Norway investing millions in hydro upgrades

By Industrial Info Resources


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Norway's state-owned renewable energy power company Statkraft AS will spend more than 124 million euros (US $190 million) on upgrades to the company's hydroelectric plants, resulting in higher renewable energy generation and environmental improvements.

Statkraft plans to invest about 87 million euros (US $117.3 million) to build new underground power plants in Eiriksdal and Makkoren, in the Høyanger area in western Norway, replacing the existing facilities. The plans also include a budget of almost 50 million euros (US $67.4 million) to modernize the hydropower plant in Nedre Røssåga, in the northern part of the country.

By far the greatest proportion of Norway's electricity supply is generated from hydroelectric plants — about 99%, or 135 terrawatt-hours (TWh). However, the majority of the hydropower plants were constructed in the 1950s and 1960s. The earliest plant dates back to 1920, and the ageing infrastructure has resulted in large maintenance costs. Statkraft reports that it spends about 124 million euros each year on maintaining its 149 hydropower plants in the country.

The new power plants in Eiriksdal and Makkoren will together produce 330,000 gigawatt-hours of electricity and will be built underground. The new plants will replace the existing K1, K2 and K3 plants, which Statkraft took over in 1998. The environmental benefits will include the replacement of the existing above-ground cables with new, buried cables, and the flow in the Dale River downstream of the plants will be restored to about 70% of natural levels.

While replacement plants will be constructed at the Høyanger site, the plans for Nedre Røssåga call for a major modernization of the facilities in a phased approach. For the first phase, Statkraft will upgrade three of the units at the complex, after which it will replace or modernize the support and control systems, for a total cost of about 52 million euros (US $70 million).

The second phase at Nedre Røssåga will entail either an upgrade of the remaining three units, or alternatively, the construction of a completely new parallel plant. The existing plant was constructed in 1947 and serves the Mo Industrial Park, one of the largest in the country.

Despite the massive proportion of electricity generated by hydroelectric power plants and a growing base of windfarms, Norway still ranks high for per capita carbon-dioxide emissions, but this is largely because of the low population count. In 2008, the Norwegian government announced that it planned to become carbon-neutral by 2030.

Norway has an impressive record in renewable energy production and carbon-reduction technology. In 2003, the first commercial seabed tidal-powered generator began generating power in Kvalsund, south of Hammerfest. The generator produces about 300 kilowatts of electricity.

The country also boasts the first industrial-scale carbon capture and storage (CCS) project. The project, operated by StatoilHydro ASA since 1996, removes about 1 million tons of carbon dioxide from natural gas obtained from the Sleipner natural gas field, which is about 250 kilometers offshore under the North Sea. The carbon dioxide is extracted at the Sleipner platform and is re-injected into the gas field to increase pressure.

Related News

Clorox accelerates goal of achieving 100% renewable electricity in the U.S. and Canada to 2021

Clorox Enel 70 MW VPPA accelerates renewable energy, sourcing Texas solar from the Roadrunner project to support 100% renewable electricity, Scope 2 reductions, and grid decarbonization through a virtual power purchase agreement starting in 2021.

 

Key Points

A 12-year virtual power purchase agreement for 70 MW of Texas solar to advance Clorox's 100% renewable electricity goal.

✅ 12-year contract supporting 100% renewable electricity by 2021

✅ Supplies 70 MW from Enel's Roadrunner solar project in Texas

✅ Cuts Scope 2 emissions via grid-delivered virtual PPA

 

The Clorox Company and a wholly owned subsidiary of Enel Green Power North America announced today the signing of a 12-year, 70 megawatt (MW) virtual power purchase agreement (VPPA) for the purchase of renewable energy, aligned with carbon-free electricity investments across the power sector beginning in 2021. Representing about half of Clorox's 100% renewable electricity goal in its operations in the U.S. and Canada, this agreement is expected to help Clorox accelerate achieving its goal in 2021, four years ahead of the company's original plan.

"Climate change and rising greenhouse gas emissions pose a real threat to the health of our planet and ultimately the long-term well-being of people globally. That's why we've taken action for more than 10 years to measure and reduce the carbon footprint of our operations," said Benno Dorer, chair and CEO, The Clorox Company. "Our agreement with Enel helps to expand U.S. renewable energy infrastructure, reflecting our view that companies like Clorox play an important role in addressing global climate change, as landmark policies like the U.S. climate deal further accelerate the transition. We believe this agreement will significantly contribute toward Clorox achieving our goal of 100% renewable electricity in our operations in the U.S. and Canada in 2021, four years earlier than originally planned. Our commitment to climate stewardship is an important pillar of our new IGNITE strategy and part of our overall efforts to drive Good Growth – growth that's profitable, sustainable and responsible."

The 70MW VPPA between Clorox and Enel Green Power North America for the purchase of renewable energy delivered to the electricity grid is for the second phase of Enel's Roadrunner solar project to be built in Texas, and complement global clean energy collaborations such as Canada-Germany hydrogen cooperation announced recently. Roadrunner is a 497-direct current megawatt (MWdc) solar project that is being built in two phases. The first phase, currently under construction, comprises around 252 MWdc and is expected to be completed by the end of 2019, while the remaining 245 MWdc of capacity is expected to be completed by the end of 2020. Once fully operational, the solar plant could generate up to 1.2 terawatt-hours (TWh) of electricity annually, while avoiding an estimated 800,000 metric tons of carbon dioxide emissions per year.

Based on the U.S. Environmental Protection Agency Greenhouse Gas Equivalencies Calculator[i], this VPPA is estimated to avoid approximately 140,000 metric tons of CO2 emissions each year. This is equivalent to the annual impact that 165,000 acres of U.S. forest can have in removing CO2 from the atmosphere, and illustrates why cleaning up Canada's electricity is central to emissions reductions in the power sector, or the carbon impact of the electricity needed to power more than 24,000 U.S. homes annually.

"We are proud to support Clorox on their path towards 100% renewable electricity in its operations in the U.S. and Canada by helping them achieve about half their goal through this agreement," said Georgios Papadimitriou, head of Enel Green Power North America. "This agreement with Clorox reinforces the continued significance of renewable energy as a fundamental part of any company's sustainability strategy."

Schneider Electric Energy & Sustainability Services advised Clorox on this power purchase agreement and, amid heightened investor attention exemplified by the Duke Energy climate report, supported the company in its project selection, analysis, negotiations and deal execution.

 

Clorox Commits to Scope 1, 2 and 3 Science-Based Targets

For more than 10 years, Clorox has consistently achieved its goals to reduce greenhouse gas emissions in its operations. Clorox is focused on setting emissions reduction targets in line with climate science. As a participant in the Science Based Targets Initiative, Clorox has committed to setting and achieving science-based greenhouse gas emissions reduction targets in its operations (Scopes 1 and 2) and across its value chain (Scope 3), and consistent with national pathways such as Canada's net-zero 2050 target pursued by policymakers. The targets are considered "science-based" if they are in line with what the latest climate science says is necessary to meet the goals of the 2015 Paris Agreement – a global environmental accord to address climate change and its negative impacts.

Clorox's climate stewardship goals are part of its new integrated corporate strategy called IGNITE, which includes several other environmental, social and governance (ESG) goals and reflects lessons from Canada's electricity progress in scaling clean power. More comprehensive information about Clorox's IGNITE ESG goals can be found here. Information on Clorox's 2020 ESG strategy can be found in its fiscal year 2019 annual report.

 

Related News

View more

Can Europe's atomic reactors bridge the gap to an emissions-free future?

EU Nuclear Reactor Life Extension focuses on energy security, carbon-free electricity, and safety as ageing reactors face gas shortages, high power prices, and regulatory approvals across the UK and EU amid winter supply risks.

 

Key Points

EU Nuclear Reactor Life Extension is the policy to keep ageing reactors safely generating affordable, low-carbon power.

✅ Extends reactor operation via inspections and component upgrades

✅ Addresses gas shortages, price volatility, and winter supply risks

✅ Requires national regulator approval and cost-benefit analysis

 

Shaken by the loss of Russian natural gas since the invasion of Ukraine, European countries are questioning whether they can extend the lives of their ageing nuclear reactors to maintain the supply of affordable, carbon-free electricity needed for net-zero across the bloc — but national regulators, companies and governments disagree on how long the atomic plants can be safely kept running.

Europe avoided large-scale blackouts last winter despite losing its largest supplier of natural gas, and as Germany temporarily extended nuclear operations to bolster stability, but industry is still grappling with high electricity prices and concerns about supply.

Given warnings from the International Energy Agency that the coming winters will be particularly at risk from a global gas shortage, governments have turned their attention to another major energy source — even as some officials argue nuclear would do little to solve the gas issue in the near term — that would exacerbate the problem if it too is disrupted: Europe’s ageing fleet of nuclear power plants.

Nuclear accounts for nearly 10% of energy consumed in the European Union, with transport, industry, heating and cooling traditionally relying on coal, oil and natural gas.

Historically nuclear has provided about a quarter of EU electricity and 15% of British power, even as Germany shut down its last three nuclear plants recently, underscoring diverging national paths.

Taken together, the UK and EU have 109 nuclear reactors running, even as Europe is losing nuclear power in several markets, most of which were built in the 1970s and 1980s and were commissioned to last about 30 years.

That means 95 of those reactors — nearly 90% of the fleet — have passed or are nearing the end of their original lifespan, igniting debates over how long they can safely continue to be granted operating extensions, with some arguing it remains a needed nuclear option for climate goals despite age-related concerns.

Regulations differ across borders, with some countries such as Germany turning its back on nuclear despite an ongoing energy crisis, but life extension discussions are usually a once-a-decade affair involving physical inspections, cost/benefit estimates for replacing major worn-out parts, legislative amendments, and approval from the national nuclear safety authority.

 

Related News

View more

Electricity prices in Germany nearly doubled in a year

Germany Energy Price Hikes are driving electricity tariffs, gas prices, and heating costs higher as wholesale markets surge after the Ukraine invasion; households face inflationary pressure despite relief measures and a renewables levy cut.

 

Key Points

Germany Energy Price Hikes reflect surging power and gas tariffs from wholesale spikes, prompting relief measures.

✅ Electricity tariffs to rise 19.5% in Apr-Jun

✅ Gas tariffs up 42.3%; heating and fuel costs soar

✅ Renewables levy ends July; saves €6.6 billion yearly

 

Record prices for electricity and gas in Germany will continue to rise in the coming months, the dpa agency, citing estimates from the consumer portal Verivox.

According to him, electricity suppliers and local utilities, in whose area of ​​responsibility there are 13 million households, made an announcement of tariff increases in April, May and June by 19.5%. Gas tariffs increased by an average of 42.3%.

According to Verivox, electricity prices in Germany have approximately doubled over the year - a pattern seen as European electricity prices rose more than double the EU average - if previously a household with a consumption of 4,000 kWh paid 1,171 euros a year, now the amount has risen to 1,737 euros. Gas prices have risen even more, though European gas prices later returned to pre-Ukraine war levels: last year, a household with a consumption of 20,000 kWh paid 1,184 euros in annual terms, and now it is 2,787 euros. 

Energy costs for the average German household are 52 percent higher than a year ago, adding to EU inflation pressures, according to energy contract sales website Check24. In a press release, the company said the wholesale electricity price was at €122.93 per megawatt-hour in February 2022, compared to €49 this time last year, while in the United States US electricity prices climbed at the fastest pace in 41 years. In addition, electricity prices on the power exchange haven been rising rapidly since Russian troops invaded Ukraine, comparison portal Strom Report said. Costs for heating rose the most, triggered by the high gas price (105 euros per megawatt-hour on the wholesale market) and around 100 USD per barrel of oil – its highest price since 2014. Driving also became more expensive with costs for petrol up 25 percent and diesel 30 percent, Check24 said.

The German government has decided on relief measures for low-income households, including a 200 billion euro energy shield, in response to high consumer energy costs. In July, it will abolish the renewables levy on the power price, saving consumers around €6.6 billion annually. In a reform proposal released this week, the ministry for economy and climate also detailed how it will legally oblige power suppliers to reduce their power bills when the levy is abolished.

 

Related News

View more

Is Ontario embracing clean power?

Ontario Clean Energy Expansion signals IESO-backed renewables, energy storage, and low-CO2 power to meet EV-driven demand, offset Pickering nuclear retirement, and balance interim gas-fired generation while advancing grid reliability, decarbonization, and net-zero targets.

 

Key Points

Ontario Clean Energy Expansion plans to grow renewables and storage, manage short-term gas, and meet rising demand.

✅ IESO long-term procurements for renewables and storage

✅ Interim reliance on gas to replace Pickering capacity

✅ Targets align with net-zero grid reliability goals

 

After cancelling hundreds of renewable power projects four years ago, the Doug Ford government appears set to expand clean energy to meet a looming electricity shortfall across the province.

Recent announcements from Ontario Energy Minister Todd Smith and the province’s electric grid management agency suggest the province plans to expand low-CO2 electricity with new wind and solar plans in the long-term, even as it ramps up gas-fired power over the next five years.

The moves are in response to an impending electricity shortfall as climate-conscious drivers switch to electric vehicles, farmers replace field crops with greenhouses and companies like ArcelorMittal Dofasco in Hamilton switch from CO2-heavy manufacturing to electricity-based production. Forecasters predict Canada will need to double its power supply by 2050.

While Ontario has a relatively low-CO2 power system, the province’s electricity supply will be reduced in 2025 when Ontario Power Generation closes the 50-year-old Pickering nuclear station, now near the end of its operating life. This will remove 3,100 megawatts of low-CO2 generation, about eight per cent of the province’s 40,000-megawatt total.

The impending closure has created a difficult situation for the Independent Electricity System Operator (IESO), the provincial agency managing Ontario’s grid. Last year, it forecasted it would need to sharply increase CO2-polluting natural gas-fired power to avoid widespread blackouts.

This would mean drivers switching to electric vehicles or companies like Dofasco cutting CO2 through electrification would end up causing higher power system emissions.

It would also fly in the face of the federal government’s ambition to create a net-zero national electricity system by 2035, a critical part of Canada’s pledge to reduce CO2 emissions to zero by 2050.

Yet the Ford government has appeared reluctant to expand clean energy. In the 2018 election, clean electricity was a key issue as it appealed to anti-turbine voters in rural Ontario and cancelled more than 700 renewable energy contracts shortly after taking office, taking 400 megawatts out of the system.

But there are signs the government is having a change of heart. IESO recently released a list of 55 companies approved to submit bids for 3,500 megawatts of long-term electricity contracts starting between 2025 and 2027, and the energy minister has outlined a plan to address growing energy needs as well.

The companies include a variety of potential producers, ranging from Canadian and global renewable companies to local utilities and small startups. Most are renewable power or energy storage companies specializing in low- or zero-emission power. IESO plans additional long-term bid offerings in the future.

This doesn’t mean gas generation will be turned off. IESO will contract yearly production from existing gas plants until 2028 (the annual contract in 2023 will be for about 2,000 megawatts). As well, IESO has issued contracts to four gas-fired producers, a small wind company and a storage company to begin production of about 700 megawatts to boost gas plant output starting between 2024 and 2026.

While this represents an expansion of existing gas-fired generation, Smith has asked IESO to report on a gas moratorium, saying he doesn’t believe new gas plants will be needed over the long term.

The NDP and Greens criticized the government for relying on gas in the near term. But clean energy advocates greeted the long-term plans positively.

The IESO process “will contribute to a clean, reliable and affordable grid,” said the Canadian Renewable Energy Association.

Rachel Doran, director of policy and strategy at Clean Energy Canada, said in an email the potential gas generation moratorium “is an encouraging step forward,” although she criticized the “unfortunate decision to replace near-term nuclear power capacity with climate-change-causing natural gas.”

There will have to be a massive clean energy expansion to green Ontario’s grid well beyond what has been announced in recent days for Ontario to meet its future energy needs (think a doubling of Ontario’s current 40,000-megawatt capacity by 2050).

But these first steps hold promise that Ontario is at least starting on the path to that goal, rather than scrambling to keep the lights on with CO2-polluting natural gas.

 

Related News

View more

How the dirtiest power station in western Europe switched to renewable energy

Drax Biomass Conversion accelerates renewable energy by replacing coal with wood pellets, sustainable forestry feedstock, and piloting carbon capture and storage, supporting the UK grid, emissions cuts, and a net-zero pathway.

 

Key Points

Drax Biomass Conversion is Drax's shift from coal to biomass with CCS pilots to cut emissions and aid UK's net-zero.

✅ Coal units converted to biomass wood pellets

✅ Sourced from sustainable forestry residues

✅ CCS pilots target lifecycle emissions cuts

 

A power station that used to be the biggest polluter in western Europe has made a near-complete switch to renewable energy, mirroring broader shifts as Denmark's largest energy company plans to end coal by 2023.

The Drax Power Station in Yorkshire, England, used to spew out millions of tons of carbon dioxide a year by burning coal. But over the past eight years, it has overhauled its operations by converting four of its six coal-fired units to biomass. The plant's owners say it now generates 15% of the country's renewable power, as Britain recently went a full week without coal power for the first time.

The change means that just 6% of the utility's power now comes from coal, as the wider UK coal share hits record lows across the national electricity system. The ultimate goal is to stop using coal altogether.

"We've probably reduced our emissions more than any other utility in the world by transforming the way we generate power," Will Gardner, CEO of the Drax Group, told CNN Business.

Subsidies have helped finance the switch to biomass, which consists of plant and agricultural matter and is viewed as a promising substitute for coal, and utilities such as Nova Scotia Power are also increasing biomass use. Last year, Drax received £789 million ($1 billion) in government support.

 

Is biomass good for the environment?

While scientists disagree over the extent to which biomass as a fuel is environmentally friendly, and some environmentalists urge reducing biomass use amid concerns about lifecycle emissions, Drax highlights that its supplies come from from sustainably managed and growing forests.

Most of the biomass used by Drax consists of low-grade wood, sawmill residue and trees with little commercial value from the United States. The material is compressed into sawdust pellets.

Gardner says that by purchasing bits of wood not used for construction or furniture, Drax makes it more financially viable for forests to be replanted. And planting new trees helps offset biomass emissions.

Forests "absorb carbon as they're growing, once they reach maturity, they stop absorbing carbon," said Raphael Slade, a senior research fellow at Imperial College London.

But John Sterman, a professor at MIT's Sloan School of Management, says that in the short term burning wood pellets adds more carbon to the atmosphere than burning coal.

That carbon can be absorbed by new trees, but Sterman says the process can take decades.

"If you're looking at five years, [biomass is] not very good ... If you're looking at a century-long time scale, which is the sort of time scale that many foresters plan, then [biomass] can be a lot more beneficial," says Slade.

 

Carbon capture

Enter carbon capture and storage technology, which seeks to prevent CO2 emissions from entering the atmosphere and has been touted as a possible solution to the climate crisis.

Drax, for example, is developing a system to capture the carbon it produces from burning biomass. But that could be 10 years away.

 

The Coal King is racing to avoid bankruptcy

The power station is currently capturing just 1 metric ton of CO2 emissions per day. Gardner says it hopes to increase this to 10,000 metric tons per day by the mid to late 2020s.

"The technology works but scaling it up and rolling it out, and financing it, are going to be significant challenges," says Slade.

The Intergovernmental Panel on Climate Change shares this view. The group said in a 2018 report that while the potential for CO2 capture and storage was considerable, its importance in the fight against climate change would depend on financial incentives for deployment, and whether the risks of storage could be successfully managed. These include a potential CO2 pipeline break.

In the United Kingdom, the government believes that carbon capture and storage will be crucial to reaching its goal of achieving net-zero greenhouse gas emissions by 2050, even as low-carbon generation stalled in 2019 according to industry analysis.

It has committed to consulting on a market-based industrial carbon capture framework and in June awarded £26 million ($33 million) in funding for nine carbon capture, usage and storage projects, amid record coal-free generation on the British grid.

 

Related News

View more

London's Newest Electricity Tunnel Goes Live

London Electricity Tunnel strengthens grid modernization with high-voltage cabling from major substations, increasing redundancy, efficiency, and resilience while enabling renewable integration, optimized power distribution, and a stable, low-loss electricity supply across the capital.

 

Key Points

A high-voltage tunnel upgrading London's grid, with capacity, redundancy, and renewable integration for reliable power.

✅ High-voltage cabling from key substations boosts capacity

✅ Redundancy improves reliability during grid faults

✅ Enables renewable integration and lower transmission losses

 

London’s energy infrastructure has recently taken a significant leap forward with the commissioning of its newest electricity tunnel, and related upgrades like the 2GW substation that bolster transmission capacity, a project that promises to enhance the reliability and efficiency of the city's power distribution. This cutting-edge tunnel is a key component in London’s ongoing efforts to modernize its energy infrastructure, support its growing energy demands, and contribute to its long-term sustainability goals.

The newly activated tunnel is part of a broader initiative to upgrade London's aging power grid, which has faced increasing pressure from the city’s expanding population and its evolving energy needs, paralleling Toronto's electricity planning to accommodate growth. The tunnel is designed to carry high-voltage electricity from major substations to various parts of the city, improving the distribution network's capacity and reliability.

The construction of the tunnel was a major engineering feat, involving the excavation of a vast underground passage that stretches several kilometers beneath the city. The tunnel is equipped with advanced technology and materials to ensure its resilience and efficiency, and is informed by advances such as HVDC technology being explored across Europe for stronger grids. It features state-of-the-art cabling and insulation to handle high-voltage electricity safely and efficiently, minimizing energy losses and improving overall grid performance.

One of the key benefits of the new tunnel is its ability to enhance the reliability of London’s power supply. As the city continues to grow and demand for electricity increases, maintaining a stable and uninterrupted power supply is critical. The tunnel helps address this need by providing additional capacity and creating redundancy in the power distribution network, aligning with national efforts to fast-track grid connections that unlock capacity across the UK.

The tunnel also supports London’s sustainability goals by facilitating the integration of renewable energy sources into the grid. With the increasing use of solar, wind, and other clean energy technologies, including the Scotland-to-England subsea link that will carry renewable power, the power grid needs to be able to accommodate and distribute this energy effectively. The new tunnel is designed to handle the variable nature of renewable energy, allowing for a more flexible and adaptive grid that can better manage fluctuations in supply and demand.

In addition to its technical benefits, the tunnel represents a significant investment in London’s future energy infrastructure, echoing calls to invest in smarter electricity infrastructure across North America and beyond. The project has created jobs and stimulated economic activity during its construction phase, and it will continue to provide long-term benefits by supporting a more efficient and resilient power system. The upgrade is part of a broader strategy to modernize the city’s infrastructure and prepare it for future energy challenges.

The completion of the tunnel also reflects a commitment to addressing the challenges of urban infrastructure development. Building such a major piece of infrastructure in a densely populated city like London requires careful planning and coordination to minimize disruption and ensure safety. The project team worked closely with local communities and businesses to manage the construction process and mitigate any potential impacts.

As London moves forward, the new electricity tunnel will play a crucial role in supporting the city’s energy needs. It will help ensure that power is delivered efficiently and reliably to homes, businesses, and essential services. The tunnel also sets a precedent for future infrastructure projects, demonstrating how advanced engineering and technology can address the demands of modern urban environments.

The successful activation of the tunnel marks a significant milestone in London’s efforts to build a more sustainable and resilient energy system. It represents a forward-thinking approach to managing the city’s energy infrastructure and addressing the challenges posed by population growth, increasing energy demands, and the need for cleaner energy sources.

Looking ahead, London will continue to invest in and upgrade its energy infrastructure to support its ambitious climate goals and ensure a reliable power supply for its residents, a trend mirrored by Toronto's preparations for surging demand as that city continues to grow. The new electricity tunnel is just one example of the city’s commitment to innovation and sustainability in its approach to energy management.

In summary, London’s newest electricity tunnel is a major advancement in the city’s power distribution network. By enhancing reliability, supporting the integration of renewable energy, and investing in long-term infrastructure, the tunnel plays a critical role in addressing the city’s energy needs and sustainability goals. As London continues to evolve, such infrastructure projects will be essential in meeting the demands of a growing metropolis and creating a more resilient and efficient energy system for the future.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified