Tohoku foresees reduction in CO2 emissions

By Industrial Info Resources


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Tohoku Electric Power Company Limited is planning two US $28 million pilot solar-array installation projects, as part of the company's initiative to create a low-carbon society.

Construction on both facilities is scheduled to begin late this year.

Sendai Thermal Power Plant, which is approximately 20 kilometers from Sendai in the Miyagi prefecture in Shiogahama, will be the site of a 2-megawatt MW photovoltaic solar array capable of providing power to 500 homes. The second site, Hachinohe Thermal Power Plant, is in Hachinohe, in southeastern Aomori prefecture. Once operational, the Hachinohe 1.5-MW photovoltaic solar array will provide electricity to some 500 homes.

Both projects are scheduled to be completed in early in 2012 and will collectively produce 3.7 million kilowatt hours. Tohoku Electric Power Company Limited is aiming to reduce its CO2 emissions by 5,000 metric tons per year with its solar power sector by 2020. The Sendai and Hachiniohe Power Plant projects are expected to reduce carbon dioxide emissions by 1,800 metric tons per year.

Related News

Melting Glass Experiment Surprises Scientists by Defying a Law of Electricity

Electric Field-Induced Glass Softening reveals a Joule heating anomaly in silicate glass, where anode-side nanoscale alkali depletion drives ionic conduction, localized thermal runaway, melting, and evaporation, challenging homogeneity assumptions and refining materials processing models.

 

Key Points

An effect where electric fields lower glass softening temperature via nanoscale ionic migration and structural change.

✅ Anode-side alkali depletion creates extreme, localized heating

✅ Thermal runaway melts glass near the anode despite uniform bulk

✅ Findings refine Joule heating models and enable new glass processing

 

A team of scientists working with electrical currents and silicate glass have been left gobsmacked after the glass appeared to defy a basic physical law, in a field that also explores electricity-from-air devices for novel energy harvesting.

If you pass an electrical current through a material, the way that current generates heat can be described by Joule's first law. It's been observed time and time again, with the temperature always evenly distributed when the material is homogeneous (or uniform).

But not in this recent experiment. A section - and only a section - of silicate glass became so hot that it melted, and even evaporated. Moreover, it did so at a much lower temperature than the boiling point of the material.

The boiling point of pure silicate glass is 2,230 degrees Celsius (4,046 degrees Fahrenheit). The hottest temperature the researchers recorded in a homogeneous piece of silicate glass during the experiment was 1,868.7 degrees Celsius.

Say whaaaat.

"The calculations did not add up to explain what we were seeing as simply standard Joule heating," said engineer and materials scientist Himanshu Jain of Lehigh University.

"Even under very moderate conditions, we observed fumes of glass that would require thousands of degrees higher temperature than Joule's law could predict!"

Jain and his colleagues from materials science company Corning Incorporated were investigating a phenomenon they had described in a previous paper. In 2015, they reported that an electric field could reduce the temperature at which glass softens, by as much as a few hundred degrees, a line of inquiry that parallels work on low-cost heat-to-electricity materials in energy research. They called this "electric field-induced softening."

 

It was certainly a peculiar phenomenon, so they set up another experiment. They put pieces of glass in a furnace, and applied 100 to 200 volts in the form of both alternating and direct currents.

Next, a thin wisp of vapour emanated from the spot where the anode conveying the current contacted the glass.

"In our experiments, the glass became more than a thousand degrees Celsius hotter near the positive side than in the rest of the glass, which was very surprising considering that the glass was totally homogeneous to begin with," Jain said.

This seems to fly in the face of Joule's first law, so the team investigated more closely - and found that the glass wasn't remaining as homogeneous as it started out. The electric field changed the chemistry and the structure of the glass on nanoscale, in just a small section close to the anode.

This region heats faster than the rest of the glass, to the point of becoming a thermal runaway - where an increase in temperature further increases temperature in a blistering feedback loop.

As it turned out, that spot of structural change and dramatic heat resulted in a small area of glass reaching melting point while the rest of the material remained solid.

"Unlike electronically conducting metals and semiconductors, with time the heating of ionically conducting glass becomes extremely inhomogeneous with the formation of a nanoscale alkali-depletion region, such that the glass melts near the anode, even evaporates, while remaining solid elsewhere," the researchers wrote in their paper.

In other words, the material wasn't homogeneous any more, which means the glass heating experiment doesn't exactly change how we apply Joule's first law.

But it's an exciting result, since until now we didn't know a material could actually lose its homogeneity with the application of an electrical current, with possible implications for thin-film heat harvesters in electronics. (The thing is, no one had tried electrically heating glass to these extreme temperatures before.)

So the physical laws of the Universe are still okay, as a piece of glass hasn't broken them. But Joule's first law may need a bit of tweaking to take this effect into account, a reminder that unconventional energy concepts like nighttime solar cells also challenge our intuitions.

And, of course, it's another piece of understanding that could help us in other ways too, including advances in thermoelectric materials that turn waste heat into electricity.

"Besides demonstrating the need to qualify Joule's law," Jain said, "the results are critical to developing new technology for the fabrication and manufacturing of glass and ceramic materials."

The research has been published in Scientific Reports.

 

Related News

View more

IAEA - COVID-19 and Low Carbon Electricity Lessons for the Future

Nuclear Power Resilience During COVID-19 shows low-carbon electricity supporting renewables integration with grid flexibility, reliability, and inertia, sustaining decarbonization, stable baseload, and system security while prices fell and demand dropped across markets.

 

Key Points

It shows nuclear plants providing reliable, low-carbon power and supporting grid stability despite demand declines.

✅ Low prices challenge investment; lifetime extensions are cost-effective.

✅ Nuclear provides inertia, reliability, and dispatchable capacity.

✅ Market reforms should reward flexibility and grid services.

 

The COVID-19 pandemic has transformed the operation of power systems across the globe, including European responses that many argue accelerated the transition, and offered a glimpse of a future electricity mix dominated by low carbon sources.

The performance of nuclear power, in particular, demonstrates how it can support the transition to a resilient, clean energy system well beyond the COVID-19 recovery phase, and its role in net-zero pathways is increasingly highlighted by analysts today.

Restrictions on economic and social activity during the COVID-19 outbreak have led to an unprecedented and sustained decline in demand for electricity in many countries, in the order of 10% or more relative to 2019 levels over a period of a few months, thereby creating challenging conditions for both electricity generators and system operators (Fig. 1). The recent Sustainable Recovery Report by the International Energy Agency (IEA) projects a 5% reduction in global electricity usage for the entire year 2020, with a record 5.7% decline foreseen in the United States alone. The sustainable economic recovery will be discussed at today's IEA Clean Energy Transitions Summit, where Fatih Birol's call to keep options open will be prominent as IAEA Director General Rafael Mariano Grossi participates.

Electricity generation from fossil fuels has been hard hit, due to relatively high operating costs compared to nuclear power and renewables, as well as simple price-setting mechanisms on electricity markets. By contrast, low-carbon electricity prevailed during these extraordinary circumstances, with the contribution of renewable electricity rising in a number of countries as analyses see renewables eclipsing coal by 2025, due to an obligation on transmission system operators to schedule and dispatch renewable electricity ahead of other generators, as well as due to favourable weather conditions.

Nuclear power generation also proved to be resilient, reliable and adaptable. The nuclear industry rapidly implemented special measures to cope with the pandemic, avoiding the need to shut down plants due to the effects of COVID-19 on the workforce or supply chains. Nuclear generators also swiftly adapted to the changed market conditions. For example, EDF Energy was able to respond to the need of the UK grid operator by curtailing sporadically the generation of its Sizewell B reactor and maintain a cost-efficient and secure electricity service for consumers.

Despite the nuclear industry's performance during the pandemic, faced with significant decreases in demand, many generators have still needed to reduce their overall output appreciably, for example in France, Sweden, Ukraine, the UK and to a lesser extent Germany (Fig. 2), even as the nuclear decline debate continues in Europe. Declining demand in France up to the end of March already contributed to a 1% drop in first quarter revenues at EDF, with nuclear output more than 9% lower than in the year before. Similarly, Russia's Rosatom experienced a significant demand contraction in April and May, contributing to an 11% decline in revenues for the first five months of the year.

Overall, the competitiveness and resilience of low carbon technologies have resulted in higher market shares for nuclear, solar and wind power in many countries since the start of lockdowns (Fig. 3), and low-emissions sources to meet demand growth over the next three years. The share of nuclear generation in South Korea rose by almost 9 percentage points during the pandemic, while in the UK, nuclear played a big part in almost eliminating coal generation for a period of two months. For the whole of 2020, the US Energy Information Administration's Short-Term Energy Outlook sees the share of nuclear generation increasing by more than one percentage point compared to 2019. In China, power production decreased during January-February 2020 by more than 8% year on year: coal power decreased by nearly 9%, hydropower by nearly 12%. Nuclear has proved more resilient with a 2% reduction only. The benefits of these higher shares of clean energy in terms of reduced emissions of greenhouse gases and other air pollutants have been on full display worldwide over the past months.

Challenges for the future

Despite the demonstrated performance of a cleaner energy system through the crisis - including the capacity of existing nuclear power plants to deliver a competitive, reliable, and low carbon electricity service when needed - both short- and long-term challenges remain.

In the shorter term, the collapse in electricity demand has accelerated recent falls in electricity prices, particularly in Europe (Fig. 4), from already economically unsustainable levels. According to Standard and Poor's Midyear Update, the large price drops in Europe result from not only COVID-19 lockdown measures but also collapsing demand due to an unusually warm winter, increased supply from renewables in a context of lower gas prices and CO2 allowances . Such low prices further exacerbate the challenging environment faced by many electricity generators, including nuclear plants. These may impede the required investments in the clean energy transition, with longer term consequences on the achievement of climate goals.

For nuclear power, maintaining and extending the operation of existing plants is essential to support and accelerate the transition to low carbon energy systems. With a supportive investment environment, a 10-20 year lifetime extension can be realized at an average cost of US $30-40/MW*h, making it among the most cost-effective low-carbon options, while also maintaining dispatchable capacity and lowering the overall cost of the clean energy transition. The IEA Sustainable Recovery report indicates that without such extensions 40% of the nuclear fleet in developed economies may be retired within a decade, adding around US$ 80 billion per year to electricity bills. The IEA note the potential for nuclear plant maintenance and extension programmes to support recovery measures by generating significant economic activity and employment.

The need for flexibility

New nuclear power projects can provide similar economic and environmental benefits and applications beyond electricity, but will be all the more challenging to finance without strong policy support and more substantive power market reforms, including improved frameworks for remunerating reliability, flexibility and other services. The need for flexibility in electricity generation and system operation - a trend accelerated by the crisis - will increasingly characterize future energy systems over the medium to longer term.

Looking further ahead, while generators and system operators successfully responded to the crisis, the observed decline in fossil fuel generation draws attention to additional grid stability challenges likely to emerge further into the energy transition. Heavy rotating steam and gas turbines provide mechanical inertia to an electricity system, thereby maintaining its balance. Replacing these capacities with variable renewables may result in greater instability, poorer power quality and increased incidence of blackouts. Large nuclear power plants along with other technologies can fill this role, alleviating the risk of supply disruptions in fully decarbonized electricity systems.

The challenges created by COVID-19 have also brought into focus the need to ensure resilience is built-in to future energy systems to cope with a broader range of external shocks, including more variable and extreme weather patterns expected from climate change.

The performance of nuclear power during the crisis provides a timely reminder of its ongoing contribution and future potential in creating a more sustainable, reliable, low carbon energy system.

Data sources for electricity demand, generation and prices: European Network of Transmission System Operators for Electricity (Europe), Ukrenergo National Power Company (Ukraine), Power System Operation Corporation (India), Korea Power Exchange (South Korea), Operador Nacional do Sistema Eletrico (Brazil), Independent Electricity System Operator (Ontario, Canada), EIA (USA). Data cover 1 January to May/June.

 

Related News

View more

COVID-19 pandemic zaps electricity usage in Ontario as people stay home

Ontario Electricity Demand 2020 shows a rare decline amid COVID-19, with higher residential peak load, lower commercial usage, hot-weather air conditioning, nuclear baseload constraints, and smart meter data shaping grid operations and forecasting.

 

Key Points

It refers to 2020 power use in Ontario: overall demand fell, while residential peaks rose and commercial loads dropped.

✅ Peak load shifted to homes; commercial usage declined.

✅ Hot summers raised peaks; overall annual demand still fell.

✅ Smart meters aid forecasting; grid must balance nuclear baseload.

 

Demand for electricity in Ontario last year fell to levels rarely seen in decades amid shifts in usage patterns caused by pandemic measures, with Ottawa’s electricity consumption dropping notably, new data show.

The decline came despite a hot summer that had people rushing to crank up the air conditioning at home, the province’s power management agency said, even as the government offered electricity relief to families and small businesses.

“We do have this very interesting shift in who’s using the energy,” said Chuck Farmer, senior director of power system planning with the Independent Electricity System Operator.

“Residential users are using more electricity at home than we thought they would and the commercial consumers are using less.”

The onset of the pandemic last March prompted stay-home orders, businesses to close, and a shuttering of live sports, entertainment and dining out. Social distancing and ongoing restrictions, even as the first wave ebbed and some measures eased, nevertheless persisted and kept many people home as summer took hold and morphed into winter, while the province prepared to extend disconnect moratoriums for residential customers.

System operator data show peak electricity demand rose during a hot summer spell to 24,446 megawatts _ the highest since 2013. Overall, however, Ontario electricity demand last year was the second lowest since 1988, the operator said.

In all, Ontario used 132.2 terawatt-hours of power in 2020, a decline of 2.9 per cent from 2019.

With more people at home during the lockdown, winter residential peak demand has climbed 13 per cent above pre-pandemic levels, even as Hydro One made no cut in peak rates for self-isolating customers, while summer peak usage was up 19 per cent.

“The peaks are getting higher than we would normally expect them to be and this was caused by residential customers _ they’re home when you wouldn’t expect them to be home,” Farmer said.

Matching supply and demand _ a key task of the system operator _ is critical to meeting peak usage and ensuring a stable grid, and the operator has contingency plans with some key staff locked down at work sites to maintain operations during COVID-19, because electricity cannot be stored easily. It is also difficult to quickly raise or lower the output from nuclear-powered generators, which account for the bulk of electricity in the province, as demand fluctuates.

READ MORE: Ontario government extends off-peak electricity rates to Feb. 22

Life patterns have long impacted overall usage. For example, demand used to typically climb around 10 p.m. each night as people tuned into national television newscasts. Livestreaming has flattened that bump, while more energy-efficient lighting led to a drop in provincial demand over the holiday season.

The pandemic has now prompted further intra-day shifts in usage. Fewer people are getting up in the morning and powering up at home before powering down and rushing off to work or school. The summer saw more use of air conditioners earlier than normal after-work patterns.

Weather has always been a key driver of demand for power, accounting for example for the record 27,005 megawatts of usage set on a brutally hot Aug. 1, 2006. Similarly, a mild winter and summer led to an overall power usage drop in 2017.

Still, the profound social changes prompted by the COVID-19 pandemic _ and whether some will be permanent _ have complicated demand forecasting.

“Work patterns used to be much more predictable,” the agency said. “The pandemic has now added another element of variability for electricity demand forecasting.”

Some employees sent home to work have returned to their offices and other workplaces, and many others are likely do so once the pandemic recedes. However, some larger companies have indicated that working from home will be long term.

“Companies like Facebook and Shopify have already stated their intention to make work from home a more permanent arrangement,” the operator said. “This is something our near-term forecasters would take into account when preparing for daily operation of the grid.”

Aggregated data from better smart meters, which show power usage throughout the day, is one method of improving forecasting accuracy, the operator said.

 

Related News

View more

Wind has become the ‘most-used’ source of renewable electricity generation in the US

U.S. Wind Generation surpassed hydroelectric output in 2019, EIA data shows, becoming the top renewable electricity source, driven by PTC incentives, expanded capacity, and utility-scale projects across states, boosting the national electricity mix.

 

Key Points

U.S. Wind Generation is the nation's top renewable, surpassing hydro as EIA-tracked capacity grows under PTC incentives.

✅ EIA: wind topped hydro in 2019, over 300M MWh generated

✅ PTC credits spurred growth in utility-scale wind projects

✅ 103 GW installed; 77% added in the last decade

 

Last year saw wind power surging in the U.S. to overtake hydroelectric generation for the first time, according to data from the U.S. Energy Information Administration (EIA).

Released Wednesday, the figures from the EIA’s “Electric Power Monthly” report show that yearly wind generation hit a little over 300 million megawatt hours (MWh) in 2019. This was roughly 26 million MWh more than hydroelectric production.

Wind now represents the “most-used renewable electricity generation source” in the U.S., the EIA said, and renewables hit a 28% monthly record in April in later data.

Overall, total renewable electricity generation — which includes sources such as solar's 4.7% share in 2022 as one example, geothermal and landfill gas — at utility scale facilities hit more than 720 million MWh in 2019, compared to just under 707 million MWh in 2018. To put things in perspective, generation from coal came to more than 966 million MWh in 2019, while renewables surpassed coal in 2022 nationally according to later analyses.

According to the EIA’s “Today in Energy” briefing, which was also published Wednesday, generation from wind power has grown “steadily” across the last decade, and by 2020, renewables became the second-most prevalent source in the U.S. power mix.

This, it added, was partly down to the extension of the Production Tax Credit, or PTC, amid favorable government plans supporting solar and wind growth. According to the EIA, the PTC is a system which gives operators a tax credit per kilowatt hour of renewable electricity production. It applies for the first 10 years of a facility’s operation.

At the end of 2019, the country was home to 103 gigawatts (GW) of wind capacity, with 77% of this being installed in the last decade, and wind capacity surpassed hydro in 2016 according to industry data. The U.S. is home 80 GW of hydroelectric capacity, according to the EIA.

“The past decade saw a steady increase in wind capacity across the country and we capped the decade with a monumental achievement for the industry in reaching more than 100 GW,” Tom Kiernan, the American Wind Energy Association’s CEO, said in a statement issued Thursday.

“And more wind energy is coming, as the industry is well into investing $62 billion in new projects over the next few years that put us on the path to achieving 20 percent of the nation’s electricity mix in 2030,” Kiernan went on to state.

“As a result, wind is positioned to remain the largest renewable energy generator in the country for the foreseeable future.”

 

Related News

View more

TransAlta brings online 119 MW of wind power in US

TransAlta Renewables US wind farms achieved commercial operation, adding 119 MW of wind energy capacity in Pennsylvania and New Hampshire, backed by PPAs with Microsoft, Partners Healthcare, and NHEC, and supported by tax equity financing.

 

Key Points

Two US wind projects totaling 119 MW, now online under PPAs and supported by tax equity financing.

✅ 119 MW online in Pennsylvania and New Hampshire

✅ PPAs with Microsoft, Partners Healthcare, and NHEC

✅ About USD 126 million raised via tax equity

 

TransAlta Renewables Inc says two US wind farms, with a total capacity of 119 MW and operated by its parent TransAlta Corp, became operational in December, amid broader build-outs such as Enel's 450-MW U.S. project coming online and, in Canada, Acciona's 280-MW Alberta wind farm advancing as well.

The 90-MW Big Level wind park in Pennsylvania started commercial operation on December 19. It sells power to technology giant Microsoft Corporation under a 15-year contract, reflecting big-tech procurement alongside Amazon's clean energy projects in multiple markets.

The 29-MW Antrim wind facility in New Hampshire is operational since December 24. It is selling power under 20-year contracts with Boston-based non-profit hospital and physicians network Partners Healthcare and New Hampshire Electric Co-op, mirroring East Coast activity at Amazon Wind Farm US East now fully operational.

The Canadian renewable power producer, which has economic interest in the two wind parks, said that upon their reaching commercial operations, it raised about USD 126 million (EUR 113m) of tax equity to partially fund the projects, as mega-deployments like Invenergy and GE's record North American project and capital plans such as a $200 million Alberta build by a Buffett-linked company underscore financing momentum.

"We continue to pursue additional growth opportunities, including potential drop-down transactions with TransAlta Corp," TransAlta Renewables president John Kousinioris commented.

The comment comes as TransAlta scrapped an Alberta wind project amid Alberta policy shifts.

 

Related News

View more

Electricity deal clinches $100M bitcoin mining operation in Medicine Hat

Medicine Hat Bitcoin Mining Deal delivers 42 MW electricity to Hut 8, enabling blockchain data centres, cryptocurrency mining expansion, and economic diversification in Alberta with low-cost power, land lease, and rapid construction near Unit 16.

 

Key Points

A pact to supply 42 MW and lease land, enabling Hut 8's blockchain data centres and crypto mining growth in Alberta.

✅ 42 MW electricity from city; land lease near Unit 16

✅ Hut 8 expands to 60.7 MW; blockchain data centres

✅ 100 temporary jobs; 42 ongoing roles in Alberta

 

The City of Medicine Hat has agreed to supply electricity and lease land to a Toronto-based cryptocurrency mining company, at a time when some provinces are pausing large new crypto loads in a deal that will see $100 million in construction spending in the southern Alberta city.

The city will provide electric energy capacity of about 42 megawatts to Hut 8 Mining Corp., which will construct bitcoin mining facilities near the city's new Unit 16 power plant.

The operation is expected to be running by September and will triple the company's operating power to 60.7 megawatts, Hut 8 said, amid broader investments in new turbines across Canada.

#google#

"The signing of the electricity supply agreement and the land lease represents a key component in achieving our business plan for the roll-out of our BlockBox Data Centres in low-cost energy jurisdictions," said the company's board chairman, Bill Tai, in a release.

"[Medicine Hat] offers stable, cost-competitive utility rates and has been very welcoming and supportive of Hut 8's fast-paced growth plans."

In bitcoin mining operations, rows upon rows of power-consuming computers are used to solve mathematical puzzles in exchange for bitcoins and confirm crytopcurrency transactions. The verified transactions are then added to the public ledger known as the blockchain.

Hut 8's existing 18.7-megawatt mining operation at Drumheller, Alta. — a gated compound filled with rows of shipping containers housing the computers — has so far mined 750 bitcoins. Bitcoin was trading Tuesday morning for about $11,180.

Medicine Hat Mayor Ted Clugston says the deal is part of the city's efforts to diversify its economy.

We've made economic development a huge priority down here because we were hit very, very hard by the oil and gas decline," he said, noting that being the generator and vendor of its own electricity puts the city in a uniquely good position.

"Really we're just turning gas into electricity and they're taking that electricity and turning it into blockchain, or ones and zeroes."

Elsewhere in Canada, using more electricity for heat has been urged by green energy advocates, reflecting broader electrification debates.

Hut 8 says construction of the facility is starting right away and will create about 100 temporary jobs. The project is expected to be finished by the third-quarter of this year.

The Medicine Hat mining operation will generate 42 ongoing jobs for electricians, general labourers, systems technicians and security staff.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.