explore a halt to natural gas generation elsewhere.

In June, the company announced it would spend an estimated $50 million between 2019 and 2021 to allow it to use gas at the facility.

“What we’re doing is going to be dual fuel, so we will be able to operate 100 per cent natural gas or 100 per cent coal and everything in between,” Vaasjo said in an interview.

“You can expect to see we will be burning coal in the winter when natural gas prices are high, and we will be burning natural gas in summer when gas prices are real low.”

The transition comes as the government’s decision to stick with the energy-only market has been welcomed by players in the industry, and as Alberta's electricity future increasingly leans on wind resources.

A study by electricity consultancy EDC Associates found the capacity market would result in consumers paying an extra $1.4 billion in direct costs in 2021-22, as it required more generation to come online earlier than expected.

These additional costs would have accumulated to $10 billion by 2030, said EDC chief executive Duane-Reid Carlson.

For Capital Power, the decision to stick with the current system makes the province more investable in the future. Vaasjo said there was great uncertainty about the transition to a capacity market, and the possibility of rules shifting further.

Officials with Enmax Corp. said the city-owned utility would not have invested in future generation under the proposed capacity market.

“There is no short-term need (today) for new generation, so we’re just looking at the market and saying, ‘OK, as it evolves, we will see what happens,’” said Enmax vice-president Tim Boston.

Sticking with the energy-only market doesn’t mean Alberta will keep the existing rules.

In a July 25 letter, Alberta Energy Minister Sonya Savage directed AESO chair Will Bridge to examine if changes to the existing market are needed and report back by July 2020.

AESO, which manages the power grid, has been asked to investigate whether the current price cap of $999 per megawatt-hour (MW-h) should be changed.

The price ceiling hasn’t been altered since the energy-only market was implemented by the Klein government about two decades ago.

While allowing prices to go higher would increase volatility, reflecting lessons from Europe’s power crisis about scarcity pricing, during periods of rising demand and limited supply, it would send a signal to generators when investment in new generation is required, said Kent Fellows, a research associate at the University of Calgary’s School of Public Policy.

“Keeping the price (cap) too low could end up costing us more in the long run,” he said.

In a 2016 report, AESO said the province examined raising the price cap to $5,000 per MW-h, but “determined that it was unlikely to be successful in attracting investment due to increased price volatility.”

However, the amount of future generation that will be required in Alberta has been scaled back by the province.

In the United States, the Electricity Reliability Council of Texas (ERCOT) allows wholesale power prices in the state to climb to a cap of $9,000 per megawatt hours as demand rises — as it did Tuesday in the midst of a heat wave, according to Bloomberg.

Jim Wachowich, legal counsel for the Consumers’ Coalition of Alberta, said while few players are exposed to spot electricity prices, he has yet to be convinced raising the cap would be good for Albertans.

“Someone has to show me the evidence, and I suspect that’s what the minister has asked the AESO to do,” he said.

Generators say they believe some tinkering is needed to the energy-only market to ensure new generation is built when it’s required.

“The No. 1 change that the government has to … think about is in pricing,” added Farrell.

“If you don’t have enough of a price signal in an energy-only market to attract new capital, you won’t get new capital — and you’ll run up against the wall.”

 

Related News

View more

Experts Question Quebec's Push for EV Dominance

Quebec EV transition plan aims for 2 million electric vehicles by 2030 and bans new gas cars by 2035, stressing charging infrastructure, incentives, emissions cuts, and industry impacts, with debate over feasibility and economic risks.

 

Key Points

A provincial policy targeting 2M EVs by 2030 and a 2035 gas-car sales ban, backed by charging buildout and incentives.

✅ Requires major charging infrastructure and grid upgrades

✅ Balances incentives with economic impacts and industry readiness

✅ Gas stations persist while EV adoption accelerates cautiously

 

Quebec's ambitious push to dominate the electric vehicle (EV) market, echoing Canada's EV goals in its plan, by setting a target of two million EVs on the road by 2030 and planning to ban the sale of new gas-powered vehicles by 2035 has sparked significant debate among industry experts. While the government's objectives aim to reduce greenhouse gas emissions and promote sustainable transportation, some experts question the feasibility and potential economic impacts of such rapid transitions.

Current Landscape of Gas Stations in Quebec

Contrary to Environment Minister Benoit Charette's assertion that gas stations may become scarce within the next decade, industry experts suggest that the number of gas stations in Quebec is unlikely to decline drastically. Carol Montreuil, Vice President of the Canadian Fuels Association, describes the minister's statement as "wishful thinking," emphasizing that the number of gas stations has remained relatively stable over the past decade. Statistics indicate that in 2023, Quebec residents purchased more gasoline than ever before, and EV shortages and wait times further underscore the continued demand for traditional fuel sources.

Challenges in Accelerating EV Adoption

The government's goal of having two million EVs on Quebec roads by 2030 presents several challenges. Currently, there are approximately 200,000 fully electric cars in the province. Achieving a tenfold increase in less than a decade requires substantial investments in charging infrastructure, consumer incentives, and public education to address concerns such as range anxiety and charging accessibility, especially amid electricity shortage warnings across Quebec and other provinces.

Economic Considerations and Industry Concerns

Industry stakeholders express concerns about the economic implications of rapidly phasing out gas-powered vehicles. Montreuil warns that the industry is already struggling and that attempting to transition too quickly could lead to economic challenges, a view echoed by critics who label the 2035 EV mandate delusional. He suggests that the government may be spending excessive public funds on subsidies for technologies that are still expensive and not yet widely adopted.

Public Sentiment and Adoption Rates

Public sentiment towards EVs is mixed, and experiences in Manitoba suggest the road to targets is not smooth. While some consumers, like Montreal resident Alex Rajabi, have made the switch to electric vehicles and are satisfied with their decision, others remain hesitant due to concerns about vehicle cost, charging infrastructure, and the availability of incentives. Rajabi, who transitioned to an EV nine months ago, notes that while he did not take advantage of the incentive program, he is happy with his decision and suggests that adding charging ports at gas stations could facilitate the transition.

The Need for a Balanced Approach

Experts advocate for a balanced approach that considers the pace of technological advancements, consumer readiness, and economic impacts. While the transition to electric vehicles is essential for environmental sustainability, it is crucial to ensure that the infrastructure, market conditions, and public acceptance are adequately addressed, and to recognize that a share of Canada's electricity still comes from fossil fuels, to make the shift both feasible and beneficial for all stakeholders.

In summary, Quebec's ambitious EV targets reflect a strong commitment to environmental sustainability. However, industry experts caution that achieving these goals requires careful planning, substantial investment, and a realistic assessment of the challenges involved as federal EV sales regulations take shape, in transitioning from traditional vehicles to electric mobility.

 

Related News

View more

Energy crisis is a 'wake up call' for Europe to ditch fossil fuels

EU Clean Energy Transition underscores the shift from fossil fuels to renewable energy, decarbonization, and hydrogen, as soaring gas prices and electricity volatility spur resilience, storage, and joint procurement across the single market.

 

Key Points

EU Clean Energy Transition shifts from fossil fuels to renewables, enhancing resilience and reducing price volatility.

✅ Cuts reliance on Russian gas and fossil imports

✅ Scales renewables, hydrogen, and energy storage

✅ Stabilizes electricity prices via market resilience

 

Soaring energy prices, described as Europe's energy nightmare, are a stark reminder of how dependent Europe is on fossil fuels and should serve to accelerate the shift towards renewable forms of energy.

"This experience today of the rising energy prices is a clear wake up call... that we should accelerate the transition to clean energy, wean ourselves off the fossil fuel dependency," a senior EU official told reporters as the European Commission unveiled a series of emergency electricity measures aimed at tackling the crisis.

The European Union is facing a sharp spike in energy prices, driven by increased global demand as the world recovers from the pandemic and lower-than-expected natural gas deliveries from Russia. Wholesale electricity prices have increased by 200% compared to the 2019 average, underscoring why rolling back electricity prices is tougher than it appears, according to the European Commission.

"Winter is coming and for many electricity costs are larger than they have been for a decade," Energy Commissioner Kadri Simson told reporters on Wednesday.

80 million European households struggle to stay warm
Wholesale gas prices — which have surged to record highs in France, Spain, Germany and Italy, amid reports of Germany's local utilities crying for help — are expected to remain high through the winter.

Prices are expected to fall in the spring, but remain higher than the average of past years, according to the Commission. Most EU countries rely on gas-fired power stations to meet electricity demand, and about 40% of that gas comes from Russia, with the EU outlining a plan to dump Russian energy to reduce this reliance, according to Eurostat.

Simson said that the Commission's initial assessment indicates that Russia's Gazprom has been fulfilling its long-term contracts "while providing little or no additional supply."
Kremlin spokesman Dmitry Peskov told journalists on Wednesday that Russia has increased gas supplies to Europe to the maximum possible level under existing contracts, but could not exceed those thresholds. "We can say that Russia is flawlessly fulfilling all contractual obligations," he said.

Measures EU states can take to help consumers and businesses cope with soaring electricity costs include emergency income support to households to help them pay their energy bills, alongside potential gas price cap strategies, state aid for companies, and targeted tax reductions. Member states can also temporarily delay bill payments and put in place processes to ensure that no one is disconnected from the grid.

Green energy the solution
The Commission also published a series of longer term measures the bloc should consider to reduce its dependence on fossil fuels and tackle energy price volatility, despite opposition from nine countries to electricity market reforms.

"Our immediate priority is to protect Europe's consumers, especially the most vulnerable," Simson said. "Second, we want to make our energy system better prepared and more resilient, so we don't have to face a similar situation in the future," she added.

Energy crisis could force more UK factories to close
This would require speeding up the green energy transition rather than slowing it down, Simson said. "We are not facing an energy price surge because of our climate policy or because renewable energy is expensive. We are facing it because the fossil fuel prices are spiking," she continued.

"The only long term remedy against demand shocks and price volatility is a transition to a green energy system."

Simson said she will propose to EU leaders a package of measures to decarbonize Europe's gas and hydrogen markets by 2050. Other measures to improve energy market stability could include increasing gas storage capacity and buying gas jointly at an EU level.

 

Related News

View more

Mines found at Ukraine's Zaporizhzhia nuclear plant, UN watchdog says

Zaporizhzhia Nuclear Plant Mines reported by IAEA at the Russian-occupied site: anti-personnel devices in a buffer zone, restricted areas; access limits to reactor rooftops and turbine halls heighten nuclear safety and security concerns in Ukraine.

 

Key Points

IAEA reports anti-personnel mines at Russian-held Zaporizhzhia, raising nuclear safety risks in buffer zones.

✅ IAEA observes mines in buffer zone at occupied site

✅ Restricted areas; no roof or turbine hall access granted

✅ Safety systems unaffected, but staff under pressure

 

The United Nations atomic watchdog said it saw anti-personnel mines at the site of Ukraine's Zaporizhzhia nuclear power plant which is occupied by Russian forces.

Europe's largest nuclear facility fell to Russian forces shortly after the invasion of Ukraine in February last year, as Moscow later sought to build power lines to reactivate it amid ongoing control of the area. Kyiv and Moscow have since accused each other of planning an incident at the site.

On July 23 International Atomic Energy Agency (IAEA) experts "saw some mines located in a buffer zone between the site's internal and external perimeter barriers," agency chief Rafael Grossi said in a statement on Monday.

The statement did not say how many mines the team had seen.

The devices were in "restricted areas" that operating plant personnel cannot access, Mr Grossi said, adding the IAEA's initial assessment was that any detonation "should not affect the site's nuclear safety and security systems".

Laying explosives at the site was "inconsistent with the IAEA safety standards and nuclear security guidance" and, amid controversial proposals on Ukraine's nuclear plants that have circulated internationally, created additional psychological pressure on staff, he added.

Ukrainians in Nikopol are out of water and within Russia's firing line. But Zaporizhzhia nuclear power plant could pose the biggest threat, even as Ukraine has resumed electricity exports to regional grids.

Last week the IAEA said its experts had carried out inspections at the plant, without "observing" the presence of any mines, although they had not been given access to the rooftops of the reactor buildings, while a possible agreement to curb attacks on plants was being discussed.

The IAEA had still not been given access to the roofs of the reactor buildings and their turbine halls, its latest statement said, even as a proposal to control Ukraine's nuclear plants drew scrutiny.

After falling into Russian hands, Europe's biggest power plant was targeted by gunfire and has been severed from the grid several times, raising nuclear risk warnings from the IAEA and others.

The six reactor units, which before the war produced around a fifth of Ukraine's electricity, have been shut down for months, prompting interest in wind power development as a harder-to-disrupt source.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified