Norway's state-owned renewable energy power company Statkraft AS will spend more than 124 million euros (US $190 million) on upgrades to the company's hydroelectric plants, resulting in higher renewable energy generation and environmental improvements.
Statkraft plans to invest about 87 million euros (US $117.3 million) to build new underground power plants in Eiriksdal and Makkoren, in the Høyanger area in western Norway, replacing the existing facilities. The plans also include a budget of almost 50 million euros (US $67.4 million) to modernize the hydropower plant in Nedre Røssåga, in the northern part of the country.
By far the greatest proportion of Norway's electricity supply is generated from hydroelectric plants — about 99%, or 135 terrawatt-hours (TWh). However, the majority of the hydropower plants were constructed in the 1950s and 1960s. The earliest plant dates back to 1920, and the ageing infrastructure has resulted in large maintenance costs. Statkraft reports that it spends about 124 million euros each year on maintaining its 149 hydropower plants in the country.
The new power plants in Eiriksdal and Makkoren will together produce 330,000 gigawatt-hours of electricity and will be built underground. The new plants will replace the existing K1, K2 and K3 plants, which Statkraft took over in 1998. The environmental benefits will include the replacement of the existing above-ground cables with new, buried cables, and the flow in the Dale River downstream of the plants will be restored to about 70% of natural levels.
While replacement plants will be constructed at the Høyanger site, the plans for Nedre Røssåga call for a major modernization of the facilities in a phased approach. For the first phase, Statkraft will upgrade three of the units at the complex, after which it will replace or modernize the support and control systems, for a total cost of about 52 million euros (US $70 million).
The second phase at Nedre Røssåga will entail either an upgrade of the remaining three units, or alternatively, the construction of a completely new parallel plant. The existing plant was constructed in 1947 and serves the Mo Industrial Park, one of the largest in the country.
Despite the massive proportion of electricity generated by hydroelectric power plants and a growing base of windfarms, Norway still ranks high for per capita carbon-dioxide emissions, but this is largely because of the low population count. In 2008, the Norwegian government announced that it planned to become carbon-neutral by 2030.
Norway has an impressive record in renewable energy production and carbon-reduction technology. In 2003, the first commercial seabed tidal-powered generator began generating power in Kvalsund, south of Hammerfest. The generator produces about 300 kilowatts of electricity.
The country also boasts the first industrial-scale carbon capture and storage (CCS) project. The project, operated by StatoilHydro ASA since 1996, removes about 1 million tons of carbon dioxide from natural gas obtained from the Sleipner natural gas field, which is about 250 kilometers offshore under the North Sea. The carbon dioxide is extracted at the Sleipner platform and is re-injected into the gas field to increase pressure.
New Zealand Renewable Energy Strategy examines decarbonisation, GHG emissions, and net energy as electrification accelerates, expanding hydro, geothermal, wind, and solar PV while weighing intermittency, storage, materials, and energy security for a resilient power system.
Key Points
A plan to expand electricity generation, balancing decarbonisation, net energy limits, and energy security.
✅ Distinguishes decarbonisation targets from renewable capacity growth
✅ Highlights net energy limits, intermittency, and storage needs
✅ Addresses materials, GHG build-out costs, and energy security
The Electricity Authority has released a document outlining a plan to achieve the Government’s goal of more than doubling the amount of electricity generated in New Zealand over the next few decades.
This goal is seen as a way of both reducing our greenhouse gas (GHG) emissions overall, as everything becomes electrified, and ensuring we have a 100 percent renewable energy system at our disposal. Often these two goals are seen as being the same – to decarbonise we must transition to more renewable energy to power our society.
But they are quite different goals and should be clearly differentiated. GHG emissions could be controlled very effectively by rationing the use of a fossil fuel lockdown approach, with declining rations being available over a few years. Such a direct method of controlling emissions would ensure we do our bit to remain within a safe carbon budget.
If we took this dramatic step we could stop fretting about how to reduce emissions (that would be guaranteed by the rationing), and instead focus on how to adapt our lives to the absence of fossil fuels.
Again, these may seem like the same task, but they are not. Decarbonising is generally thought of in terms of replacing fossil fuels with some other energy source, signalling that a green recovery must address more than just wind capacity. Adapting our lives to the absence of fossil fuels pushes us to ask more fundamental questions about how much energy we actually need, what we need energy for, and the impact of that energy on our environment.
MBIE data indicate that between 1990 and 2020, New Zealand almost doubled the total amount of energy it produced from renewable energy sources - hydro, geothermal and some solar PV and wind turbines.
Over this same time period our GHG emissions increased by about 25 percent. The increase in renewables didn’t result in less GHG emissions because we increased our total energy use by almost 50 percent, mostly by using fossil fuels. The largest fossil fuel increases were used in transport, agriculture, forestry and fisheries (approximately 60 percent increases for each).
These data clearly demonstrate that increasing renewable energy sources do not necessarily result in reduced GHG emissions.
The same MBIE data indicate that over this same time period, the amount of Losses and Own Use category for energy use more than doubled. As of 2020 almost 30 percent of all energy consumed in New Zealand fell into this category.
These data indicate that more renewable energy sources are historically associated with less energy actually being available to do work in society.
While the category Losses and Own Use is not a net energy analysis, the large increase in this category makes the call for a system-wide net energy analysis all the more urgent.
Net energy is the amount of energy available after the energy inputs to produce and deliver the energy is subtracted. There is considerable data available indicating that solar PV and wind turbines have a much lower net energy surplus than fossil fuels.
And there is further evidence that when the intermittency and storage requirements are engineered into a total renewable energy system, the net energy of the entire system declines sharply. Could the Losses and Other Uses increase over this 30-year period be an indication of things to come?
Despite the importance of net energy analysis in designing a national energy system which is intended to provide energy security and resilience, there is not a single mention of net energy surplus in the EA reference document.
So over the last 30 years, New Zealand has doubled its renewable energy capacity, and at the same time increased its GHG emissions and reduced the overall efficiency of the national energy system.
And we are now planning to more than double our renewable energy system yet again over the next 30 years, even as zero-emissions electricity by 2035 is being debated elsewhere. We need to ask if this is a good idea.
How can we expand New Zealand’s solar PV and wind turbines without using fossil fuels? We can’t.
How could we expand our solar PV and wind turbines without mining rare minerals and the hidden costs of clean energy they entail, further contributing to ecological destruction and often increasing social injustices? We can't.
Even if we could construct, deliver, install and maintain solar PV and wind turbines without generating more GHG emissions and destroying ecosystems and poor communities, this “renewable” infrastructure would have to be replaced in a few decades. But there are at least two major problems with this assumed scenario.
The rare earth minerals required for this replacement will already be exhausted by the initial build out. Recycling will only provide a limited amount of replacements.
The other challenge is that a mostly “renewable” energy system will likely have a considerably lower net energy surplus. So where, in 2060, will the energy come from to either mine or recycle the raw materials, and to rebuild, reinstall and maintain the next iteration of a renewable energy system?
There is currently no plan for this replacement. It is a serious misnomer to call these energy technologies “renewable”. They are not as they rely on considerable raw material inputs and fossil energy for their production and never ending replacement.
New Zealand is, of course, blessed with an unusually high level of hydro electric and geothermal power. New Zealand currently uses over 170 GJ of total energy per capita, 40 percent of which is “renewable”. This provides approximately 70 GJ of “renewable” energy per capita with our current population.
This is the average global per capita energy level from all sources across all nations, as calls for 100% renewable energy globally emphasize. Several nations operate with roughly this amount of total energy per capita that New Zealand can generate just from “renewables”.
It is worth reflecting on the 170 GJ of total energy use we currently consume. Different studies give very different results regarding what levels are necessary for a good life.
For a complex industrial society such as ours, 100 GJ pc is said to be necessary for a high levels of wellbeing, determined both subjectively (life satisfaction/ happiness measures), and objectively (e.g. infant mortality levels, female morbidity as an index of population health, access to nutritious food and educational and health resources, etc). These studies do not take into account the large amount of energy that is wasted either through inefficient technologies, or frivolous use, which effective decarbonization strategies seek to reduce.
Other studies that consider the minimal energy needed for wellbeing suggest a much lower level of per capita energy consumption is required. These studies take a different approach and focus on ensuring basic wellbeing is maintained, but not necessarily with all the trappings of a complex industrial society. Their results indicate a level of approximately 20 GJ per capita is adequate.
In either case, we in New Zealand are wasting a lot of energy, both in terms of the efficiency of our technologies (see the Losses and Own Use info above), and also in our uses which do not contribute to wellbeing (think of the private vehicle travel that could be done by active or public transport – if we had good infrastructure in place).
We in New Zealand need a national dialogue about our future. And energy availability is only one aspect. We need to discuss what our carrying capacity is, what level of consumption is sustainable for our population, and whether we wish to make adjustments in either our per capita consumption or our population. Both together determine whether we are on the sustainable side of carrying capacity. Currently we are on the unsustainable side, meaning our way of life cannot endure. Not a good look for being a good ancestor.
The current trajectory of the Government and Electricity Authority appears to be grossly unsustainable. At the very least they should be able to answer the questions posed here about the GHG emissions from implementing a totally renewable energy system, the net energy of such a system, and the related environmental and social consequences.
Public dialogue is critical to collectively working out our future. Allowing the current profit-driven trajectory to unfold is a recipe for disasters for our children and grandchildren.
Being silent on these issues amounts to complicity in allowing short-term financial interests and an addiction to convenience jeopardise a genuinely secure and resilient future. Let’s get some answers from the Government and Electricity Authority to critical questions about energy security.
Poland Offshore Wind Energy accelerates as PGE exits nuclear leadership, PKN Orlen steps in, and Baltic Sea projects expand to cut coal reliance, meet EU emissions goals, attract investors, and bridge the power capacity gap.
Key Points
A shift from coal and nuclear to Baltic offshore wind to add capacity, cut EU emissions, and attract investment.
✅ PGE drops lead in nuclear; pivots $10bn to offshore wind.
✅ PKN Orlen may assume nuclear role; projects await approval.
✅ 6 GW offshore could add 60b zlotys and 77k jobs by 2030.
PGE, Poland’s biggest power group has decided to abandon a role in building the country’s first nuclear power plant and will instead focus investment on offshore wind energy.
Reuters reports state-run refiner PKN Orlen (PKN.WA) could take on PGE’s role, while the latter announces a $10bn offshore wind power project.
Both moves into renewables and nuclear represent a major change in Polish energy policy, diversifying away from the country’s traditional coal-fired power base, as regional efforts like the North Sea wind farms initiative expand, in a bid to fill an electricity shortfall and meet EU emission standards.
An unnamed source told the news agency, PGE could not fund both projects and cheap technology had swung the decision in favour of wind, with offshore wind competing with gas in some markets. PGE could still play a smaller role in the nuclear project which has been delayed and still needs government approval.
#google#
A proposed law is currently before the Polish parliament aiming at facilitating easy construction of wind turbines, mindful of Germany’s grid expansion challenges that have hindered rollout.
If the law is passed, as expected, several other wind farm projects could also proceed.
Polenergia has said it would like to build a wind farm in the Baltic by 2022. PKN Orlen is also considering building one.
PGE said in March that it wants to build offshore windfarms with a capacity of 2.5 gigawatts (GW) by 2030.
Analysts and investors say that offshore wind farms are the easiest and fastest way for Poland to fill the expected capacity gap from coal, with examples like the largest UK offshore wind farm coming online underscoring momentum, and reduce CO2 emissions in line with EU’s 2030 targets as Poland seeks improved ties with Brussels.
The decision to open up the offshore power industry could also draw in investors, as shown by Japanese utilities’ UK offshore investment attracting cross-border capital. Statoil said in April it would join Polenergia’s offshore project which has drawn interest from other international wind companies. “
The Polish Wind Energy Association (PWEA) estimates that offshore windfarms with a total capacity of 6 GW would help create around 77,000 new jobs and add around 60 billion zlotys to economic growth.
Boeing 787 More-Electric Architecture replaces pneumatics with bleedless pressurization, VFSG starter-generators, electric brakes, and heated wing anti-ice, leveraging APU, RAT, batteries, and airport ground power for efficient, redundant electrical power distribution.
Key Points
An integrated, bleedless electrical system powering start, pressurization, brakes, and anti-ice via VFSGs, APU and RAT.
✅ VFSGs start engines, then generate 235Vac variable-frequency power
✅ Bleedless pressurization, electric anti-ice improve fuel efficiency
✅ Electric brakes cut hydraulic weight and simplify maintenance
The 787 Dreamliner is different to most commercial aircraft flying the skies today. On the surface it may seem pretty similar to the likes of the 777 and A350, but get under the skin and it’s a whole different aircraft.
When Boeing designed the 787, in order to make it as fuel efficient as possible, it had to completely shake up the way some of the normal aircraft systems operated. Traditionally, systems such as the pressurization, engine start and wing anti-ice were powered by pneumatics. The wheel brakes were powered by the hydraulics. These essential systems required a lot of physical architecture and with that comes weight and maintenance. This got engineers thinking.
What if the brakes didn’t need the hydraulics? What if the engines could be started without the pneumatic system? What if the pressurisation system didn’t need bleed air from the engines? Imagine if all these systems could be powered electrically… so that’s what they did.
Power sources
The 787 uses a lot of electricity. Therefore, to keep up with the demand, it has a number of sources of power, much as grid operators track supply on the GB energy dashboard to balance loads. Depending on whether the aircraft is on the ground with its engines off or in the air with both engines running, different combinations of the power sources are used.
Engine starter/generators
The main source of power comes from four 235Vac variable frequency engine starter/generators (VFSGs). There are two of these in each engine. These function as electrically powered starter motors for the engine start, and once the engine is running, then act as engine driven generators.
The generators in the left engine are designated as L1 and L2, the two in the right engine are R1 and R2. They are connected to their respective engine gearbox to generate electrical power directly proportional to the engine speed. With the engines running, the generators provide electrical power to all the aircraft systems.
APU starter/generators
In the tail of most commercial aircraft sits a small engine, the Auxiliary Power Unit (APU). While this does not provide any power for aircraft propulsion, it does provide electrics for when the engines are not running.
The APU of the 787 has the same generators as each of the engines — two 235Vac VFSGs, designated L and R. They act as starter motors to get the APU going and once running, then act as generators. The power generated is once again directly proportional to the APU speed.
The APU not only provides power to the aircraft on the ground when the engines are switched off, but it can also provide power in flight should there be a problem with one of the engine generators.
Battery power
The aircraft has one main battery and one APU battery. The latter is quite basic, providing power to start the APU and for some of the external aircraft lighting.
The main battery is there to power the aircraft up when everything has been switched off and also in cases of extreme electrical failure in flight, and in the grid context, alternatives such as gravity power storage are being explored for long-duration resilience. It provides power to start the APU, acts as a back-up for the brakes and also feeds the captain’s flight instruments until the Ram Air Turbine deploys.
Ram air turbine (RAT) generator
When you need this, you’re really not having a great day. The RAT is a small propeller which automatically drops out of the underside of the aircraft in the event of a double engine failure (or when all three hydraulics system pressures are low). It can also be deployed manually by pressing a switch in the flight deck.
Once deployed into the airflow, the RAT spins up and turns the RAT generator. This provides enough electrical power to operate the captain’s flight instruments and other essentials items for communication, navigation and flight controls.
External power
Using the APU on the ground for electrics is fine, but they do tend to be quite noisy. Not great for airports wishing to keep their noise footprint down. To enable aircraft to be powered without the APU, most big airports will have a ground power system drawing from national grids, including output from facilities such as Barakah Unit 1 as part of the mix. Large cables from the airport power supply connect 115Vac to the aircraft and allow pilots to shut down the APU. This not only keeps the noise down but also saves on the fuel which the APU would use.
The 787 has three external power inputs — two at the front and one at the rear. The forward system is used to power systems required for ground operations such as lighting, cargo door operation and some cabin systems. If only one forward power source is connected, only very limited functions will be available.
The aft external power is only used when the ground power is required for engine start.
Circuit breakers
Most flight decks you visit will have the back wall covered in circuit breakers — CBs. If there is a problem with a system, the circuit breaker may “pop” to preserve the aircraft electrical system. If a particular system is not working, part of the engineers procedure may require them to pull and “collar” a CB — placing a small ring around the CB to stop it from being pushed back in. However, on the 787 there are no physical circuit breakers. You’ve guessed it, they’re electric.
Within the Multi Function Display screen is the Circuit Breaker Indication and Control (CBIC). From here, engineers and pilots are able to access all the “CBs” which would normally be on the back wall of the flight deck. If an operational procedure requires it, engineers are able to electrically pull and collar a CB giving the same result as a conventional CB.
Not only does this mean that the there are no physical CBs which may need replacing, it also creates space behind the flight deck which can be utilised for the galley area and cabin.
A normal flight
While it’s useful to have all these systems, they are never all used at the same time, and, as the power sector’s COVID-19 mitigation strategies showed, resilience planning matters across operations. Depending on the stage of the flight, different power sources will be used, sometimes in conjunction with others, to supply the required power.
On the ground
When we arrive at the aircraft, more often than not the aircraft is plugged into the external power with the APU off. Electricity is the blood of the 787 and it doesn’t like to be without a good supply constantly pumping through its system, and, as seen in NYC electric rhythms during COVID-19, demand patterns can shift quickly. Ground staff will connect two forward external power sources, as this enables us to operate the maximum number of systems as we prepare the aircraft for departure.
Whilst connected to the external source, there is not enough power to run the air conditioning system. As a result, whilst the APU is off, air conditioning is provided by Preconditioned Air (PCA) units on the ground. These connect to the aircraft by a pipe and pump cool air into the cabin to keep the temperature at a comfortable level.
APU start
As we near departure time, we need to start making some changes to the configuration of the electrical system. Before we can push back , the external power needs to be disconnected — the airports don’t take too kindly to us taking their cables with us — and since that supply ultimately comes from the grid, projects like the Bruce Power upgrade increase available capacity during peaks, but we need to generate our own power before we start the engines so to do this, we use the APU.
The APU, like any engine, takes a little time to start up, around 90 seconds or so. If you remember from before, the external power only supplies 115Vac whereas the two VFSGs in the APU each provide 235Vac. As a result, as soon as the APU is running, it automatically takes over the running of the electrical systems. The ground staff are then clear to disconnect the ground power.
If you read my article on how the 787 is pressurised, you’ll know that it’s powered by the electrical system. As soon as the APU is supplying the electricity, there is enough power to run the aircraft air conditioning. The PCA can then be removed.
Engine start
Once all doors and hatches are closed, external cables and pipes have been removed and the APU is running, we’re ready to push back from the gate and start our engines. Both engines are normally started at the same time, unless the outside air temperature is below 5°C.
On other aircraft types, the engines require high pressure air from the APU to turn the starter in the engine. This requires a lot of power from the APU and is also quite noisy. On the 787, the engine start is entirely electrical.
Power is drawn from the APU and feeds the VFSGs in the engines. If you remember from earlier, these fist act as starter motors. The starter motor starts the turn the turbines in the middle of the engine. These in turn start to turn the forward stages of the engine. Once there is enough airflow through the engine, and the fuel is igniting, there is enough energy to continue running itself.
After start
Once the engine is running, the VFSGs stop acting as starter motors and revert to acting as generators. As these generators are the preferred power source, they automatically take over the running of the electrical systems from the APU, which can then be switched off. The aircraft is now in the desired configuration for flight, with the 4 VFSGs in both engines providing all the power the aircraft needs.
As the aircraft moves away towards the runway, another electrically powered system is used — the brakes. On other aircraft types, the brakes are powered by the hydraulics system. This requires extra pipe work and the associated weight that goes with that. Hydraulically powered brake units can also be time consuming to replace.
By having electric brakes, the 787 is able to reduce the weight of the hydraulics system and it also makes it easier to change brake units. “Plug in and play” brakes are far quicker to change, keeping maintenance costs down and reducing flight delays.
In-flight
Another system which is powered electrically on the 787 is the anti-ice system. As aircraft fly though clouds in cold temperatures, ice can build up along the leading edge of the wing. As this reduces the efficiency of the the wing, we need to get rid of this.
Other aircraft types use hot air from the engines to melt it. On the 787, we have electrically powered pads along the leading edge which heat up to melt the ice.
Not only does this keep more power in the engines, but it also reduces the drag created as the hot air leaves the structure of the wing. A double win for fuel savings.
Once on the ground at the destination, it’s time to start thinking about the electrical configuration again. As we make our way to the gate, we start the APU in preparation for the engine shut down. However, because the engine generators have a high priority than the APU generators, the APU does not automatically take over. Instead, an indication on the EICAS shows APU RUNNING, to inform us that the APU is ready to take the electrical load.
Shutdown
With the park brake set, it’s time to shut the engines down. A final check that the APU is indeed running is made before moving the engine control switches to shut off. Plunging the cabin into darkness isn’t a smooth move. As the engines are shut down, the APU automatically takes over the power supply for the aircraft. Once the ground staff have connected the external power, we then have the option to also shut down the APU.
However, before doing this, we consider the cabin environment. If there is no PCA available and it’s hot outside, without the APU the cabin temperature will rise pretty quickly. In situations like this we’ll wait until all the passengers are off the aircraft until we shut down the APU.
Once on external power, the full flight cycle is complete. The aircraft can now be cleaned and catered, ready for the next crew to take over.
Bottom line
Electricity is a fundamental part of operating the 787. Even when there are no passengers on board, some power is required to keep the systems running, ready for the arrival of the next crew. As we prepare the aircraft for departure and start the engines, various methods of powering the aircraft are used.
The aircraft has six electrical generators, of which only four are used in normal flights. Should one fail, there are back-ups available. Should these back-ups fail, there are back-ups for the back-ups in the form of the battery. Should this back-up fail, there is yet another layer of contingency in the form of the RAT. A highly unlikely event.
The 787 was built around improving efficiency and lowering carbon emissions whilst ensuring unrivalled levels safety, and, in the wider energy landscape, perspectives like nuclear beyond electricity highlight complementary paths to decarbonization — a mission it’s able to achieve on hundreds of flights every single day.
Quebec Hydropower Export Retaliation examines using electricity exports to counter U.S. tariffs amid Canada-U.S. trade tensions, weighing clean energy supply, grid reliability, energy security, legal risks, and long-term market impacts.
Key Points
Using Quebec electricity exports as leverage against U.S. tariffs, and its economic, legal, and diplomatic consequences.
✅ Revenue loss for Quebec and higher costs for U.S. consumers
✅ Risk of legal disputes under trade and energy agreements
✅ Long-term erosion of market share and grid cooperation
As trade tensions between Canada and the United States continue to escalate, with electricity exports at risk according to recent reporting, discussions have intensified around potential Canadian responses to the imposition of U.S. tariffs. One of the proposals gaining attention is the idea of reducing or even halting the export of energy from Quebec to the U.S. This measure has been suggested by some as a potential countermeasure to retaliate against the tariffs. However, experts and industry leaders are urging caution, emphasizing that the consequences of such a decision could have significant economic and diplomatic repercussions for both Canada and the United States.
Quebec plays a critical role in energy trade, particularly in supplying hydroelectric power to the United States, especially to the northeastern states, including New York where tariffs may spike energy prices according to analysts, strengthening the case for stable cross-border flows. This energy trade is deeply embedded in the economic fabric of both regions. For Quebec, the export of hydroelectric power represents a crucial source of revenue, while for the U.S., it provides access to a steady and reliable supply of clean, renewable energy. This mutually beneficial relationship has been a cornerstone of trade between the two countries, promoting economic stability and environmental sustainability.
In the wake of recent U.S. tariffs on Canadian goods, some policymakers have considered using energy exports as leverage, echoing threats to cut U.S. electricity exports in earlier disputes, to retaliate against what is viewed as an unfair trade practice. The idea is to reduce or stop the flow of electricity to the U.S. as a way to strike back at the tariffs and potentially force a change in U.S. policy. On the surface, this approach may appear to offer a viable means of exerting pressure. However, experts warn that such a move would be fraught with significant risks, both economically and diplomatically.
First and foremost, Quebec's economy is heavily reliant on revenue from hydroelectric exports to the U.S. Any reduction in these energy sales could have serious consequences for the province's economic stability, potentially resulting in job losses and a decrease in investment. The hydroelectric power sector is a major contributor to Quebec's GDP, and recent events, including a tariff threat delaying a green energy bill in Quebec, illustrate how trade tensions can ripple through the policy landscape, while disrupting this source of income could harm the provincial economy.
Additionally, experts caution that reducing energy exports could have long-term ramifications on the energy relationship between Quebec and the northeastern U.S. These two regions have developed a strong and interconnected energy network over the years, and abruptly cutting off the flow of electricity could damage this vital partnership. Legal challenges could arise under existing trade agreements, and even as tariff threats boost support for Canadian energy projects among some stakeholders, the situation would grow more complex. Such a move could also undermine trust between the two parties, making future negotiations on energy and other trade issues more difficult.
Another potential consequence of halting energy exports is that U.S. states may seek alternative sources of energy, diminishing Quebec's market share in the long run. As the U.S. has a growing demand for clean energy, especially as it looks to transition away from fossil fuels, and looks to Canada for green power in several regions, cutting off Quebec’s electricity could prompt U.S. states to invest in other forms of energy, including renewables or even nuclear power. This could have a lasting effect on Quebec's position in the U.S. energy market, making it harder for the province to regain its footing.
Moreover, reducing or ceasing energy exports could further exacerbate trade tensions, leading to even greater economic instability. The U.S. could retaliate by imposing additional tariffs on Canadian goods or taking other measures that would negatively impact Canada's economy. This could create a cycle of escalating trade barriers that would hurt both countries and undermine the broader North American trade relationship.
While the concept of using energy exports as a retaliatory tool may seem appealing to some, the experts' advice is clear: the potential economic and diplomatic costs of such a strategy outweigh the short-term benefits. Quebec’s role as an energy supplier to the U.S. is crucial to its own economy, and maintaining a stable, reliable energy trade relationship is essential for both parties. Rather than escalating tensions further, it may be more prudent for Canada and the U.S. to seek diplomatic solutions that preserve trade relations and minimize harm to their economies.
While the idea of using Quebec’s energy exports as leverage in response to U.S. tariffs may appear attractive on the surface, and despite polls showing support for tariffs on energy and minerals among Canadians, it carries significant risks. Experts emphasize the importance of maintaining a stable energy export strategy to protect Quebec’s economy and preserve positive diplomatic relations with the U.S. Both countries have much to lose from further escalating trade tensions, and a more measured approach is likely to yield better outcomes in the long run.
Alberta coal phaseout accelerates as utilities convert to natural gas, cutting emissions under TIER regulations and deploying hydrogen-ready, carbon capture capable plants, alongside new solar projects in a competitive, deregulated electricity market.
Key Points
A provincewide shift from coal to natural gas and renewables, cutting power emissions years ahead of the 2030 target.
✅ Capital Power, TransAlta converting coal units to gas
✅ Hydrogen-ready turbines, solar projects boost renewables
Alberta is set to meet its goal to eliminate coal-fired electricity production years earlier than its 2030 target, amid a broader shift to cleaner energy in the province, thanks to recently announced utility conversion projects.
Capital Power Corp.’s plan to spend nearly $1 billion to switch two coal-fired power units west of Edmonton to natural gas, and stop using coal entirely by 2023, was welcomed by both the province and the Pembina Institute environmental think-tank.
In 2014, 55 per cent of Alberta’s electricity was produced from 18 coal-fired generators. The Alberta government announced in 2015 it would eliminate emissions from coal-fired electricity generation by 2030.
Dale Nally, associate minister of Natural Gas and Electricity, said Friday that decisions by Capital Power and other utilities to abandon coal will be good for the environment and demonstrates investor confidence in Alberta’s deregulated electricity market, where the power price cap has come under scrutiny.
He credited the government’s Technology Innovation and Emissions Reduction (TIER) regulations, which put a price on industrial greenhouse gas emissions, as a key factor in motivating the conversions.
“Capital Power’s transition to gas is a great example of how private industry is responding effectively to TIER, as it transitions these facilities to become carbon capture and hydrogen ready, which will drive future emissions reductions,” Nally said in an email.
Capital Power said direct carbon dioxide emissions at its Genesee power facility near Edmonton will be about 3.4 million tonnes per year lower than 2019 emission levels when the project is complete.
It says the natural gas combined cycle units it’s installing will be the most efficient in Canada, adding they will be capable of running on 30 per cent hydrogen initially, with the option to run on 95 per cent hydrogen in future with minor investments.
In November, Calgary-based TransAlta Corp. said it will end operations at its Highvale thermal coal mine west of Edmonton by the end of 2021 as it switches to natural gas at all of its operated coal-fired plants in Canada four years earlier than previously planned.
The Highvale surface coal mine is the largest in Canada, and has been in operation on the south shore of Wabamun Lake in Parkland County since 1970.
The moves by the two utilities and rival Atco Ltd., which announced three years ago it would convert to gas at all of its plants by this year, mean significant emissions reduction and better health for Albertans, said Binnu Jeyakumar, director of clean energy for Pembina.
“Alberta’s early coal phaseout is also a great lesson in good policy-making done in collaboration with industry and civil society,” she said.
“As we continue with this transformation of our electricity sector, it is paramount that efforts to support impacted workers and communities are undertaken.”
She added the growing cost-competitiveness of renewable energy, such as wind power, makes coal plant retirements possible, applauding Capital Power’s plans to increase its investments in solar power.
In Ontario, clean power policy remains a focus as the province evaluates its energy mix.
The company announced it would go ahead with its 75-megawatt Enchant Solar power project in southern Alberta, investing between $90 million and $100 million, and that it has signed a 25-year power purchase agreement with a Canadian company for its 40.5-MW Strathmore Solar project now under construction east of Calgary.
Community Power Tariff UK delivers clean electricity from community energy projects, sourcing renewable energy from local wind and solar farms, with carbon offset gas, transparent provenance, fair pricing, and reinvestment in local generators across Britain.
Key Points
UK energy plan delivering 100% community renewable power with carbon-offset gas, sourced from local wind and solar.
✅ 100% community-generated electricity from UK wind and solar
✅ Fair prices with profits reinvested in local projects
✅ Carbon-offset gas and verified, transparent provenance
UK homes will soon be able to plug into community wind and solar farms from anywhere in the country through the first energy tariff to offer clean electricity exclusively from community projects.
The deal from Co-op Energy comes as green energy suppliers race to prove their sustainability credentials amid rising competition for eco-conscious customers and “greenwashing” in the market.
The energy supplier will charge an extra £5 a month over Co-op’s regular tariff to provide electricity from community energy projects and gas which includes a carbon offset in the price.
Co-op, which is operated by Octopus Energy after it bought the business from the Midcounties Co-operative last year, will source the clean electricity for its new tariff directly from 90 local renewable energy generation projects across the UK, including the Westmill wind and solar farms in Oxfordshire. It plans to use all profits to reinvest in maintaining the community projects and building new ones.
Phil Ponsonby, the chief executive of Midcounties Co-operative, said the tariff is the UK’s only one to be powered by 100% community-generated electricity and would ensure a fair price is paid to community generators too, amid a renewable energy auction boost that supports wider deployment.
Customers on the Community Power tariff will be able to “see exactly where it is being generated at small scale sites across the UK, and, with new rights to sell solar power back to energy firms, they know it is benefiting local communities”, he said.
Co-op, which has about 300,000 customers, has set itself apart from a rising number of energy supply deals which are marked as 100% renewable, but are not as green as they seem, even as many renewable projects are on hold due to grid constraints.
Consumer group Which? has found that many suppliers offer renewable energy tariffs but do not generate renewable electricity themselves or have contracts to buy any renewable electricity directly from generators.
Instead, the “pale green” suppliers exploit a loophole in the energy market by snapping up cheap renewable energy certificates, without necessarily buying energy from renewables projects.
The certificates are issued by the regulator to renewable energy developers for each megawatt generated, but these can be sold separately from the electricity for a fraction of the price.
A survey conducted last year found that one in 10 people believe that a renewables tariff means that the supplier generates at least some of its electricity from its own renewable energy projects.
Ponsonby said the wind and solar schemes that generate electricity for the Community Power tariff “plough the profits they make back into their neighbourhoods or into helping other similar projects get off the ground”.
Greg Jackson, the chief executive of Octopus Energy, said being able to buy locally-sourced clean, green energy is “a massive jump in the right direction” which will help grow the UK’s green electricity capacity nationwide.
“Investing in more local energy infrastructure and getting Britain’s homes run by the sun when it’s shining and wind energy when it’s blowing can end our reliance on dirty fossil fuels sooner than we hoped,” he said.
Whether you would prefer Live Online or In-Person
instruction, our electrical training courses can be
tailored to meet your company's specific requirements
and delivered to your employees in one location or at
various locations.