How much does it cost to charge an electric vehicle? Here's what you can expect.


ev charging

High Voltage Maintenance Training Online

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Electric Vehicle Charging Costs and Times explain kWh usage, electricity rates, Level 2 vs DC fast charging, per-mile expense, and tax credits, with examples by region and battery size to estimate home and public charging.

 

Key Points

They measure EV charging price and duration based on kWh rates, charger level, efficiency, and location.

✅ Costs vary by kWh price, region, and charger type.

✅ Efficiency (mi/kWh) sets per-mile cost and range.

✅ Tax credits and utility rates impact total ownership.

 

More and more car manufacturing companies dip their toes in the world of electric vehicles every year, making it a good time to buy an EV for many shoppers, and the U.S. government is also offering incentives to turn the tides on car purchasing. Electric vehicles bought between 2010 and 2022 may be eligible for a tax credit of up to $7,500. 

And according to the Consumer Reports analysis on long-term ownership, the cost of charging an electric vehicle is almost always cheaper than fueling a gas-powered car – sometimes by hundreds of dollars.

But that depends on the type of car and where in the country you live, in a market many expect to be mainstream within a decade across the U.S. Here's everything you need to know.


How much does it cost to charge an electric car?
An electric vehicle’s fuel efficiency can be measured in kilowatt-hours per 100 miles, and common charging-efficiency myths have been fact-checked to correct math errors.

For example, if electricity costs 10.7 cents per kilowatt-hour, charging a 200-mile range 54-kWh battery would cost about $6. Charging a vehicle that consumes 27 kWh to travel 100 miles would cost three cents a mile. 

The national average cost of electricity is 10 cents per kWh and 11.7 cents per kWh for residential use. Idaho National Laboratory’s Advanced Vehicle Testing compares the energy cost per mile for electric-powered and gasoline-fueled vehicles.

For example, at 10 cents per kWh, an electric vehicle with an efficiency of 3 miles per kWh would cost about 3.3 cents per mile. The gasoline equivalent cost for this electricity cost would be just under $2.60 per gallon.

Prices vary by location as well. For example, Consumer Report found that West Coast electric vehicles tend to be less expensive to operate than gas-powered or hybrid cars, and are often better for the planet depending on local energy mix, but gas prices are often lower than electricity in New England.

Public charging networks in California cost about 30 cents per kWh for Level 2 and 40 cents per kWh for DCFC. Here’s an example of the cost breakdown using a Nissan LEAF with a 150-mile range and 40-kWh battery:

Level 2, empty to full charge: $12
DCFC, empty to full charge: $16

Many cars also offer complimentary charging for the first few years of ownership or provide credits to use for free charging. You can check the full estimated cost using the Department of Energy’s Vehicle Cost Calculator as the grid prepares for an American EV boom in the years ahead.


How long does it take to charge an electric car?
This depends on the type of charger you're using. Charging with a Level 1 charger takes much longer to reach full battery than a level 2 charger or a DCFC, or Direct Current Fast Charger. Here's how much time you can expect to spend charging your electric vehicle:

Related News

German steel powerhouse turns to 'green' hydrogen produced using huge wind turbines

Green Hydrogen for Steelmaking enables decarbonization in Germany by powering electrolyzers with wind turbines at Salzgitter. Partners Vestas, Avacon, and Linde support renewable hydrogen for iron ore reduction, cutting CO2 in heavy industry.

 

Key Points

Hydrogen from renewable-powered electrolysis replacing coal in iron ore reduction, cutting CO2 emissions from steelmaking

✅ 30 MW Vestas wind farm powers 2x1.25 MW electrolyzers.

✅ Salzgitter, Avacon, Linde link sectors to replace fossil fuels.

✅ Targets CO2 cuts in iron ore reduction and steel smelting.

 

A major green hydrogen facility in Germany has started operations, with those behind the project hoping it will help to decarbonize the energy-intensive steel industry in the years ahead. 

The "WindH2" project involves German steel giant Salzgitter, E.ON subsidiary Avacon and Linde, a firm specializing in engineering and industrial gases, and aligns with calls for hydrogen-ready power plants in Germany today.

Hydrogen can be produced in a number of ways. One method includes using electrolysis, with an electric current splitting water into oxygen and hydrogen, and advances in PEM hydrogen technology continue to improve efficiency worldwide.

If the electricity used in the process comes from a renewable source such as wind or solar, as underscored by recent German renewables gains, then it's termed "green" or "renewable" hydrogen.

The development in Germany is centered around seven new wind turbines operated by Avacon and two 1.25 megawatt (MW) electrolyzer units installed by Salzgitter Flachstahl, which is part of the wider Salzgitter Group. The facilities were presented to the public this week. 

The turbines, from Vestas, have a hub height of 169 meters and a combined capacity of 30 MW. All are located on premises of the Salzgitter Group, with three situated on the site of a steel mill in the city of Salzgitter, Lower Saxony, northwest Germany, where grid expansion woes can affect project timelines.

The hydrogen produced using renewables will be utilized in processes connected to the smelting of iron ore. Total costs for the project come to roughly 50 million euros (around $59.67 million), with the building of the electrolyzers subsidized by state-owned KfW, while a national net-zero roadmap could reduce electricity costs over time.

"Green gases have the wherewithal to become 'staple foodstuff' for the transition to alternative energies and make a considerable contribution to decarbonizing industry, mobility and heat," E.ON's CEO, Johannes Teyssen, said in a statement issued Thursday.

"The jointly realized project symbolizes a milestone on the path to virtually CO2 free production and demonstrates that fossil fuels can be replaced by intelligent cross-sector linking," he added.

According to the International Energy Agency, the iron and steel sector is responsible for 2.6 gigatonnes of direct carbon dioxide emissions each year, a figure that, in 2019, was greater than the direct emissions from sectors such as cement and chemicals. 

It adds that the steel sector is "the largest industrial consumer of coal, which provides around 75% of its energy demand."

The project in Germany is not unique in focusing on the role green hydrogen could play in steel manufacturing.

Across Europe, projects are also exploring natural gas pipe storage to balance intermittent renewables and enable sector coupling.

H2 Green Steel, a Swedish firm backed by investors including Spotify founder Daniel Ek, plans to build a steel production facility in the north of the country that will be powered by what it describes as "the world's largest green hydrogen plant."

In an announcement last month the company said steel production would start in 2024 and be based in Sweden's Norrbotten region.

Other energy-intensive industries are also looking into the potential of green hydrogen, and examples such as Schott's green power shift show parallel decarbonization. A subsidiary of multinational building materials firm HeidelbergCement has, for example, worked with researchers from Swansea University to install and operate a green hydrogen demonstration unit at a site in the U.K.

 

Related News

View more

New investment opportunities open up as Lithuania seeks energy independence

Lithuania Wind Power Investment accelerates renewable energy expansion with utility-scale wind farms, solar power synergies, streamlined permits, and grid integration to cut imports, boost energy independence, and align with EU climate policy.

 

Key Points

Lithuania Wind Power Investment funds wind projects to raise capacity, cut imports, and secure energy independence.

✅ 700-1000 MW planned across three wind farms over 3 years

✅ Simplified permitting and faster grid connections under new policy

✅ Supports EU climate goals and Lithuania's 2030 energy independence

 

The current unstable geopolitical situation is accelerating the European Union countries' investment in renewable energy, including European wind power investments across the region. After Russia launched war against Ukraine, the EU countries began to actively address the issues of energy dependence.

For example, Lithuania, a country by the Baltic Sea, imports about two-thirds of its energy from foreign countries to meet its needs, while Germany's solar boost underscores the region's shift. Following the start of the Russian invasion in Ukraine, the Lithuanian Government urgently submitted amendments to the documents regulating the establishment of wind and solar power plants to the Parliament for consideration.

One of Lithuania's priority goals is to accelerate the construction and development of renewable energy parks so that the country will achieve full energy independence in the next eight years, by 2030, mirroring Ireland's green electricity target in the near term. Lithuania is able to produce the amount of electricity that meets the country's needs.

Ramūnas Karbauskis, the owner of Agrokoncernas Group, one of the largest companies operating in the agricultural sector in the Baltic States, has no doubt that now is the best time to invest in the development of wind power plants in Lithuania. The group plans to build three wind farms over the next three years to generate a total of about 700-1000 MW of energy, and comparable projects like Enel's 450 MW wind farm illustrate the scale achievable. With such capacity, more than half a million residential buildings can be supplied with electricity.

According to Alina Adomaitytė, Deputy General Director of Agrokoncernas Group, the company plans to invest 1-1.4 billion Euros in wind power plants in three different regions of Lithuania.

"Lithuania is changing its policy by simplifying the procedure for the construction and development of wind and solar parks. This means that their construction time will be significantly shorter, unlike markets facing renewables backlogs causing delays. At present, the technologies have improved so much that such projects pay off quickly in market conditions," explains Adomaitytė.

Agrokoncernas Group plans to build wind farms on its own lands. This has the advantage of allowing more flexibility in planning construction and meeting the requirements for such parks.

"Lithuania is a very promising country for wind parks. It is a land of plains, and the Baltic Sea provides constant and sufficient wind power, and lessons from UK offshore wind show the potential for coastal regions. So far, there are not many such parks in Lithuania, and need for them is very high in order to achieve the goals of national energy independence," says the owner of the group.

According to Adomaitytė, until now the Agrokoncernas Group companies have specialized in agriculture, but now is a particularly favorable time to enter new business areas.

"We are open to investors. One of the strategic goals of our group is to contribute to the green energy revolution in Lithuania, which is becoming a strategic goal of the entire European Union, as seen in rising solar adoption in Poland across the region."

In addition to wind farms, Agrokoncernas Group is planning the construction of the most modern deep grain processing plant in Europe. This project is managed by Agrokoncernas GDP, a subsidiary of the group. The deep grain processing plant in Lithuania is to be built by 2026. It will operate on the principle of circular production, meaning that the plant will be environmentally friendly and there will be no waste in the production process itself.

 

Related News

View more

What to know about DOE's hydrogen hubs

U.S. Clean Hydrogen Hubs aim to scale production, storage, transport, and use as DOE and the Biden administration fund regional projects under the infrastructure law, blending green and blue hydrogen, carbon capture, renewables, and pipelines.

 

Key Points

Federally funded regional projects to make, move, and use low-carbon hydrogen via green, blue, and pink routes.

✅ $7B DOE funding via infrastructure law

✅ Mix of green, blue, pink hydrogen pathways

✅ Targets 10M metric tons annually by 2030

 

New details are emerging about the Biden administration’s landmark plans to build out a U.S. clean hydrogen industry.

On Friday, the Department of Energy named the seven winners of $7 billion in federal funds to establish regional hydrogen hubs. The hubs — funded through the infrastructure law — are part of the administration’s efforts to jump-start an industry it sees as key to achieving climate goals like the goal of 100 percent clean electricity by 2035 set by the administration. The aim is to demonstrate everything from the production and storage of hydrogen to its transport and consumption.

“All across the country, from coast to coast, in the heartland, we’re building a clean energy future here in America, not somewhere else,” President Joe Biden said while announcing the hubs in Philadelphia.

From 79 initial proposals, DOE chose the following: the Mid-Atlantic Hydrogen Hub, Appalachian Hydrogen Hub, California Hydrogen Hub, Gulf Coast Hydrogen Hub, Heartland Hydrogen Hub, Midwest Hydrogen Hub and Pacific Northwest Hydrogen Hub.

Many of the winning proposals are backed by state government leaders and industry partners, and by Southeast cities that have ramped up clean energy purchases in recent years as well. The Midwest hub, for example, is a coalition of Illinois, Indiana and Michigan — supported by politicians like Illinois Gov. J.B. Pritzker (D), as well as such companies as Air Liquide, Ameren Illinois and Atlas Agro. The mid-Atlantic hub is supported by Democratic members of Congress representing the region, including Delaware Sens. Chris Coons and Tom Carper and Rep. Lisa Blunt Rochester.

The administration hopes the hubs will produce 10 million metric tons of “clean” hydrogen annually by 2030. But much about the projects remains unknown — including how trends like cheap batteries for solar could affect clean power supply — and dependent on negotiations with DOE.


A win for ‘blue’ hydrogen?
Nearly all hydrogen created in the U.S. today is extracted from natural gas through steam methane reformation. The emissions-intensive process produces what is known as “grey” hydrogen — or “blue” hydrogen when combined with carbon capture and storage.

Four recipients — the Appalachian, Gulf Coast, Heartland and Midwest hydrogen hubs — include blue hydrogen in their plans, though the infrastructure law only mandated one.

That has drawn the ire of environmentalists, who argue blue hydrogen is not emissions-free, partly because of the potential for methane leaks during the production process.

“This is worse than expected,” Clean Energy Group President Seth Mullendore said after the recipients were announced Friday. “The fact that more than half the hubs will be using fossil gas is outrageous.”

Critics have also pointed out that many of the industry partners backing the hub projects include oil and gas companies. The coalitions are a mix of private-sector groups — often including renewable energy developers — and government stakeholders. Proposals have also looped in universities, utilities, environmental groups, community organizations, labor unions and tribal nations, among others.

“The massive build out of hydrogen infrastructure is little more than an industry ploy to rebrand fracked gas,” said Food & Water Watch Policy Director Jim Walsh in a statement Friday. “In a moment when every political decision that we make must reject fossil expansion, the Biden administration is going in the opposite direction.”

The White House has emphasized that roughly two-thirds of the $7 billion pot is “associated” with the production of “green” hydrogen, which uses electricity from renewable sources. Two of the chosen proposals — in California and the Pacific Northwest — are making green hydrogen their focus, reflecting advances such as offshore green hydrogen being pursued by industry leaders, while three other hubs plan to include green hydrogen alongside hydrogen made with natural gas (blue) or nuclear energy (pink).

Many hubs plan to use several methods for hydrogen production, and globally, projects like Brazil's green hydrogen plant highlight the scale of investment, but the exact mix may change depending on which projects make it through the DOE negotiations process. The Midwest hub, for example, told E&E News it’s pursuing an “all-of-the-above” strategy and has projects for green, blue and “pink” hydrogen. The mid-Atlantic hub in southeastern Pennsylvania, Delaware and New Jersey will also generate hydrogen with nuclear reactors.

Energy Secretary Jennifer Granholm has described clean hydrogen as a fresh business opportunity, especially for the natural gas industry, which has supported the concept of sending hydrogen to market through its pipeline network. Lawmakers like Sen. Joe Manchin (D-W.Va.) — who said the Appalachian hub will make West Virginia the “new epicenter of hydrogen” — have pushed for continuing to use natural gas to make hydrogen in his state.

“Natural gas utilities are committed to exploring all options for emissions reduction as demonstrated by the 39 hydrogen pilot projects already underway and are eager to participate in a number of the hubs,” said American Gas Association President and CEO Karen Harbert in a statement Friday.

Green hydrogen also has faced criticism. Some groups argue that the renewable resources needed to produce green hydrogen are limited, even with sources such as wind, solar and hydropower technology, so funding should be reserved for applications that cannot be easily electrified, mostly industrial processes. There also is uncertainty about how the Treasury Department will handle hydrogen made from grid electricity — which can include power from fossil fuel plants — in its upcoming guidance on the first-ever tax credit for clean hydrogen production.

“Even the cleanest forms of hydrogen present serious problems,” Walsh said. “As groundwater sources are drying up across the country, there is no reason to waste precious drinking water resources on hydrogen when there are cheaper, cleaner energy sources that can facilitate a real transition off fossil fuels.”

But Angelina Galiteva, CEO of the hub in drought-prone California, said hydrogen will enable the state “to increase renewable penetration to reach all corners of the economy,” noting parallel initiatives such as Dubai's solar hydrogen plans that illustrate the potential.

“Transitioning to renewable clean hydrogen will pose significantly less stress on water resources than remaining on the current fossil path,” she said.

 

Related News

View more

Is residential solar worth it?

Home Solar Cost vs Utility Bills compares electricity rates, ROI, incentives, and battery storage, explaining payback, financing, and grid fees while highlighting long-term savings, rate volatility, and backup power resilience for homeowners.

 

Key Points

Compares home solar pricing and financing to utility rates, outlining savings, incentives, ROI, and backup power value.

✅ Average retail rates rose 59% in 20 years; volatility persists

✅ Typical 7.15 kW system costs $18,950 before incentives

✅ Federal ITC and state rebates improve ROI and payback

 

When shopping for a home solar system, sometimes the quoted price can leave you wondering why someone would move forward with something that seems so expensive. 

When compared with the status quo, electricity delivered from the utility, the price may not seem so high after all. First, pv magazine will examine the status quo, and how much you can expect to pay for power if you don’t get solar panels. Then, we will examine the average cost of solar arrays today and introduce incentives that boost home solar value.

The cost of doing nothing

Generally, early adopters have financially benefited from going solar by securing price certainty and stemming the impact of steadily increasing utility-bill costs, particularly for energy-insecure households who pay more for electricity.

End-use residential electric customers pay an average of $0.138/kWh in the United States, according to the Energy Information Administration (EIA). In California, that rate is $0.256/kWh, it averages $0.246/kWh across New England, $0.126/kWh in the South Atlantic region, and $0.124/kWh in the Mountain West region.

EIA reports that the average home uses 893 kWh per month, so based on the average retail rate of $0.138/kWh, that’s an electric bill of about $123 monthly, or $229 monthly in California.

Over the last 20 years, EIA data show that retail electricity prices have increased 59% across the United States, with evidence indicating that renewables are not making electricity more expensive, suggesting other factors have driven costs higher, or 2.95% each year.

This means based on historical rates, the average US homeowner can expect to pay $39,460 over the next 20 years on electricity bills. On average, Californians could pay $73,465 over 20 years.

Recent global events show just how unstable prices can be for commodities, and energy is no exception here, with solar panel sales doubling in the UK as homeowners look to cut soaring bills. What will your utility bill cost in 20 years?

These estimated bills also assume that energy use in the home is constant over 20 years, but as the United States electrifies its homes, adds more devices, and adopts electric vehicles, it is fair to expect that many homeowners will use more electricity going forward.

Another factor that may exacerbate rate raising is the upgrade of the national transmission grid. The infrastructure that delivers power to our homes is aging and in need of critical upgrades, and it is estimated that a staggering $500 billion will be spent on transmission buildout by 2035. This half-trillion-dollar cost gets passed down to homeowners in the form of raised utility bill rates.

The benefit of backup power may increase as time goes on as well. Power outages are on the rise across the United States, and recent assessments of the risk of power outages underscore that outages related to severe weather events have doubled in the last 20 years. Climate change-fueled storms are expected to continue to rise, so the role of battery backup in providing reliable energy may increase significantly.

The truth is, we don’t know how much power will cost in 20 years. Though it has increased 59% across the nation in the last 20 years, there is no way to be certain what it will cost going forward. That is where solar has a benefit over the status quo. By purchasing solar, you are securing price certainty going forward, making it easier to budget and plan for the future.

So how do these costs compare to going solar?

Cost of solar

As a general trend, prices for solar have fallen. In 2010, it cost about $40,000 to install a residential solar system, and since then, prices have fallen by as much as 70%, and about 37% in the last five years. However, prices have increased slightly in 2022 due to shipping costs, materials costs, and possible tariffs being placed on imported solar goods, and these pressures aren’t expected to be alleviated in the near-term.

When comparing quotes, the best metric for an apples-to-apples comparison is the cost per watt. Price benchmarking by the National Renewable Energy Laboratory shows the average cost per watt for the nation was $2.65/W DC in 2021, and the average system size was 7.15 kW. So, an average system would cost about $18,950. With 12.5 kWh of battery energy storage, the average cost was $4.26/W, representing an average price tag of $30,460 with batteries included.

The prices above do not include any incentives. Currently, the federal government applies a 26% investment tax credit to the system, bringing down system costs for those who qualify to $14,023 without batteries, and $22,540 with batteries. Compared to the potential $39,460 in utility bills, buying a solar system outright in cash appears to show a clear financial benefit.

Many homeowners will need financing to buy a solar system. Shorter terms can achieve rates as low as 2.99% or less, but financing for a 20-year solar loan typically lands between 5% to 8% or more. Based on 20-year, 7% annual percentage rate terms, a $14,000 system would total about $26,000 in loan payments over 20 years, and the system with batteries included would total about $42,000 in loan payments.

Often when you adopt solar, the utility will still charge you a grid access fee even if your system produces 100% of your needs. These vary from utility to utility but are often around $10 a month. Over 20 years, that equates to about $2,400 that you’ll still need to pay to the utility, plus any costs for energy you use beyond what your system provides.

Based on these average figures, a homeowner could expect to see as much as $12,000 in savings with a 20-year financed system. Homeowners in regions whose retail energy price exceeds the national average could see savings in multiples of that figure.

Though in this example batteries appear to be marginally more expensive than the status quo over a 20-year term, they improve the home by adding the crucial service of backup power, and as battery costs continue to fall they are increasingly being approved to participate in grid services, potentially unlocking additional revenue streams for homeowners.

Another thing to note is most solar systems are warranted for 25 years rather than the 20 used in the status quo example. A panel can last a good 35 years, and though it will begin to produce less in old age, any power produced by a panel you own is money back in your pocket.

Incentives and home value

Many states have additional incentives to boost the value of solar, too, and federal proposals to increase solar generation tenfold could remake the U.S. electricity system. Checking the Database of State Incentives for Renewables (DSIRE) will show the incentives available in your state, and a solar representative should be able to walk you through these benefits when you receive a quote. State incentives change frequently and vary widely, and in some cases are quite rich, offering thousands of dollars in additional benefits.

Another factor to consider is home value. A study by Zillow found that solar arrays increase a home value by 4.1% on average. For a $375,000 home, that’s an increase of $15,375 in value. In most states home solar is exempt from property taxes, making it a great way to boost value without paying taxes for it.

Bottom line

We’ve shared a lot of data on national averages and the potential cost of power going forward, but is solar for you? In the past, early adopters have been rewarded for going solar, and celebrate when they see $0 electric bills paid to the utility company.

Each home is different, each utility is different, and each homeowner has different needs, so evaluating whether solar is right for your home will take a little time and analysis. Representatives from solar companies will walk you through this analysis, and it’s generally a good rule of thumb to get at least three quotes for comparison.

A great resource for starting your research is the Solar Calculator developed by informational site SolarReviews. The calculator offers a quote and savings estimate based on local rates and incentives available to your area. The website also features reviews of installers, equipment, and more.

Some people will save tens of thousands of dollars in the long run with solar, while others may witness more modest savings. Solar will also provide the home clean, local energy, and U.S. solar generation is projected to reach 20% by 2050 as capacity expands, making an impact both on mitigating climate change and in supporting local jobs.

One indisputable benefit of solar is that it will offer greater clarity into what your electricity bills will cost over the next couple of decades, rather than leaving you exposed to whatever rates the utility company decides to charge in the future.

 

Related News

View more

The N.L. government is pushing the electric car but Labrador's infrastructure is lagging behind

Labrador EV Charging Infrastructure faces gaps, with few fast chargers; Level 2 dominates, fueling range anxiety for Tesla and Chevrolet Bolt drivers, despite rebates and Newfoundland's network linking St. John's to Port aux Basques.

 

Key Points

It refers to the current and planned network of Level 2 and Level 3 charging sites across Labrador.

✅ 2 public Level 2 chargers: Happy Valley-Goose Bay and Churchill Falls

✅ Phase 2: 3 fast chargers planned for HV-GB, Churchill Falls, Labrador City

✅ $2,500 rebates offered; rural range anxiety still deters buyers

 

Retired pilot Allan Carlson is used to crossing Labrador by air.

But he recently traversed the Big Land in an entirely new way, driving for hours on end in his electric car.

The vehicle in question is a Tesla Model S P100D, which Carlson says he can drive up to 500 kilometres on a full charge — and sometimes even a little more.

After catching a ferry to Blanc-Sablon, Que., earlier this month, he managed to reach Happy Valley-Goose Bay, over 600 kilometres away.

To get there, though, he had to use the public charging station in Blanc-Sablon. He also had to push the limits of what his car could muster. 

But more affordable mass-market electric vehicles don't have the battery power of a top-of-the-range Tesla, prompting the Big Land's first EV owner to wonder when Labrador infrastructure will catch up to the high-speed charging network recently unveiled across Newfoundland this summer.

Phillip Rideout, an electrician who lives in Nain, bought a Chevrolet Bolt EV for his son — the range of which tops out at under 350 kilometres, depending on driving patterns and weather conditions.

He's comfortable driving the car within Nain but said he's concerned about traveling to southern Labrador on a single charge.

"It's a start in getting these 14 charging stations across the island," Rideout said of Newfoundland's new network, "but there is still more work to be done."

The provincial government continues to push an electric-vehicle future, however, even as energy efficiency rankings trail the national average, despite Labradorians like Rideout feeling left out of the loop.

Bernard Davis, minister of environment and climate change, earlier this month announced that government is accepting applications for its electric-vehicle rebate program, as the N.W.T. EV initiative pursues similar goals.

Under the $500,000 program, anyone looking to buy a new or used EV would be entitled to $2,500 in rebates, an attempt by the provincial government to increase EV adoption.

But according to a survey conducted this year by polling firm Leger for the Canadian Vehicle Manufacturer's Association, 51 per cent of rural Canadians found a lack of fast-charging public infrastructure to be a major deterrent to buying an electric car, even as Atlantic EV interest lags overall, according to recent data.

While Newfoundland's 14-charger network, operated by N.L. Hydro and Newfoundland Power, allows drivers to travel from St. John's to Port aux Basques, and 10 new fast-charging stations are planned along the Trans-Canada in New Brunswick, Labrador in contrast has just two publicly available charging locations: one at the YMCA in Happy Valley-Goose Bay and the other near the town office of Churchill Falls.

This is the proposed second phase of additional Level 2 and Level 3 charging locations across Labrador. (TakeChargeNL)
These are slower, Level 2 chargers, as opposed to newer Level 3 charging stations on the island. A Level 2 system averages 50 kilometres of range per hour, and a Level 3 systems can add up to 250 kilometres within the same time frame, making them about five times faster.

Even though all of the fast-charging stations have gone to Newfoundland, MHA for Lake Melville Perry Trimper is optimistic about Labrador's electric future.

Trimper has owned an EV in St. Johns since 2016, but told CBC he'd be comfortable driving it in Happy Valley-Goose Bay.

He acknowledged, however, that prospective owners in Labrador might not be able to drive far from their home charging outlet. 

More promises
If rural skepticism driven by poor infrastructure continues, the urban population could lead the way in adoption, allowing the new subsidies to disproportionately go toward larger population centres, Davis acknowledged.

"Obviously people are not going to purchase electric vehicles if they don't believe they can charge them where they want to be or where they want to go," Davis said in an interview in early September.

Under the provincial government's Phase 2 proposal, Newfoundland and Labrador is projected to get 19 charging stations, with three going to Labrador in Happy Valley-Goose Bay, Churchill Falls and Labrador City, taking cues from NB Power's public network in building regional coverage.

Davis would not commit to a specific cutoff period for the rebate program or a timeline for the first fast-charging stations in Labrador to be built.

"At some point, we are not going to need to place any subsidy on electric vehicles," he said, "but that time is not today and that's why these subsidies are important right now."

Future demand 
Goose Bay Motors manager Joel Hamlen thinks drivers in Labrador could shift away from gas vehicles eventually, even as EV shortages and wait times persist.

But he says it'll take investment into a charging network to get there.

"If we can get something set up where these people can travel down the roads and use these vehicles in the province … I am sure there will be even more of a demand," Hamlen said.

 

Related News

View more

UK leads G20 for share of electricity sourced from wind

UK Wind Power Leadership in 2020 highlights record renewable energy growth, G20-leading wind share, rapid coal phase-out, and rising solar integration, advancing decarbonization targets under the Paris Agreement and momentum ahead of COP26.

 

Key Points

The UK led the G20 in wind power share in 2020, displacing coal, expanding solar, and cutting power-sector emissions.

✅ G20-leading wind share; second for combined wind and solar

✅ Fastest coal decline among G20 from 2015 to 2020

✅ Emissions risk rising as post-pandemic demand returns

 

Nearly a quarter of the UK’s electricity came from wind turbines in 2020 – making the country the leader among the G20 for share of power sourced from the renewable energy, a new analysis finds.

The UK also moved away from coal power at a faster rate than any other G20 country from 2015 to 2020, according to the results.

And it ranked second in the G20, behind Germany, for the proportion of electricity sourced from both wind and solar in 2020, after first surpassing coal in 2016.

“It’s crazy how much wind power has grown in the UK and how much it has offset coal, and how it’s starting to eat at gas,” Dave Jones, Ember’s global lead analyst, told The Independent.

But it is important to bear in mind that “we’re only doing a great job by the standards of the rest of the world”, he added, noting that low-carbon generation stalled in 2019 in the UK.

Ember’s Global Electricity Review notes that the world’s power sector emissions were two per cent higher in 2020 than in 2015 – the year that countries agreed to slash their greenhouse gas pollution as part of the Paris Agreement.

Power generated from coal fell by a record amount from 2019 to 2020, the analysis finds. However, this decline was greatly facilitated by lockdowns introduced to stop the spread of Covid-19, as global electricity demand was temporarily stifled before rebounding, the analysts say.

Coal is the most polluting of the fossil fuels. The UK government hopes to convince all countries to stop building new coal-fired power stations at Cop26, a climate conference that is to be held in Glasgow later this year.

UN chief Antonio Guterres has also called for all countries to end their “deadly addiction to coal”.

At a summit held earlier this month, he described ending the use of coal in electricity generation as the “single most important step” to meeting the Paris Agreement’s goal of limiting global warming to well below 2C above pre-industrial levels by 2100.

“There is definitely a concern that, in the pandemic year of 2020, coal hasn’t fallen as fast as it needed to,” said Mr Jones, even as the UK set coal-free power records recently.

“There is concern that, once electricity demand returns, we won’t be seeing that decline in coal anymore.”

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.