NorthWestern to have energy storage system

By Mass High Tech Business News


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Beacon Power Corp. has reached an agreement to build its first energy storage system for a utility customer, the company said.

The Tyngsborough-based company, a maker of “flywheel” power storage systems, said it will build a 1-megawatt storage system for NorthWestern Energy in Montana, expected to be operational by the end of the year.

The flywheel systems provide frequency regulation service, which helps to stabilize the electric grid by balancing power supply levels during moment-to-moment variations in demand.

Beacon Power has built its other energy storage facilities for grid operators in New York and Massachusetts. The Montana project is “the first tangible result of the second part of our business model, the sale or lease of plants and systems to vertically integrated utilities, i.e., those that must self-provide frequency regulation,” Beacon spokesman Gene Hunt wrote in an email.

NorthWestern Energy will lease the system from Beacon for $500,000 for the first 15 months and for the same amount for future 15-month terms. NorthWestern also has the option to buy the facility for $4 million at any point, Beacon said.

The facility will be located on the site of the Mill Creek Generating Station, a gas-fired regulating reserve plant owned by NorthWestern Energy in Anaconda, Mont.

Related News

Omnidian Acquires Australia's Solar Service Guys to Expand Global Reach

Omnidian Acquisition of Solar Service Guys accelerates global expansion in renewable energy, enhancing solar maintenance and remote monitoring across Australia and the U.S., boosting performance management, uptime, and ROI for residential and commercial systems.

 

Key Points

Omnidian acquired Solar Service Guys to expand in Australia, unifying O&M and monitoring to boost solar performance.

✅ Expands Omnidian into Australia's high-adoption solar market.

✅ Integrates largest Aussie solar service network for O&M scaling.

✅ Enhances remote monitoring, uptime, and ROI for PV owners.

 

In a strategic move aimed at boosting its presence in the global renewable energy market, Seattle-based Omnidian has announced the acquisition of Australia's Solar Service Guys. This acquisition marks a significant step in Omnidian's expansion into Australia, one of the world’s leading solar markets, and is expected to reshape the landscape of solar panel services both in the U.S. renewables market and abroad.

Founded in 2018, Omnidian is a rapidly growing startup that specializes in managing the performance of solar power systems, ensuring they continue to operate efficiently and effectively. The company provides maintenance services for both residential and commercial solar installations, including in Washington where Avista's largest solar array highlights growing scale, and its proprietary software remotely monitors solar systems to identify any performance issues. By quickly addressing these problems, Omnidian helps customers maximize the energy output of their systems, reducing downtime and increasing the return on investment in solar power.

The company’s acquisition of Solar Service Guys, Australia’s largest solar service network, is a clear indication of its ambition to dominate the renewable energy sector globally, amid consolidation trends like TotalEnergies' VSB acquisition across Europe, that signal accelerating scale. The Australian company, which has been operational since 2006, has built a strong reputation for providing high-quality solar panel services across the country. By integrating Solar Service Guys into its operations, Omnidian plans to leverage the Australian company’s deep industry expertise and established network to extend its service offerings into Australia’s solar market.

The acquisition could not come at a better time. Australia, with its vast sun-drenched landscapes, is one of the world’s leaders in solar energy adoption per capita, even as markets like Canada's solar lag persist by comparison. The country has long been at the forefront of renewable energy development, and this acquisition presents a significant opportunity for Omnidian to tap into a booming market where solar power is increasingly seen as a primary energy source.

With the deal now finalized, Solar Service Guys will operate as a fully integrated subsidiary of Omnidian. The merger will not only strengthen Omnidian’s service capabilities but will also enhance its ability to provide comprehensive solutions to solar system owners, ensuring their panels perform at peak efficiency over their lifetime. This is particularly important as solar energy continues to grow in popularity, with more residential and commercial properties opting for solar installations as a means to lower energy costs and reduce their carbon footprints.

The acquisition also underscores the growing importance of solar energy maintenance services. As the adoption of solar panels continues to rise globally, including in Europe where demand for U.S. solar gear is strengthening, the need for ongoing monitoring and maintenance is becoming increasingly vital. Solar energy systems, while relatively low-maintenance, do require periodic checks to ensure they are functioning optimally. Omnidian’s software-based approach to remotely detecting performance issues allows the company to quickly identify and address potential problems before they become costly or result in significant energy loss.

By expanding its reach into Australia, Omnidian can now offer its services to an even broader customer base, positioning itself as a key player in the renewable energy market. The Australian solar market is projected to continue its growth trajectory, with many homeowners and businesses in the country looking to make the switch to solar power in the coming years.

In addition to expanding its geographic footprint, Omnidian’s acquisition of Solar Service Guys aligns with its broader mission to support the global transition to renewable energy. As governments worldwide push for cleaner energy alternatives and new projects like a U.S. clean energy factory accelerate domestic supply chains, companies like Omnidian are playing an essential role in making solar power a more reliable and sustainable option for consumers.

With the backing of Solar Service Guys’ extensive network and experience, Omnidian is poised to deliver even greater value to its customers, as industry transactions like Canadian Solar's plant sale underscore active market realignment. The acquisition will also help the company strengthen its technological capabilities, improve its service offerings, and accelerate its mission to create a more sustainable energy future.

As Omnidian continues to grow, the company’s success will likely serve as a model for other startups in the renewable energy sector. By focusing on performance management, expanding its service offerings, and leveraging cutting-edge technology, Omnidian is well-positioned to lead the way in the next generation of solar energy solutions. The future looks bright for Omnidian, and with this acquisition, it is well on its way to becoming a dominant force in the global solar market.

Omnidian’s acquisition of Solar Service Guys marks a significant milestone in the company’s quest to revolutionize the renewable energy industry. By expanding into Australia and enhancing its service capabilities, Omnidian is not only strengthening its position in the market but also contributing to the global push for cleaner, more sustainable energy solutions. As the world continues to embrace solar power, companies like Omnidian will be essential in ensuring that solar systems operate at peak efficiency, helping customers maximize the benefits of their investment in renewable energy.

 

Related News

View more

California Legislators Prepare Vote to Crack Down on Utility Spending

California Utility Spending Bill scrutinizes how ratepayer funds are used by utilities, targeting lobbying, advertising, wildfire prevention cost pass-throughs, and CPUC oversight to curb high electricity bills and increase accountability and transparency statewide.

 

Key Points

Legislation restricting utilities from using ratepayer money for lobbying and ads, with stronger CPUC oversight.

✅ Bans ratepayer-funded lobbying and political advertising

✅ Expands prohibited utility communications and influence spending

✅ Aims to curb bills, boost transparency, and CPUC accountability

 

California's legislators are about to vote on a bill that would impose stricter regulations on how utility companies spend the money they collect from ratepayers. This legislation directly responds to the growing discontent among Californians who are already grappling with high electricity bills, as Californians ask why electricity prices are soaring amid wildfire prevention efforts.

Consumer rights groups have been vehemently critical of how utilities have been allocating customer funds, amid growing calls for regulatory action from state officials. They allege that a substantial portion of this money is being funnelled into lobbying efforts and advertising campaigns that yield no direct benefits for the customers themselves.

The proposed bill would significantly broaden the definition of what constitutes prohibited advertising and political influence activities on the part of utility companies, separate from income-based fixed electricity charges proposals that affect rate design. This would effectively restrict the ways in which utilities can utilize customer funds for such purposes.

While consumer advocacy groups have favored the legislation, it has drawn opposition from utility companies and some labor unions, as lawmakers weigh overturning income-based utility charges in parallel debates. Opponents contend that it would hinder utilities' ability to communicate effectively with their customers and advocate for their interests. Additionally, they express concerns that the bill could result in job losses within the utility sector.

The vote on the bill is expected to take place on Monday. The outcome of the vote is uncertain, but it is sure to be a closely watched development for Californians struggling with the burden of high electricity bills, with many wondering about major changes to their electric bills in the near term.

 

California's Electricity Rates: A Burden for Residents

A recent report by the California Public Utilities Commission (CPUC) revealed that the average Californian household spends a significantly higher amount on electricity compared to the national average. This disparity in electricity rates can be attributed to a number of factors, including the financial costs associated with wildfire prevention measures, investments in renewable energy infrastructure, and maintenance of aging electrical grids, even as the state considers revamping electricity rates to clean the grid.

 

Examples of Utility Company Spending that Raise Concerns

Consumer rights groups have specifically highlighted instances where utility companies have used customer money to fund lavish executive compensation packages, sponsor professional sports teams, and finance political campaigns. They argue that these expenditures do not provide any tangible benefits to ratepayers and should not be funded through customer bills.

 

The Need for Accountability and Prioritization

Proponents of the bill believe that the legislation is necessary to ensure that utility companies are held accountable for how they spend customer funds. They believe that the stricter regulations would compel utilities to prioritize investments that directly improve the quality and reliability of electricity services for Californians, alongside discussions of income-based flat-fee utility bills that could reshape rate structures.

The impending vote on the bill underscores the ongoing tension between the need for reliable electricity services and the desire to keep utility rates affordable for Californians. The outcome of the vote is likely to have a significant impact on how utility companies operate in the state and how much Californians pay for their electricity.

 

Related News

View more

Here are 3 ways to find out where your electricity comes from

US energy mix shows how the electric grid blends renewables, fossil fuels, nuclear, and hydro, varying by ISO/RTO markets, utilities, and state policies, affecting carbon emissions, pricing, reliability, and access.

 

Key Points

The US energy mix is the grid's source breakdown by region: fossil fuels, renewables, nuclear, and hydro.

✅ Check ISO or RTO dashboards for real-time generation by fuel source.

✅ Utilities may offer green power plans or RECs at modest premiums.

✅ Energy mix shifts with policy, pricing, and grid reliability needs.

 

There are few resources more important than energy. Sure, you may die if you don't eat for days. But your phone will die if you go too long without charging it. Energy feeds tech, the internet, city infrastructure, refrigerators, lights, and has evolved throughout U.S. history in profound ways. You get the idea. Yet unlike our other common needs, such as food, energy sources aren't exactly front of mind for most people. 

"I think a lot of people don't put a lot of bandwidth into thinking about this part of their lives," said Richard McMahon, the SVP of energy supply and finance at Edison Electric Institute, a trade group that represents investor-owned electric companies in the US. 

It makes sense. For most Americans, electricity is always there, and in many locations, there's not much of a choice involved, even as electricity demand is flat across the U.S. today. You sign up with a utility when you move into a new residence and pay your bills when they're due. 

But there's an important reality that indifference eschews: In 2018, a third of the energy-related carbon-dioxide emissions in the US came from the electric power sector, according to the US Energy Information Administration (EIA). 

A good chunk of that is from the residential sector, which consistently uses more energy than commercial customers, per EIA data.

Just as many people exercise choice when they eat, you typically also have a choice when it comes to your energy supply. That's not to say your current offering isn't what you want, or that switching will be easy or affordable, but "if you're a customer and want power with a certain attribute," McMahon said, "you can pretty much get it wherever you are." 

But first, you need to know the energy mix you have right now. As it turns out, it's not so straightforward. At all.

This brief guide may help. 

For some utility providers, you can find out if it publishes the energy mix online. Dominion Energy, which serves Idaho, North Carolina, Ohio, South Carolina, Utah, Virginia, West Virginia, and Wyoming, provides this information in a colored graphic. 

"Once you figure out who your utility is you can figure out what mix of resources they use," said Heidi Ratz, an electricity markets researcher at the World Resources Institute.

But not all utilities publish this information.

It has to do with their role in the grid and reflects utility industry trends in structure and markets. Some utility companies are vertically integrated; they generate power through nuclear plants or wind farms and distribute those electrons directly to their customers. Other utilities just distribute the power that different companies produce. 

Consider Consolidated Edison, or Con Ed, which distributes energy to parts of New York City. While reporting this story, Business Insider could not find information about the utility's energy mix online. When reached for comment, a spokesperson said, "we're indifferent to where it comes from."

That's because, in New York, distribution utilities like Con Ed often buy energy through a wholesale marketplace.

Take a look at this map. If you live in one of the colored regions, your electricity is sold on a wholesale market regulated by an organization called a regional transmission organization (RTO) or independent system operator (ISO). Distribution utilities like Con Ed often buy their energy through these markets, based on availability and cost, while raising questions about future utility revenue models as prices shift. 

Still, it's pretty easy to figure out where your energy comes from. Just look up the ISO or RTO website (such as NYISO or CAISO). Usually, these organizations will provide energy supply information in near-real time. 

That's exactly what Con Edison (which buys energy on the NYISO marketplace) suggested. As of Friday morning, roughly 40% of the energy on the market place was natural gas or other fossil fuels, 34% was nuclear, and about 22% was hydro. 

If you live in another region governed by an ISO or RTO, such as in most of California, you can do the same thing. Like NYISO, CAISO has a dashboard that shows (again, as of Friday morning) about 36% of the energy on the market comes from natural gas and more than 20% comes from renewables. 

In the map linked above, you'll notice that some of the ISOs and RTOs like MISO encompass enormous regions. That means that even if you figure out where the energy in your market comes from, it's not going to be geographically specific. But there are a couple of ways to drill down even further. 

The Environmental Protection Agency has a straightforward tool called Power Profiler. You can enter your zip code to see the fuel mix in your area. But it's not perfect. The data are from 2016 and, in some regions of the country like the upper Midwest, they aren't much more localized, and some import dirty electricity due to regional trading. 

The World Resources Institute also has a tool that allows you to see the electricity mix by state, based on 2017 data from EIA. These numbers represent power generation, not the electricity actually flowing into your sockets, but they offer a rough idea of what energy resources are operating in your state. 

One option is to check with your utility to see if it has a "green power" offering. Over 600 utilities across the country have one, according to the Climate Reality Project, though they often come at a slightly higher cost. It's typically on the scale of just a few more cents per kilowatt-hour. 

There are also independent, consumer-facing companies like Arcadia and Green Mountain Energy that allow you to source renewable energy, by virtually connecting you to community solar projects or purchasing Renewable Energy Certificates, or RECs, on your behalf, as America goes electric and more options emerge. 

"RECs measure an investment in a clean energy resource," Ratz said, in an email. "The goal of putting that resource on the grid is to push out the need for dirtier resources."

The good news: Even if you do nothing, your energy mix will get cleaner. Coal production has fallen to lows not seen since the 1980s, amid disruptions in coal and nuclear sectors that affect reliability and costs, while renewable electricity generation has doubled since 2008. So whether you like it or not, you'll be roped into the clean energy boom one way or another. 

 

Related News

View more

America Going Electric: Dollars And Sense

California Net Zero Grid Investment will fuel electrification, renewable energy buildout, EV adoption, and grid modernization, boosting utilities, solar, and storage, while policy, IRA incentives, and transmission upgrades drive reliability and long-term rate base growth.

 

Key Points

Funding to electrify sectors and modernize the grid, scaling renewables, EVs, and storage to meet 2045 net zero goals.

✅ $370B over 22 years to meet 2045 net zero target

✅ Utilities lead gains via grid modernization and rate base growth

✅ EVs, solar, storage scale; IRA credits offset costs

 

$370 billion: That’s the investment Edison International CEO Pedro Pizarro says is needed for California’s power grid to meet the state’s “net zero” goal for CO2 emissions by 2045.

Getting there will require replacing fossil fuels with electricity in transportation, HVAC systems for buildings and industrial processes. Combined with population growth and data demand potentially augmented by artificial intelligence, that adds up to an 82 percent increase in electricity demand over 22 years, or 3 percent annually, and a potential looming shortage if buildout lags.

California’s plans also call for phasing out fossil fuel generation in the state, despite ongoing dependence on fossil power during peaks. And presumably, its last nuclear plant—PG&E Corp’s (PCG) Diablo Canyon—will be eventually be shuttered as well. So getting there also means trebling the state’s renewable energy generation and doubling usage of rooftop solar.

Assuming this investment is made, it’s relatively easy to put together a list of beneficiaries. Electric vehicles hit 20 percent market share in the state in Q2, even as pandemic-era demand shifts complicate load forecasting. And while competition from manufacturers has increased, leading manufacturers like Tesla TSLA -3% Inc (TSLA) can look forward to rising sales for some time—though that’s more than priced in for Elon Musk’s company at 65 times expected next 12 months earnings.

In the past year, California regulators have dialed back net metering through pricing changes affecting compensation, a subsidy previously paying rooftop solar owners premium prices for power sold back to the grid. That’s hit share prices of SunPower Corp (SPWR) and Sunrun Inc (RUN) quite hard, by further undermining business plans yet to demonstrate consistent profitability.

Nonetheless, these companies too can expect robust sales growth, as global prices for solar components drop and Inflation Reduction Act tax credits at least somewhat offset higher interest rates. And the combination of IRA tax credits and U.S. tariff walls will continue to boost sales at solar manufacturers like JinkoSolar Holding (JKS).

The surest, biggest beneficiaries of California’s drive to Net Zero are the utilities, reflecting broader utility trends in grid modernization, with investment increasing earnings and dividends. And as the state’s largest pure electric company, Edison has the clearest path.

Edison is currently requesting California regulators OK recovery over a 30-year period of $2.4 billion in losses related to 2017 wildfires. Assuming a amicable decision by early next year, management can then turn its attention to upgrading the grid. That investment is expected to generate long-term rate base growth of 8 percent at year, fueling 5 to 7 percent annual earnings growth through 2028 with commensurate dividend increases.

That’s a strong value proposition Edison stock, with trades at just 14 times expected next 12 months earnings. The yield of roughly 4.4 percent at current prices was increased 5.4 percent this year and is headed for a similar boost in December.

When California deregulated electricity in 1996, it required utilities with rare exceptions to divest their power generation. As a result, Edison’s growth opportunity is 100 percent upgrading its transmission and distribution grid. And its projects can typically be proposed, sited, permitted and built in less than a year, limiting risk of cost overruns to ensure regulatory approval and strong investment returns.

Edison’s investment plan is also pretty much immune to an unlikely backtracking on Net Zero goals by the state. And the company has a cost argument as well: Dr Pizarro cites U.S. Department of Energy and Department of Transportation data to project inflation-adjusted savings of 40 percent in California’s total customer energy bills from full electrification.

There’s even a reason to believe 40 percent savings will prove conservative. Mainly, gasoline currently accounts for a bit more than half energy expenditures. And after a more than 10-year global oil and gas investment drought, supplies are likely get tighter and prices possibly much higher in coming years.

Of course, those savings will only show up after significant investment is made. At this point, no major utility system in the world runs on 100 percent renewable energy, and California’s blackout politics underscore how reliability concerns shape deployment. And the magnitude of storage technology needed to overcome intermittency in solar and wind generation is not currently available let alone affordable, though both cost and efficiency are advancing.

Taking EVs from 20 to 100 percent of California’s new vehicle sales calls for a similar leap in efficiency and cost, even with generous federal and state subsidy. And while technology to fully electrify buildings and homes is there, economically retrofitting statewide is almost certainly going to be a slog.

At the end of the day, political will is likely to be as important as future technological advance for how much of Pizarro’s $370 billion actually gets spent. And the same will be true across the U.S., with state governments and regulators still by and large calling the shots for how electricity gets generated, transmitted and distributed—as well as who pays for it and how much, even as California’s exported policies influence Western markets.

Ironically, the one state where investors don’t need to worry about renewable energy’s prospects is one of the currently reddest politically. That’s Florida, where NextEra Energy NEE +2.8% (NEE) and other utilities can dramatically cut costs to customers and boost reliability by deploying solar and energy storage.

You won’t hear management asserting it can run the Sunshine State on 100 percent renewable energy, as utilities and regulators do in some of the bluer parts of the country. But by demonstrating the cost and reliability argument for solar deployment, NextEra is also making the case why its stock is America’s highest percentage bet on renewables’ growth—particularly at a time when all things energy are unfortunately becoming increasingly, intensely political.

 

Related News

View more

Europe Stores Electricity in Natural Gas Pipes

Power-to-gas converts surplus renewable electricity into green hydrogen or synthetic methane via electrolysis and methanation, enabling seasonal energy storage, grid balancing, hydrogen injection into gas pipelines, and decarbonization of heat, transport, and industry.

 

Key Points

Power-to-gas turns excess renewable power into hydrogen or methane for storage, grid support, and clean fuel.

✅ Enables hydrogen injection into existing natural gas networks

✅ Balances grids and provides seasonal energy storage capacity

✅ Supplies low-carbon fuels for industry, heat, and heavy transport

 

Last month Denmark’s biggest energy firm, Ørsted, said wind farms it is proposing for the North Sea will convert some of their excess power into gas. Electricity flowing in from offshore will feed on-shore electrolysis plants that split water to produce clean-burning hydrogen, with oxygen as a by-product. That would supply a new set of customers who need energy, but not as electricity. And it would take some strain off of Europe’s power grid as it grapples with an ever-increasing share of hard-to-handle EU wind and solar output on the grid.

Turning clean electricity into energetic gases such as hydrogen or methane is an old idea that is making a comeback as renewable power generation surges and crowds out gas in Europe. That is because gases can be stockpiled within the natural gas distribution system to cover times of weak winds and sunlight. They can also provide concentrated energy to replace fossil fuels for vehicles and industries. Although many U.S. energy experts argue that this “power-to-gas” vision may be prohibitively expensive, some of Europe’s biggest industrial firms are buying in to the idea.

European power equipment manufacturers, anticipating a wave of renewable hydrogen projects such as Ørsted’s, vowed in January that, as countries push for hydrogen-ready power plants across Europe, all of their gas-fired turbines will be certified by next year to run on up to 20 percent hydrogen, which burns faster than methane-rich natural gas. The natural gas distributors, meanwhile, have said they will use hydrogen to help them fully de-carbonize Europe’s gas supplies by 2050.

Converting power to gas is picking up steam in Europe because the region has more consistent and aggressive climate policies and evolving electricity pricing frameworks that support integration. Most U.S. states have goals to clean up some fraction of their electricity supply; coal- and gas-fired plants contribute a little more than a quarter of U.S. greenhouse gas emissions. In contrast, European countries are counting on carbon reductions of 80 percent or more by midcentury—reductions that will require an economywide switch to low-carbon energy.

Cleaning up energy by stripping the carbon out of fossil fuels is costly. So is building massive new grid infrastructure, including transmission lines and huge batteries, amid persistent grid expansion woes in parts of Europe. Power-to-gas may be the cheapest way forward, complementing Germany’s net-zero roadmap to cut electricity costs by a third. “In order to reach the targets for climate protection, we need even more renewable energy. Green hydrogen is perceived as one of the most promising ways to make the energy transition happen,” says Armin Schnettler, head of energy and electronics research at Munich-based electric equipment giant Siemens.

Europe already has more than 45 demonstration projects to improve power-to-gas technologies and their integration with power grids and gas networks. The principal focus has been to make the electrolyzers that convert electricity to hydrogen more efficient, longer-lasting and cheaper to produce.

The projects are also scaling up the various technologies. Early installations converted a few hundred kilowatts of electricity, but manufacturers such as Siemens are now building equipment that can convert 10 megawatts, which would yield enough hydrogen each year to heat around 3,000 homes or fuel 100 buses, according to financial consultancy Ernst & Young.

The improvements have been most dramatic for proton-exchange membrane electrolyzers, which are akin to the fuel cells used in hydrogen vehicles (but optimized to produce hydrogen rather than consume it). The price of proton-exchange electrolyzers has dropped by roughly 40 percent during the past decade, according to a study published in February in Nature Energy. They are also five times more compact than older alkaline electrolysis plants, enabling onsite hydrogen production near gas consumers, and they can vary their power consumption within seconds to operate on fluctuating wind and solar generation.

Many European pilot projects are demonstrating “methanation” equipment that converts hydrogen to methane, too, which can be used as a drop-in replacement for natural gas. Europe’s electrolyzer plants, however, are showing that methanation is not as critical to the power-to-gas vision as advocates long believed. Many electrolyzers are injecting their hydrogen directly into natural gas pipelines—something that U.S. gas firms forbid—and they are doing so without impacting either the gas infrastructure or natural gas consumers.

Europe’s first large-scale hydrogen injection began in eastern Germany in 2013 at a two-megawatt electrolyzer installed by Essen-based power firm E.ON. Germany has since ratcheted up the amount of hydrogen it allows in natural gas lines from an initial 2 percent by volume to 10 percent, in a market where renewables now outpace coal and nuclear in Germany, and other European states have followed suit with their own hydrogen allowances. Christopher Hebling, head of hydrogen technologies at the Freiburg-based Fraunhofer Institute for Solar Energy Systems, predicts that such limits will rise to the 20-percent level anticipated by Europe’s turbine manufacturers.

Moving renewable hydrogen and methane via natural gas pipelines promises to cut the cost of switching to renewable energy. For example, gas networks have storage caverns whose reserves could be tapped to run gas-fired electric generation power plants during periods of low wind and solar output. Hebling notes that Germany’s gas network can store 240 terawatt-hours of energy—roughly 25 times more energy than global power grids can presently store by pumping water uphill to refill hydropower reservoirs. Repurposing gas infrastructure to help the power system could save European consumers 138 billion euros ($156 billion) by 2050, according to Dutch energy consultancy Navigant (formerly Ecofys).

For all the pilot plants and promise, renewable hydrogen presently supplies a tiny fraction of Europe’s gas. And, globally, around 4 percent of hydrogen is supplied via electrolysis, with the bulk refined from fossil fuels, according to the International Renewable Energy Agency.

Power-to-gas is catching up, however. According to the February Nature Energy study, renewable hydrogen already pays for itself in some niche applications, and further electrolyzer improvements will progressively extend its market. “If costs continue to decline as they have done in recent years, power-to-gas will become competitive at large scale within the next decade,” says study co-author Gunther Glenk, an economist at the Technical University of Munich.

Glenk says power-to-gas could scale up faster if governments guaranteed premium prices for renewable hydrogen and methane, as they did to mainstream solar and wind power.

Tim Calver, an energy storage researcher turned consultant and Ernst & Young’s executive director in London, agrees that European governments need to step up their support for power-to-gas projects and markets. Calver calls the scale of funding to date, “not proportionate to the challenge that we face on long-term decarbonization and the potential role of hydrogen.”

 

Related News

View more

Electrification Of Vehicles Prompts BC Hydro's First Call For Power In 15 Years

BC Hydro Clean Power Call 2024 seeks utility-scale renewable energy, including wind and solar, to meet rising electricity demand, advance clean goals, expand grid, and support Indigenous participation through competitive procurement and equity opportunities.

 

Key Points

BC Hydro's 2024 bid to add zero-emission wind and solar to meet rising demand and support Indigenous equity.

✅ Competitive procurement for utility-scale wind and solar

✅ Targets 3,000 GWh new greenfield by fiscal 2029

✅ Encourages Indigenous ownership and equity stakes

 

The Government of British Columbia (the Government or Province) has announced that BC Hydro would be moving forward with a call for new sources of 100 percent clean, renewable emission-free electricity, notably including wind and solar, even as nuclear power remains a divisive option among residents. The call, expected to launch in spring 2024, is BC Hydro's first call for power in 15 years and will seek power from larger scale projects.

Over the past decade, British Columbia has experienced a growing economy and population as well as a move by the housing, business and transportation sectors towards electrification, with industrial demand from LNG facilities also influencing load growth. As the Government highlighted in their recent announcement, the number of registered light-duty electric vehicles in British Columbia increased from 5,000 in 2016 to more than 100,000 in 2023. Zero-emission vehicles represented 18.1 percent of new light-duty passenger vehicles sold in British Columbia in 2022, the highest percentage for any province or territory.

Ultimately, the Province now expects electricity demand in British Columbia to increase by 15 percent by 2030. BC Hydro elaborated on the growing need for electricity in their recent Signposts Update to the British Columbia Utilities Commission (BCUC), and noted additions such as new generating stations coming online to support capacity. BC Hydro implemented its Signposts Update process to monitor whether the "Near-term actions" established in its 2021 Integrated Resource Plan continue to be appropriate and align with the changing circumstances in electricity demand. Those actions outline how BC Hydro will meet the electricity needs of its customers over the next 20 years. The original Near-term actions focused on demand-side management and not incremental electricity production.

In its Update, BC Hydro emphasized that increased use of electricity and decreased supply, along with episodes of importing out-of-province fossil power during tight periods, has advanced the forecast of the province's need for additional renewable energy by three years. Accordingly, BC Hydro has updated its 2021 Integrated Resource Plan to, among other things:

accelerate the timing of several Near-term actions on energy efficiency, demand response, industrial load curtailment, electricity purchase agreement renewals and utility-scale batteries; and
add new Near-term actions for BC Hydro to acquire an additional 3,000 GWh per year of new clean, renewable energy from greenfield facilities in the province able to achieve commercial operation as early as fiscal 2029, as well as approximately 700 GWh per year of new clean, renewable energy from existing facilities prior to fiscal 2029.
The Province's predictions align with Canada Energy Regulator's (CER) "Canada's Energy Future 2023" flagship report (Report) released on June 20, 2023. The Report, which looks at Canadians' possible energy futures, includes two long-term scenarios modelled on Canada reaching net-zero by 2050. Under either scenario, the electricity sector is predicted to serve as the cornerstone of the net-zero energy system, with examples such as Hydro-Quebec's decarbonization strategy illustrating this shift as it transforms and expands to accommodate increasing electricity use.

Key Details of the Call
Though not finalized, the call for power will be a competitive process, with the exact details to be designed by BC Hydro and the Province, incorporating input from the recently-formed BC Hydro Task Force made up of Indigenous communities, industry and stakeholders. This is a shift from previous calls for power, which operated as a continuous-intake program with a standing offer at a fixed rate, after projects like the Siwash Creek project were left in limbo.

Drawing on advice from Indigenous and external energy experts, the Province seeks to advance Indigenous ownership and equity interest opportunities in the electricity sector, potentially with minimum requirements for Indigenous participation in new projects to be a condition of the competitive process. The Province has also committed $140 million to the B.C. Indigenous Clean Energy Initiative (BCICEI) to support Indigenous-led power projects and their ability to respond to future electricity demand, facilitating their ability to compete in the call for power, despite their smaller size.

BC Hydro expects to initiate the call in spring 2024, with the goal of acquiring new sources of electricity as early as 2028, even as clean electricity affordability features prominently in Ontario's election discourse.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.