By Reuters


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
-- TXU Corp. said Wednesday it will provide $15 million in development capital to Atlantic Energy Partners LLC, to help build a 1,200 megawatts (MW) power transmission link between New Jersey and New York.

The development capital will allow Atlantic Energy Partners, the consortium developing the Neptune Regional Transmission System (NeptuneRTS), to permit, finance and start building two planned 600 MW links between New Jersey and New York, the first of four phases in the proposed system. One of the links would connect the electric grid in New York City with Sayreville, New Jersey, while the second would connect the heart of Long Island to Sayreville.

Both links would carry power via high voltage, direct current transmission lines from the Jersey Central zone of the Pennsylvania, New Jersey and Maryland grid (PJM), where power is relatively abundant, to the increasingly power-starved zones of New York City and Long Island.

While the terms associated with providing the development capital are confidential, a TXU spokeswoman told Reuters the company does have the option to increase its participation in the project in the future. The total cost of the project has not been publicly disclosed, but a NeptuneRTS spokesman said the cost of these two legs planned to New York would be about $500 million.

NeptuneRTS has already received the go-ahead from the Federal Energy Regulatory Commission to build the two links, which would be operated as merchant facilities earning market returns rather than the guaranteed but capped rates of returns typically associated with regulated electric utilities.

The NeptuneRTS spokesman said the project was still pending public utility and environmental regulatory approvals by New York State, New Jersey and the U.S. Army Corp of Engineers.

Construction is scheduled to begin during the second quarter of 2003, with the NeptuneRTS facilities expected to be in service by 2005.

TXU Energy's participation in NeptuneRTS follows the company's previously announced acquisition of a 122-megawatt combined cycle generating plant in Pedricktown, New Jersey, and the award of 1,000 megawatts of load in the New Jersey Statewide Basic Generation Service (BGS) Electricity Supply Auction.

With $41 billion in assets, TXU provides electric and natural gas services, merchant energy trading, energy marketing, energy delivery and telecommunications services. The company, which sells over 330 million megawatt hours of electricity and 2.8 trillion cubic feet of natural gas annually, serves over 11 million customers worldwide, primarily in the U.S., Europe and Australia. Atlantic Energy Partners LLC is a consortium developing undersea transmission links from East Coast generation centers to cities in need of more energy.

As proposed, the NeptuneRTS undersea cable network will eventually consist of four 1,200 MW transmission lines from New Jersey, New Brunswick, Nova Scotia and Maine connected to high growth, energy-starved markets in Boston, Connecticut and New York City.

Related News

Climate change: Electrical industry's 'dirty secret' boosts warming

Sulphur Hexafluoride (SF6) Emissions drive rising greenhouse gas impacts in electrical switchgear, power grids, and renewables, with extreme global warming potential, long atmospheric lifetime, and leakage risks challenging climate targets and grid decarbonization.

 

Key Points

SF6 emissions are leaks from electrical switchgear and grids, a high-GWP gas with ~1,000-year lifetime.

✅ 23,500x CO2 global warming potential (GWP)

✅ Leaks from switchgear, breakers, gas-insulated substations

✅ Clean air and vacuum alternatives emerging for MV/HV

 

Sulphur hexafluoride, or SF6, is widely used in the electrical industry to prevent short circuits and accidents.

But leaks of the little-known gas in the UK and the rest of the EU in 2017 were the equivalent of putting an extra 1.3 million cars on the road.

Levels are rising as an unintended consequence of the green energy boom and the broader global energy transition worldwide.

Cheap and non-flammable, SF6 is a colourless, odourless, synthetic gas. It makes a hugely effective insulating material for medium and high-voltage electrical installations.

It is widely used across the industry, from large power stations to wind turbines to electrical sub-stations in towns and cities.

It prevents electrical accidents and fires.

However, the significant downside to using the gas is that it has the highest global warming potential of any known substance. It is 23,500 times more warming than carbon dioxide (CO2).

Just one kilogram of SF6 warms the Earth to the same extent as 24 people flying London to New York return.

It also persists in the atmosphere for a long time, warming the Earth for at least 1,000 years.

 

So why are we using more of this powerful warming gas?

The way we make electricity around the world is changing rapidly, with New Zealand's push to electrify in its energy system.

Where once large coal-fired power stations brought energy to millions, the drive to combat climate change and to move away from coal means they are now being replaced by mixed sources of power including wind, solar and gas.

This has resulted in many more connections to the electricity grid, and with EU electricity use could double by 2050, a rise in the number of electrical switches and circuit breakers that are needed to prevent serious accidents.

Collectively, these safety devices are called switchgear. The vast majority use SF6 gas to quench arcs and stop short circuits.

"As renewable projects are getting bigger and bigger, we have had to use it within wind turbines specifically," said Costa Pirgousis, an engineer with Scottish Power Renewables on its new East Anglia wind farm, which doesn't use SF6 in turbines.

"As we are putting in more and more turbines, we need more and more switchgear and, as a result, more SF6 is being introduced into big turbines off shore.

"It's been proven for years and we know how it works, and as a result it is very reliable and very low maintenance for us offshore."

 

How do we know that SF6 is increasing?

Across the entire UK network of power lines and substations, there are around one million kilograms of SF6 installed.

A study from the University of Cardiff found that across all transmission and distribution networks, the amount used was increasing by 30-40 tonnes per year.

This rise was also reflected across Europe with total emissions from the 28 member states in 2017 equivalent to 6.73 million tonnes of CO2. That's the same as the emissions from 1.3 million extra cars on the road for a year.

Researchers at the University of Bristol who monitor concentrations of warming gases in the atmosphere say they have seen significant rises in the last 20 years.

"We make measurements of SF6 in the background atmosphere," said Dr Matt Rigby, reader in atmospheric chemistry at Bristol.

"What we've seen is that the levels have increased substantially, and we've seen almost a doubling of the atmospheric concentration in the last two decades."

 

How does SF6 get into the atmosphere?

The most important means by which SF6 gets into the atmosphere is from leaks in the electricity industry.

Electrical company Eaton, which manufactures switchgear without SF6, says its research indicates that for the full life-cycle of the product, leaks could be as high as 15% - much higher than many other estimates.

Louis Schaeffer, electrical business manager at Eaton, said: "The newer gear has very low leak rates but the key question is do you have newer gear?

"We looked at all equipment and looked at the average of all those leak rates, and we didn't see people taking into account the filling of the gas. Plus, we looked at how you recycle it and return it and also included the catastrophic leaks."

 

How damaging to the climate is this gas?

Concentrations in the atmosphere are very small right now, just a fraction of the amount of CO2 in the air.

However, the global installed base of SF6 is expected to grow by 75% by 2030, as data-driven electricity demand surges worldwide.

Another concern is that SF6 is a synthetic gas and isn't absorbed or destroyed naturally. It will all have to be replaced and destroyed to limit the impact on the climate.

Developed countries are expected to report every year to the UN on how much SF6 they use, but developing countries do not face any restrictions on use.

Right now, scientists are detecting concentrations in the atmosphere that are 10 times the amount declared by countries in their reports. Scientists say this is not all coming from countries like India, China and South Korea.

One study found that the methods used to calculate emissions in richer countries "severely under-reported" emissions over the past two decades.

 

Why hasn't this been banned?

SF6 comes under a group of human-produced substances known as F-gases. The European Commission tried to prohibit a number of these environmentally harmful substances, including gases in refrigeration and air conditioning, back in 2014.

 

But they faced strong opposition from industries across Europe.

"In the end, the electrical industry lobby was too strong and we had to give in to them," said Dutch Green MEP Bas Eickhout, who was responsible for the attempt to regulate F-gases.

"The electric sector was very strong in arguing that if you want an energy transition, and you have to shift more to electricity, you will need more electric devices. And then you also will need more SF6.

"They used the argument that otherwise the energy transition would be slowed down."

 

What do regulator and electrical companies say about the gas?

Everyone is trying to reduce their dependence on the gas, and US control efforts suggest targeted policies can drive declines, as it is universally recognised as harmful to the climate.

In the UK, energy regulator Ofgem says it is working with utilities to try to limit leaks of the gas.

"We are using a range of tools to make sure that companies limit their use of SF6, a potent greenhouse gas, where this is in the interest of energy consumers," an Ofgem spokesperson told BBC News.

"This includes funding innovation trials and rewarding companies to research and find alternatives, setting emissions targets, rewarding companies that beat those targets, and penalising those that miss them."

 

Are there alternatives - and are they very expensive?

The question of alternatives to SF6 has been contentious over recent years.

For high-voltage applications, experts say there are very few solutions that have been rigorously tested.

"There is no real alternative that is proven," said Prof Manu Haddad from the school of engineering at Cardiff University.

"There are some that are being proposed now but to prove their operation over a long period of time is a risk that many companies don't want to take."

Medium voltage operations there are several tried-and-tested materials. Some in the industry say that the conservative nature of the electrical industry is the key reason that few want to change to a less harmful alternative.

 

"I will tell you, everyone in this industry knows you can do this; there is not a technical reason not to do it," said Louis Schaffer from Eaton.

"It's not really economic; it's more a question that change takes effort and if you don't have to, you won't do it."

 

Some companies are feeling the winds of change

Sitting in the North Sea some 43km from the Suffolk coast, Scottish Power Renewables has installed one of world's biggest wind farms, in line with a sustainable electric planet vision, where the turbines will be free of SF6 gas.

East Anglia One will see 102 of these towering generators erected, with the capacity to produce up to 714MW (megawatts) of power by 2020, enough to supply half a million homes.

Previously, an installation like this would have used switchgear supplied with SF6, to prevent the electrical accidents that can lead to fires.

Each turbine would normally have contained around 5kg of SF6, which, if it leaked into the atmosphere, would add the equivalent of around 117 tonnes of carbon dioxide. This is roughly the same as the annual emissions from 25 cars.

"In this case we are using a combination of clean air and vacuum technology within the turbine. It allows us to still have a very efficient, reliable, high-voltage network but to also be environmentally friendly," said Costa Pirgousis from Scottish Power Renewables.

"Once there are viable alternatives on the market, there is no reason not to use them. In this case, we've got a viable alternative and that's why we are using it."

But even for companies that are trying to limit the use of SF6, there are still limitations. At the heart of East Anglia One sits a giant offshore substation to which all 102 turbines will connect. It still uses significant quantities of the highly warming gas.

 

What happens next ?

The EU will review the use of SF6 next year and will examine whether alternatives are available. However, even the most optimistic experts don't think that any ban is likely to be put in place before 2025.

 

Related News

View more

Ukraine fights to keep the lights on as Russia hammers power plants

Ukraine Power Grid Attacks disrupt critical infrastructure as missiles and drones strike power plants, substations, and lines, causing blackouts. Emergency repairs, international aid, generators, and renewables bolster resilience and keep hospitals and water running.

 

Key Points

Russian strikes on Ukraine's power infrastructure cause blackouts; repairs and aid sustain hospitals and water.

✅ Missile and drone strikes target plants, substations, and lines.

✅ Crews restore power under fire; air defenses protect sites.

✅ Allies supply equipment, generators, and grid repair expertise.

 

Ukraine is facing an ongoing battle to maintain its electrical grid in the wake of relentless Russian attacks targeting power plants and energy infrastructure. These attacks, which have intensified in the last year, are part of Russia's broader strategy to weaken Ukraine's ability to function amid the ongoing war. Power plants, substations, and energy lines have become prime targets, with Russian forces using missiles and drones to destroy critical infrastructure, as western Ukraine power outages have shown, leaving millions of Ukrainians without electricity and heating during harsh winters.

The Ukrainian government and energy companies are working tirelessly to repair the damage and prevent total blackouts, while also trying to ensure that civilians have access to vital services like hospitals and water supplies. Ukraine has received support from international allies in the form of technical assistance and equipment to help strengthen its power grid, and electricity reserve updates suggest outages can be avoided if no new strikes occur. However, the ongoing nature of the attacks and the complexity of repairing such extensive damage make the situation extraordinarily difficult.

Despite these challenges, Ukraine's resilience is evident, even as winter pressures on the battlefront intensify operations. Energy workers are often working under dangerous conditions, risking their lives to restore power and prevent further devastation. The Ukrainian government has prioritized the protection of energy infrastructure, with military forces being deployed to safeguard workers and critical assets.

Meanwhile, the international community continues to support Ukraine through financial and technical aid, though some U.S. support programs have ended recently, as well as providing temporary power solutions, like generators, to keep essential services running. Some countries have even sent specialized equipment to help repair damaged power lines and energy plants more quickly.

The humanitarian consequences of these attacks are severe, as access to electricity means more than just light—it's crucial for heating, cooking, and powering medical equipment. With winter temperatures often dropping below freezing, plans to keep the lights on are vital to protect vulnerable communities, and the lack of reliable energy has put many lives at risk.

In response to the ongoing crisis, Ukraine has also focused on enhancing its energy independence, seeking alternatives to Russian-supplied energy. This includes exploring renewable energy sources, such as solar and wind power, and new energy solutions adopted by communities to overcome winter blackouts, which could help reduce reliance on traditional energy grids and provide more resilient options in the future.

The battle for energy infrastructure in Ukraine illustrates the broader struggle of the country to maintain its sovereignty and independence in the face of external aggression. The destruction of power plants is not only a military tactic but also a psychological one—meant to instill fear and disrupt daily life. However, the unwavering spirit of the Ukrainian people, alongside international support, including Ukraine's aid to Spain during blackouts as one example, continues to ensure that the fight to "keep the lights on" is far from over.

As Ukraine works tirelessly to repair its energy grid, it also faces the challenge of preparing for the long-term impact of these attacks. The ongoing war has highlighted the importance of securing energy infrastructure in modern conflicts, and the world is watching as Ukraine's resilience in this area could serve as a model for other nations facing similar threats.

Ukraine’s energy struggle is far from over, but its determination to keep the lights on remains a beacon of hope and defiance in the face of ongoing adversity.

 

Related News

View more

UK net zero policies: What do changes mean?

UK Net Zero Policy Delay shifts EV sales ban to 2035, eases boiler phase-outs, keeps ZEV mandate, backs North Sea oil and gas, accelerates onshore wind and grid upgrades while targeting 2050 emissions goals.

 

Key Points

Delay moves EV and heating targets to 2035, tweaks mandates, and shifts energy policy, keeping the 2050 net zero goal.

✅ EV sales ban shifts to 2035; ZEV mandate trajectory unchanged

✅ Heat pump grants rise to £7,500; boiler phase-out eased

✅ North Sea oil, onshore wind, grid and nuclear plans advance

 

British Prime Minister Rishi Sunak has said he would delay targets for changing cars and domestic heating to maintain the consent of the British people in the switch to net zero as part of the global energy transition under way.

Sunak said Britain was still committed to achieving net zero emissions by 2050, similar to Canada's race to net zero goals, and denied watering down its climate targets.

Here are some of the current emissions targets for Britain's top polluting sectors and how the announcement impacts them.


TRANSPORTATION
Transport accounts for more than a third (34%) of Britain's total carbon dioxide (CO2) emissions, the most of any sector.

Sunak announced a delay to introducing a ban on new petrol and diesel cars and vans. It will now come into force in 2035 rather than in 2030.

There were more than 1.1 million electric cars in use on UK roads as of April - up by more than half from the previous year to account for roughly one in every 32 cars, according to the country's auto industry trade body.

The current 2030 target was introduced in November 2020 as a central part of then-Prime Minister Boris Johnson's plans for a "green revolution". As recently as Monday, transport minister Mark Harper restated government support for the policy.

Britain’s independent climate advisers, the Climate Change Committee, estimated a 2030 phase out of petrol, diesel and hybrid vehicles could save up to 110 million tons of carbon dioxide equivalent emissions compared with a 2035 phase out.

ohnson's policy already allowed for the continued sale of hybrid cars and vans that can drive long stretches without emitting carbon until 2035.

The transition is governed by a zero-emission vehicle (ZEV) mandate, a shift echoed by New Zealand's electricity transition debates, which means manufacturers must ensure an increasing proportion of the vehicles they sell in the UK are electric.

The current proposal is for 22% of a car manufacturer's sales to be electric in 2024, rising incrementally each year to 100% in 2035.

The government said on Wednesday that all sales of new cars from 2035 would still be zero emission.

Sunak said that proposals that would govern how many passengers people should have in a car, or proposals for new taxes to discourage flying, would be scrapped.


RESIDENTIAL
Residential emissions, the bulk of which come from heating, make up around 17% of the country's CO2 emissions.

The government has a target to reduce Britain's energy consumption from buildings and industry by 15% by 2030, and had set a target to phase out installing new and replacement gas boilers from 2035, as the UK moves towards heat pumps, amid an IEA report on Canada's power needs noting more electricity will be required.

Sunak said people would have more time to transition, and the government said that off-gas-grid homes could continue to install oil and liquefied petroleum gas boilers until 2035, rather than being phased out from 2026.

However, his announcements that the government would not force anyone to rip out an existing boiler and that people would only have to make the switch when replacing one from 2035 restated existing policy.

He also said there would be an exemption so some households would never have to switch, but the government would increase an upgrade scheme that gives people cash to replace their boilers by 50% to 7,500 pounds ($9,296.25).

Currently almost 80% of British homes are heated by gas boilers. In 2022, 72,000 heat pumps were installed. The government had set a target of 600,000 heat pump installations per year by 2028.

A study for Scottish Power and WWF UK in June found that 6 million homes would need to be better insulated by 2030 to meet the government's target to reduce household energy consumption, but current policies are only expected to deliver 1.1 million.

The study, conducted by Frontier Economics, added that 1.5 million new homes would still need heat pumps installed by 2030.

Sunak said that the government would subsidise people who wanted to make their homes energy efficient but never force a household to do it.

The government also said it was scrapping policies that would force landlords to upgrade the energy efficiency of their properties.


ENERGY
The energy sector itself is a big emitter of greenhouse gases, contributing around a quarter of Britain's emissions, though the UK carbon tax on coal has driven substantial cuts in coal-fired electricity in recent years.

In July, Britain committed to granting hundreds of licences for North Sea oil and gas extraction as part of efforts to become more energy independent.

Sunak said he would not ban new oil and gas in the North Sea, and that future carbon budgets for governments would have to be considered alongside the plans to meet them.

He said the government would shortly bring forward new plans for energy infrastructure to improve Britain's grid, including the UK energy plan, while speeding up planning.

Offshore wind power developers warned earlier this month that Britain's climate goals could be at risk, even as efforts like cleaning up Canada's electricity highlight the importance of power-sector decarbonization, after a subsidy auction for new renewable energy projects did not attract any investment in those planned off British coasts.

Britain is aiming to develop 50 gigawatts (GW) of offshore wind capacity by 2030, up from around 14 GW now.

Sunak highlighted that Britain is lifting a ban on onshore wind, investing in carbon capture and building new nuclear power stations.

 

Related News

View more

Quebec authorizes nearly 1,000 megawatts of electricity for 11 industrial projects

Quebec Large-Scale Power Connections allocate 956 MW via Hydro-Québec to battery, bioenergy, and green hydrogen projects, including Northvolt and data centers, advancing grid capacity, industrial electrification, and Quebec's energy transition.

 

Key Points

Allocations of 956 MW via Hydro-Québec to projects in batteries, bioenergy, and green hydrogen across Quebec.

✅ 11 projects approved, totaling 956 MW across Quebec

✅ Focus: batteries, bioenergy, green hydrogen, data centers

✅ Selection weighed grid impact, economics, environmental criteria

 

The Quebec government has unveiled the list of 11 companies whose projects were given the go-ahead for large-scale power connections of 5 megawatts or more, for a total of 956 MW, even as planned exports to New York continue to factor into supply.

Five of the selected projects relate to the battery sector, reflecting EV battery investments by Canada and Quebec, and two to the bioenergy sector.

TES Canada's plan to build a green hydrogen production plant in Shawinigan, announced on Friday, is on the list.

Hydro-Québec will also supply 5 MW or more to the future Northvolt battery plant at its facilities in Saint-Basile-le-Grand and McMasterville.

Other industrial projects selected are those of Air Liquide Canada, Ford-Ecopro CAM Canada S.E.C, Nouveau monde Graphite and Volta Energy Solutions Canada.

Bioenergy projects include Greenfield Global Québec, in Varennes, and WM Québec, in Sainte-Sophie.

There's also Duravit Canada's manufacturing project in Matane, Quebec Iron Ore's green steel project in Fermont, Côte-Nord, and Vantage Data Centers CanadaQC4's data center project in Pointe-Claire.

All projects were selected las August "according to defined analysis criteria, such as technical connection capacities and impact on the Quebec power grid operations, economic and regional development spinoffs, environmental and social impact, as well as consistency with government orientations," states the press release from the office of Pierre Fitzgibbon, Quebec's Economy, Innovation and Energy Minister.

"With energy balances tightening and the electrification of our economy on the rise, we need to choose the most promising projects and allocate available electricity wisely," said Fitzgibbon.

Cross-border capacity expansions, including the Maine transmission corridor now approved, are also shaping regional power flows.

"These 11 projects will accelerate the energy transition, while creating significant economic spinoffs throughout Quebec."

The government is continuing its analysis of other energy-intensive industrial projects to help make the transition to a greener economy, even as experts question Quebec's EV strategy in policy circles, until March 31.

 

Related News

View more

When paying $1 for a coal power plant is still paying too much

San Juan Generating Station eyed for $1 coal-plant sale, as Farmington and Acme propose CCS retrofit, meeting emissions caps and renewable mandates by selling captured CO2 for enhanced oil recovery via a nearby pipeline.

 

Key Points

A New Mexico coal plant eyed for $1 and a CCS retrofit to cut emissions and sell CO2 for enhanced oil recovery.

✅ $400M-$800M CCS retrofit; 90% CO2 capture target

✅ CO2 sales for enhanced oil recovery; 20-mile pipeline gap

✅ PNM projects shutdown savings; renewable and emissions mandates

 

One dollar. That’s how much an aging New Mexico coal plant is worth. And by some estimates, even that may be too much.

Acme Equities LLC, a New York-based holding company, is in talks to buy the 847-megawatt San Juan Generating Station for $1, after four of its five owners decided to shut it down. The fifth owner, the nearby city of Farmington, says it’s pursuing the bargain-basement deal with Acme to avoid losing about 1,600 direct and indirect jobs in the area amid a broader just transition debate for energy workers.

 

We respectfully disagree with the notion that the plant is not economical

Acme’s interest comes as others are looking to exit a coal industry that’s been plagued by costly anti-pollution regulations. Acme’s plan: Buy the plant "at a very low cost," invest in carbon capture technology that will lower emissions, and then sell the captured CO2 to oil companies, said Larry Heller, a principal at the holding group.

By doing this, Acme “believes we can generate an acceptable rate of return,” Heller said in an email.

Meanwhile, San Juan’s majority owner, PNM Resources Inc., offers a distinctly different view, echoing declining coal returns reported by other utilities. A 2022 shutdown will push ratepayers to other energy alternatives now being planned, saving them about $3 to $4 a month on average, PNM has said.

“We could not identify a solution that would make running San Juan Generating Station economical,” said Tom Fallgren, a PNM vice president, in an email.

The potential sale comes as a new clean-energy bill, supported by Governor Lujan Grisham, is working its way through the state legislature. It would require the state to get half of its power from renewable sources by 2030, and 100 percent by 2045, even as other jurisdictions explore small modular reactor strategies to meet future demand. At the same time, the legislation imposes an emissions cap that’s about 60 percent lower than San Juan’s current levels.

In response, Acme is planning to spend $400 million to $800 million to retrofit the facility with carbon capture and sequestration technology that would collect carbon dioxide before it’s released into the atmosphere, Heller said. That would put the facility into compliance with the pending legislation and, at the same time, help generate revenue for the plant.

The company estimates the system would cut emissions by as much as 90 percent, and the captured gas could be sold to oil companies, which uses it to enhance well recovery. The bottom line, according to Heller: “A winning financial formula.”

It’s a tricky formula at best. Carbon-capture technology has been controversial, even as new coal plant openings remain rare, expensive to install and unproven at scale. Additionally, to make it work at the San Juan plant, the company would need to figure out how to deliver the CO2 to customers since the nearest pipeline is about 20 miles (32 kilometers) away.

 

Reducing costs

Acme is also evaluating ways to reduce costs at San Juan, Heller said, including approaches seen at operators extending the life of coal plants under regulatory scrutiny, such as negotiating a cheaper coal-supply contract and qualifying for subsidies.

Farmington’s stake in the plant is less than 10 percent. But under terms of the partnership, the city — population 45,000 — can assume full control of San Juan should the other partners decide to pull out, mirroring policy debates over saving struggling nuclear plants in other regions. That’s given Farmington the legal authority to pursue the plant’s sale to Acme.

 

At the end of the day, nobody wants the energy

“We respectfully disagree with the notion that the plant is not economical,” Farmington Mayor Nate Duckett said by email. Ducket said he’s in better position than the other owners to assess San Juan’s importance “because we sit at Ground Zero.”

The city’s economy would benefit from keeping open both the plant and a nearby coal mine that feeds it, according to Duckett, with operations that contribute about $170 million annually to the local area.

While the loss of those jobs would be painful to some, Camilla Feibelman, a Sierra Club chapter director, is hard pressed to see a business case for keeping San Juan open, pointing to sector closures such as the Three Mile Island shutdown as evidence of shifting economics. The plant isn’t economical now, and would almost certainly be less so after investing the capital to add carbon-capture systems.

 

Related News

View more

Ontario Energy minister downplays dispute between auditor, electricity regulator

Ontario IESO Accounting Dispute highlights tensions over public sector accounting standards, auditor general oversight, electricity market transparency, KPMG advice, rate-regulated accounting, and an alleged $1.3B deficit understatement affecting Hydro bills and provincial finances.

 

Key Points

A PSAS clash between Ontario's auditor general and the IESO, alleging a $1.3B deficit impact and transparency failures.

✅ Auditor alleges deficit understated by $1.3B

✅ Dispute over PSAS vs US-style accounting

✅ KPMG support, transparency and co-operation questioned

 

The bad blood between the Ontario government and auditor general bubbled to the surface once again Monday, with the Liberal energy minister downplaying a dispute between the auditor and the Crown corporation that manages the province's electricity market, even as the government pursued legislation to lower electricity rates in the province.

Glenn Thibeault said concerns raised by auditor general Bonnie Lysyk during testimony before a legislative committee last week aren't new and the practices being used by the Independent Electricity System Operator are commonly endorsed by major auditing firms.

"(Lysyk) doesn't like the rate-regulated accounting. We've always said we've relied on the other experts within the field as well, plus the provincial controller," Thibeault said.

#google#

"We believe that we are following public sector accounting standards."

Thibeault said that Ontario Power Generation, Hydro One and many other provinces and U.S. states use the same accounting practices.

"We go with what we're being told by those who are in the field, like KPMG, like E&Y," he said.

But a statement from Lysyk's office Monday disputed Thibeault's assessment.

"The minister said the practices being used by the IESO are common in other jurisdictions," the statement said.

"In fact, the situation with the IESO is different because none of the six other jurisdictions with entities similar to the IESOuse Canadian Public Sector Accounting Standards. Five of them are in the United States and use U.S. accounting standards."

Lysyk said last week that the IESO is using "bogus" accounting practices and her office launched a special audit of the agency late last year after the agency changed their accounting to be more in line with U.S. accounting, following reports of a phantom demand problem that cost customers millions.

Lysyk said the accounting changes made by the IESO impact the province's deficit, understating it by $1.3 billion as of the end of 2017, adding that IESO "stalled" her office when it asked for information and was not co-operative during the audit.

Lysyk's full audit of the IESO is expected to be released in the coming weeks and is among several accounting disputes her office has been engaged in with the Liberal government over the past few years.

Last fall, she accused the government of purposely obscuring the true financial impact of its 25% hydro rate cut by keeping billions in debt used to finance that plan off the province's books. Lysyk had said she would audit the IESO because of its role in the hydro plan's complex accounting scheme.

"Management of the IESO and the board would not co-operate with us, in the sense that they continually say they're co-operating, but they stalled on giving us information," she said last week.

Terry Young, a vice-president with the IESO, said the agency has fully co-operated with the auditor general. The IESO opened up its office to seven staff members from the auditor's office while they did their work.

"We recognize the work that she's doing and to that end we've tried to fully co-operate," he said. "We've given her all of the information that we can."

Young said the change in accounting standards is about ensuring greater transparency in transactions in the energy marketplace.

"It's consistent with many other independent electricity system operators are doing," he said.

Lysyk also criticized IESO's accounting firm, KPMG, for agreeing with the IESO on the accounting standards. She was critical of the firm billing taxpayers for nearly $600,000 work with the IESO in 2017, compared to their normal yearly audit fee of $86,500.

KPMG spokeswoman Lisa Papas said the accounting issues that IESO addressed during 2017 were complex, contributing to the higher fees.

The accounting practices the auditor is questioning are a "difference of professional judgement," she said.

"The standards for public sector organizations such as IESO are principles-based standards and, accordingly, require the exercise of considerable professional judgement," she said in a statement.

"In many cases, there is more than one acceptable approach that is compliant with the applicable standards."

Progressive Conservative energy critic Todd Smith said the government isn't being transparent with the auditor general or taxpayers, aligning with calls for cleaning up Ontario's hydro mess in the sector.

"Obviously, they have some kind of dispute but the auditor's office is saying that the numbers that the government is putting out there are bogus.

Those are her words," he said. "We've always said that we believe the auditor general's are the true numbers for the
province of Ontario."

NDP energy critic Peter Tabuns said the Liberal government has decided to "play with accounting rules" to make its books look better ahead of the spring election, despite warnings that electricity prices could soar if costs are pushed into the future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified