New ways to bury greenhouse gas

By Reuters


Electrical Testing & Commissioning of Power Systems

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
Turn greenhouse gases to stone? Transform them into a treacle-like liquid deep under the seabed?

The ideas may sound like far-fetched schemes from an alchemist's notebook but scientists are pursuing them as many countries prepare to bury captured greenhouse gases in coming years as part of the fight against global warming.

Analysts say the search for a suitable technology could become a $150 billion-plus market. But a big worry is that gases may leak from badly chosen underground sites, perhaps jolted open by an earthquake.

Such leaks could be deadly and would stoke climate change.

Part of the answer could be to petrify or liquefy gases like carbon dioxide - emitted for example from power plants and factories run on coal, oil or natural gas - if technical hurdles can be overcome and costs are not too high.

"If you can convert (the gases) to stone, and it's environmentally benign and permanent, then that's better," said Juerg Matter, a German scientist at Columbia University in New York who is working on a project in Iceland to turn carbon dioxide, the main greenhouse gas, to rock.

In theory, carbon dioxide reacts with porous basalt and turns into a mineral, but no one knows how long that takes. Matter and U.S., French and Icelandic experts plan to inject 50,000 tonnes of the gas into basalt in a test starting in 2009.

Other researchers say pumping the gas into sediments below the seabed at depths of around 3,000 meters (9,800 ft) would expose it to enough pressure to turn it into a viscous liquid, like honey or treacle.

"High pressure combined with low temperature results in liquid carbon dioxide that can in some cases be denser than sea water," said Kurt Zenz House, of Harvard University.

In the worst known example of a leak, a natural volcanic eruption of carbon dioxide from Lake Nyos in Cameroon in 1986 killed more than 1,700 people. Carbon dioxide is not toxic but can cause asphyxia in high concentrations.

The U.N. Climate Panel said in a 2005 report that carbon storage could be one of the main ways to offset global warming, which could cause more powerful storms and heatwaves, and melt glaciers from the Himalayas to the Andes.

Carbon capture and storage could keep up to a third of all manmade carbon dioxide out of the atmosphere. But no commercial-scale power plant uses the technology yet and a lack of public funding plus legal concerns and safety worries are casting doubts over new projects.

Costs are a big problem: the Climate Panel estimates the penalty for emitting carbon dioxide would have to be stable at $25-$30 a tonne to make carbon storage viable - pushing up the cost of everything from electricity to steel as the price of slowing climate change.

Carbon emissions' prices in a European Union market of more than 11,000 industrial sites are now above the trigger level, at 24.55 euros ($37.97) a tonne. But the volatile market has often been far below $25 since trading began in 2005.

Most plans by firms such as BP, Rio Tinto, E.ON, American Electric Power and StatoilHydro focus on capturing greenhouse gases and pumping them into porous rocks in shallower oil and gas reservoirs, or into disused mines or saline aquifers.

The longest-running commercial project, stripping carbon dioxide from natural gas at Norway's Sleipner field, began in 1986 and has pumped 10 million tonnes of carbon dioxide into sedimentary rocks about 800 meters (2,625 ft) below the seabed.

"There have been no leaks," said Tore Torp, project leader at operator StatoilHydro. The gas, under pressure, is in a "supercritical" state between liquid and gas and would stay put even in the event of a cataclysmic earthquake, he said.

The project is commercial because Norway, outside the EU, imposed taxes on carbon emissions in 1991. The natural gas at Sleipner has an unusually high percentage of carbon dioxide.

Torp said that the area was far from an earthquake zone.

"In theory, if you had (a giant earthquake) a crack would be filled by the North Sea in seconds and would maintain the pressure down there," Torp said.

"The most important thing for safety is selecting the site. We would avoid the San Andreas fault" in California, he said.

Other similar projects are underway in the United States, Canada and Algeria.

Plans to mix carbon dioxide into the world's oceans, perhaps by dumping thousands of tonnes of iron filings that would encourage the growth of carbon-absorbing algae, are in doubt because of worries they would disrupt marine life.

"All such projects are on hold," said Rene Coenen, office head for the London Convention which oversees dumping at sea. "Our official advice is: 'don't start with it. Wait until we have more knowledge from the scientific side'."

U.S. group Planktos has indefinitely postponed a plan to seed the Pacific Ocean with iron filings. Silicon Valley startup Climos is still studying the idea.

Water readily absorbs carbon dioxide - beer and other fizzy drinks are examples. But carbon makes the seas more acidic and could make it harder for shellfish, corals, crabs or lobsters to build their protective coats.

So carbon burial may be only answer, despite environmentalists' fears that it will encourage nations to keep on burning fossil fuels rather than shift to cleaner renewable energies such as wind or solar power.

"To my mind, if declared safe and acceptable, it is going to be an imperative in terms of an effective solution," said Yvo de Boer, head of the U.N. Climate Change Secretariat.

"If I look at some of the really huge coal-based economies around the world, like China, like India, like South Africa, like Australia, I don't really see how we can come to grips with climate change without using carbon capture and storage."

Costs might be even higher for the more exotic solutions.

In Iceland, the theory goes that a chemical reaction in the calcium- and magnesium-rich basalt formations will bind carbon molecules to form calcite and dolomite. Matter said that costs could be comparable to burial in oil or gas fields.

But it is unclear whether the reactions in the rocks are quick enough. "We do not know if these geochemical reactions... will take 50, 100 or thousands of years," Matter said.

He said suitable basaltic rocks were also found in places such as India and Siberia.

Kurt Zenz House at Harvard reckoned the costs of pumping carbon to depths of more than 3,000 meters (9,800 ft) would be about 25 percent higher than shallower burial. "It's more expensive but the advantage is that it wouldn't move," he said, adding that it would also not interfere with nature.

Related News

Prepare for blackouts across the U.S. as summer takes hold

US Summer Grid Blackout Risk: NERC and FERC warn of strained reliability as drought, heat waves, and transmission constraints hit MISO, hydro, and renewables, elevating blackout exposure and highlighting demand response and storage solutions.

 

Key Points

A forecast of summer power shortfalls across the US grid, driven by heat, drought, transmission limits, and a changing resource mix.

✅ NERC and FERC warn of elevated blackout risk and reliability gaps.

✅ MISO region strained by drought, heat, and limited hydro.

✅ Mitigations: demand response, storage, and stronger transmission.

 

Just when it didn’t seem things couldn’t get worse — gasoline at $5 to $8 a gallon, supply shortages in everything from baby formula to new cars — comes the devastating news that many of us will endure electricity blackouts this summer, and that the U.S. has more blackouts than other developed nations according to one study.

The alarm was sounded by the nonprofit North American Electric Reliability Corp. and the Federal Energy Regulatory Commission, following a recent power grid report card highlighting vulnerabilities.

The North American electric grid is the largest machine on earth and the most complex, incorporating everything from the wonky pole you see at the roadside with a bird’s nest of wires to some of the most sophisticated engineering ever devised. It runs in real-time, even more so than the air traffic control system: All the airplanes in the sky don’t have to land at the same time, but electricity must be there at the flick of every switch.

Except it may not always be there this summer. Rod Kuckro, a respected energy journalist, says it depends on Mother Nature, with extreme weather impacts increasingly straining the grid, but the prognosis isn’t good.

Speaking on “White House Chronicle,” the weekly news and public affairs program on PBS that I host and produce, Kuckro said: “There is a confluence of factors that could affect energy supply across the majority of the (lower) 48 states. These are continued reduced hydroelectric production in the West, and the continued drought in the Southwest.”

The biggest threat to power supply, according to the NERC and the FERC, is in the vast central region, reaching from Manitoba in Canada, where grids are increasingly exposed to harsh weather in recent years, down to the Gulf of Mexico. It is served by the regional transmission organization, the Midcontinent Independent System Operator.

These operational entities are nonprofit companies that organize and distribute their regions’ bulk power for utilities. In California, it is the California Independent System Operator, working to keep the lights on as the state enters a new energy era; in the Mid-Atlantic, it is PJM; and in the Northeast, it is the New England System Independent Operator. They generate no power, but they control power flows and could initiate brownouts and blackouts.

With record storm activity and high temperatures predicted this summer, blackouts are likely to be deadly. The old, the young and the sick are all vulnerable. If the electric supply fails, with it goes everything from air conditioning to refrigeration to lights and even the ability to pump gas or access money from ATMs.

The United States, along with other modern nations, runs on electricity and when that falls short, it is catastrophic. It is chaos writ large, especially if the failure lasts more than a few hours.

On the same episode of “White House Chronicle,” Daniel Brooks, vice president of integrated grid and energy systems at the Electric Power Research Institute, also referred to a “confluence of factors” contributing to the impending electricity crisis. Brooks said, “We’re going through a significant change in terms of the energy mix and resources, and the way those resources behave under certain weather conditions.”

If power supply is stressed this summer, change in the generating mix will get a lot of political attention. At heart is the switch from fossil fuel generation to renewables. If there are power outages, a political storm will ensue. The Biden administration will be accused of speeding the switch to renewables, although the utilities don’t say that.

The weather is deteriorating, and, as experts note, the grid’s biggest challenge isn’t demand but climate change pressures that compound risks, and the grid is stretched in dealing with new realities as well as coping with old bugaboos, like the extreme difficulty in building transmission lines. Better transmission would relieve a lot of grid stress.

Peter Londa, president of Tantalus Systems, which helps its 260 utility customers digitize and cope with the new realities, explained some of the difficulties facing the utilities not only in the shifting sources of generation but also in the new shape of the electric demand. For example, he said, electric vehicles, particularly the much-awaited Ford F-150 Lightning pickup, could be an asset to homeowners and utilities, as California increasingly turns to batteries to stabilize its grid. During a blackout, their EVs could be used to power their homes for days. They could be a source of storage if thousands of owners signed up with their utilities in a storage program.

The fact is that utilities are facing three major shifts: in the generation to wind and solar, in customer demand, and especially in weather. Mother Nature is on a rampage and we all must adjust to that.
 

 

Related News

View more

Pandemic causes drop in electricity demand across the province: Manitoba Hydro

Manitoba Electricity Demand Drop reflects COVID-19 effects, lowering peak demand about 6% as businesses and offices close, impacting the regional grid; recession-like patterns emerge while Winnipeg water consumption stays steady and peak usage shifts later.

 

Key Points

An observed 6% decline in Manitoba peak electricity during COVID-19 due to closures; Winnipeg water use remains steady.

✅ Daily peak load down roughly 6% provincewide

✅ Business and office shutdowns drive lower consumption

✅ Winnipeg peak water time shifts to 9 a.m., volume steady

 

The COVID-19 pandemic has caused a drop in the electricity demand across the province, according to Manitoba Hydro, mirroring the Ontario electricity usage decline reported elsewhere in Canada.

On Tuesday, Manitoba Hydro said it has tracked overall electrical use, which includes houses, farms and businesses both large and small, while also cautioning customers about pandemic-related scam calls in recent weeks.

Hydro said it has seen about a six per cent reduction in the daily peak electricity demand, adding this is due to the many businesses and downtown offices which are temporarily closed, even as residential electricity use has increased in many regions.


"Currently, the impact on Manitoba electricity demand appears to be consistent with what we saw during the 2008 recession," Bruce Owen, the media relations officer for Manitoba Hydro, noting a similar Ottawa demand decline during the pandemic, said in an email to CTV News.

Owen added this trend of reduced electricity demand is being seen across North America, with BC Hydro pandemic load patterns reported and the regional grid in the American Midwest – an area where Manitoba Hydro is a member.

While electricity demand is down, BC Hydro expects holiday usage to rise and water usage in Winnipeg has remained the same.

The City of Winnipeg said it has not seen any change in overall water consumption, but as Hydro One kept peak rates in Ontario, peak demand times have moved from 7 – 8 a.m. to 9 a.m.

 

Related News

View more

Venezuela: Electricity Recovery Continues as US Withdraws Diplomatic Staff

Venezuela Power Outage cripples the national grid after a massive blackout; alleged cyber attacks at Guri Dam and Caracas, damaged transmission lines, CORPOELEC restoration, looting, water shortages, and sanctions pressure compound recovery.

 

Key Points

A March 2019 blackout crippling Venezuela's grid amid alleged cyber attacks, equipment failures, and slow restoration.

✅ Power restored partially after 96 hours across all states

✅ Alleged cyber attacks at Guri Dam and Caracas systems

✅ CORPOELEC urges reduced load during grid stabilization

 

Venezuelan authorities continue working to bring back online the electric grid following a massive outage that started on Thursday, March 7.

According to on-the-ground testimonies and official sources, power finally began to reach Venezuela’s western states, including Merida and Zulia, on Monday night, around 96 hours after the blackout started. Electricity has now been restored at least in some areas of every state, with authorities urging citizens, as seen in Ukraine's efforts to keep lights on during crisis, to avoid using heavy usage devices while efforts to restore the whole grid continue.

President Nicolas Maduro gave a televised address on Tuesday evening, offering more details about the alleged attack against the country’s electrical infrastructure. According to Maduro, both the computerized system in the Guri Dam, on Thursday afternoon, and the central electrical “brain” in Caracas, on Saturday morning, suffered cyber attacks, while recovery was delayed by physical attacks against transmission lines and electrical substations, a pattern seen in power outages in western Ukraine as well.

“The recovery has been a miracle by CORPOELEC (electricity) workers” he said, vowing that a “battle” had been won.

Maduro claimed that the attacks were directed from Chicago and Houston and that more evidence would be presented soon. The Venezuelan president had announced on Monday that two arrests were made in connection to alleged acts of sabotage against the communications system in the Guri Dam.

Venezuela’s electrical grid has suffered from poor maintenance and sabotage in recent years, with infrastructure strained by under-investment and Washington’s economic sanctions further compounding difficulties, with parallels to electricity inequality in California highlighting broader systemic challenges, though causes differ.

The extended power outage saw episodes of lootings take place, especially in the Zulia capital of Maracaibo. Food warehouses, supermarkets and a shopping mall were targeted according to reports and footage on social media.

Isolated episodes of protests and lootings were also reported in other cities, including some sectors of Caracas. A video spread on social media appeared to show a violent confrontation in the eastern city of Maturin in which a National Guardsman was shot dead.

While electricity has been gradually restored, public transportation and other services have yet to be reactivated, a contrast with U.S. grid resilience during COVID-19 where power systems remained stable, with the government suspending work and school activities until Wednesday.

In Caracas, attention has now turned to water. Shortages started to be felt after the water pumping system in the nearby Tuy valley was shut down amid the electricity blackout, underscoring that electricity is civilization in conflict zones, as interdependent systems cascade. Authorities announced on Tuesday afternoon that the system was due to resume supplying water to the capital metropolitan region.

Some communities protested the lack of water on Monday and long queues formed at water distribution points, with local authorities looking to send water tanks to supply communities and guarantee the normal functioning of hospitals.

The Venezuelan government has yet to release any information concerning casualties in hospitals, with NGO Doctors for Health reporting 24 dead as of Monday night following alleged contact with multiple hospitals. Higher figures, including claims of 80 newborns dead in Maracaibo, have been denied by local sources.

Self-proclaimed “Interim President” Juan Guaido has blamed the electricity crisis on government mismanagement and corruption, dismissing the government’s cyber attack thesis on the grounds that the system is analog, and attributing the national outage to a lack of qualified personnel needed to reactivate the grid. However, these claims have been called into question by people with knowledge of the system.

Guaido called for street protests on Tuesday afternoon which saw small groups momentarily take to streets in Caracas and other cities, or banging pots and pans from windows.

The opposition-controlled National Assembly, which has been in contempt of court since 2016, approved a decree on Monday declaring a state of “national alarm,” blaming the government for the current crisis and issuing instructions for public officials and security forces.

Likewise on Tuesday, Venezuelan Attorney General Tarek William Saab announced that an investigation was being opened against Guaido regarding his alleged responsibility for the recent power outage. Saab explained that this investigation would add to the previous one, opened on January 29, as well as determine responsibilities in instigating violence.

 

Related News

View more

SaskPower to buy more electricity from Manitoba Hydro

SaskPower-Manitoba Hydro Power Sale outlines up to 215 MW of clean hydroelectric baseload for Saskatchewan, supporting renewable energy targets, lower greenhouse gas emissions, and interprovincial transmission line capacity starting 2022 under a 30-year agreement.

 

Key Points

A long-term deal supplying up to 215 MW of hydroelectric baseload from Manitoba to Saskatchewan to cut emissions.

✅ Up to 215 MW delivered starting 2022 via new intertie

✅ Supports 40% GHG reduction target by 2030

✅ 30-year term; complements wind and solar integration

 

Saskatchewan's Crown-owned electric utility has made an agreement to buy more hydroelectricty from Manitoba.

A term sheet providing for a new long--term power sale has been signed between Manitoba Hydro and SaskPower which will see up to 215 megawatts flow from Manitoba to Saskatchewan, as new turbine investments advance in Manitoba, beginning in 2022.

SaskPower has two existing power purchase agreements with Manitoba Hydro that were made in 2015 and 2016, but the newest one announced Monday is the largest, as financial pressures at Manitoba Hydro continue.

SaskPower President and CEO Mike Marsh says in a news release that the clean, hydroelectric power represents a significant step forward when it comes to reaching the utility's goal of reducing greenhouse gas emissions by 40 per cent by 2030, aligning with progress on renewable electricity by 2030 initiatives.

Marsh says it's also reliable baseload electricity, which SaskPower will need as it adds more intermittent generation options like wind and solar.

SaskPower says a final legal contract for the sale is expected to be concluded by mid-2019 and be in effect by 2022, and the purchase agreement would last up to 30 years.

"Manitoba Hydro has been a valued neighbour and business partner over the years and this is a demonstration of that relationship," Marsh said in the news release.

The financial terms of the agreement are not being released, though SaskPower's latest annual report offers context on its finances.

Both parties say the sale will partially rely on the capacity provided by a new transmission line planned for construction between Tantallon, Sask. and Birtle, Man. that was previously announced in 2015 and is expected to be in service by 2021.

"Revenues from this sale will assist in keeping electricity rates affordable for our Manitoba customers, while helping SaskPower expand and diversify its renewable energy supply," Manitoba Hydro president and CEO Kelvin Shepherd said in the utility's own news release.

In 2015, SaskPower signed a 25 megawatt agreement with Manitoba Hydro that lasts until 2022. A 20-year agreement for 100 megawatts was signed in 2016 and comes into effect in 2020, and SaskPower is also exploring a purchase from Flying Dust First Nation to further diversify supply.

The deals are part of a memorandum of understanding signed in 2013 involving up to 500 megawatts.
 

 

Related News

View more

Data Center Boom Poses a Power Challenge for U.S. Utilities

U.S. Data Center Power Demand is straining electric utilities and grid reliability as AI, cloud computing, and streaming surge, driving transmission and generation upgrades, demand response, and renewable energy sourcing amid rising electricity costs.

 

Key Points

The rising electricity load from U.S. data centers, affecting utilities, grid capacity, and energy prices.

✅ AI, cloud, and streaming spur hyperscale compute loads

✅ Grid upgrades: transmission, generation, and substations

✅ Demand response, efficiency, and renewables mitigate strain

 

U.S. electric utilities are facing a significant new challenge as the explosive growth of data centers puts unprecedented strain on power grids across the nation. According to a new report from Reuters, data centers' power demands are expected to increase dramatically over the next few years, raising concerns about grid reliability and potential increases in electricity costs for businesses and consumers.


What's Driving the Data Center Surge?

The explosion in data centers is being fueled by several factors, with grid edge trends offering early context for these shifts:

  • Cloud Computing: The rise of cloud computing services, where businesses and individuals store and process data on remote servers, significantly increases demand for data centers.
  • Artificial Intelligence (AI): Data-hungry AI applications and machine learning algorithms are driving a massive need for computing power, accelerating the growth of data centers.
  • Streaming and Video Content: The growth of streaming platforms and high-definition video content requires vast amounts of data storage and processing, further boosting demand for data centers.


Challenges for Utilities

Data centers are notorious energy hogs. Their need for a constant, reliable supply of electricity places  heavy demand on the grid, making integrating AI data centers a complex planning challenge, often in regions where power infrastructure wasn't designed for such large loads. Utilities must invest significantly in transmission and generation capacity upgrades to meet the demand while ensuring grid stability.

Some experts warn that the growth of data centers could lead to brownouts or outages, as a U.S. blackout study underscores ongoing risks, especially during peak demand periods in areas where the grid is already strained. Increased electricity demand could also lead to price hikes, with utilities potentially passing the additional costs onto consumers and businesses.


Sustainable Solutions Needed

Utility companies, governments, and the data center industry are scrambling to find sustainable solutions, including using AI to manage demand initiatives across utilities, to mitigate these challenges:

  • Energy Efficiency: Data center operators are investing in new cooling and energy management solutions to improve energy efficiency. Some are even exploring renewable energy sources like onsite solar and wind power.
  • Strategic Placement: Authorities are encouraging the development of data centers in areas with abundant renewable energy and access to existing grid infrastructure. This minimizes the need for expensive new transmission lines.
  • Demand Flexibility: Utility companies are experimenting with programs as part of a move toward a digital grid architecture to incentivize data centers to reduce their power consumption during peak demand periods, which could help mitigate power strain.


The Future of the Grid

The rapid growth of data centers exemplifies the significant challenges facing the aging U.S. electrical grid, with a recent grid report card highlighting dangerous vulnerabilities. It highlights the need for a modernized power infrastructure, capable of accommodating increasing demand spurred by new technologies while addressing climate change impacts that threaten reliability and affordability.  The question for utilities, as well as data center operators, is how to balance the increasing need for computing power with the imperative of a sustainable and reliable energy future.

 

Related News

View more

Seattle City Light's Initiative Helps Over 93,000 Customers Reduce Electricity Bills

Seattle City Light Energy Efficiency Programs help 93,000 residents cut bills with rebates, home energy audits, weatherization, conservation workshops, and sustainability tools, reducing electricity use and greenhouse gas emissions across Seattle communities.

 

Key Points

They are utility programs that lower electricity use and bills via rebates, energy audits, and weatherization services.

✅ Rebates for ENERGY STAR appliances and efficient HVAC upgrades

✅ Free audits with tailored recommendations and savings roadmaps

✅ Weatherization aid for low-income households and renters

 

In a noteworthy achievement for both residents and the environment, Seattle City Light has successfully helped more than 93,000 customers reduce their electricity bills through various energy efficiency programs. This initiative not only alleviates financial burdens for many households, amid concerns about pandemic-era shut-offs that heightened energy insecurity, but also aligns with the city’s commitment to sustainability and responsible energy use.

The Drive for Energy Efficiency

Seattle City Light, the city’s publicly owned electric utility, has been at the forefront of promoting energy efficiency among its customers. Recognizing that energy costs can strain household budgets, the utility has developed a range of programs and tracks emerging utility rate designs to help residents lower their energy consumption and, consequently, their bills.

One of the main aspects of this initiative is the emphasis on education and awareness. By providing customers with tools and resources to understand their energy usage, City Light empowers residents to make informed choices that can lead to substantial savings and prepare for power outage events as well.

Key Programs and Services

Seattle City Light offers a variety of programs aimed at reducing energy consumption. Among the most popular are:

  1. Energy Efficiency Rebates: Customers can receive rebates for purchasing energy-efficient appliances, such as refrigerators, washing machines, and HVAC systems. These appliances are designed to consume less electricity than traditional models, resulting in lower energy bills over time.

  2. Home Energy Audits: Free energy audits are available for residential customers. During these audits, trained professionals assess homes for energy efficiency and provide recommendations on improvements. This personalized service allows homeowners to understand specific changes that can lead to savings.

  3. Weatherization Assistance: This program is particularly beneficial for low-income households. By improving insulation, sealing air leaks, and enhancing overall energy efficiency, residents can maintain comfortable indoor temperatures without over-relying on heating and cooling systems.

  4. Community Workshops: Seattle City Light conducts workshops that educate residents about energy conservation strategies. These sessions cover topics such as smart energy use, seasonal tips for reducing consumption, and the benefits of renewable energy sources, highlighting examples of clean energy engagement in other cities.

The Impact on Households

The impact of these initiatives is profound. By assisting over 93,000 customers in lowering their electricity bills, Seattle City Light not only provides immediate financial relief but also encourages a long-term commitment to energy conservation. This collective effort has resulted in significant reductions in overall energy consumption, contributing to a decrease in greenhouse gas emissions—a critical step in the fight against climate change.

Additionally, the programs have been particularly beneficial for low-income households. By targeting these communities, Seattle City Light ensures that the benefits of energy efficiency reach those who need them the most, promoting equity-focused regulation and access to essential resources.

Looking Ahead: Challenges and Opportunities

While the success of these initiatives is commendable, challenges remain. Fluctuating energy prices can still pose difficulties for many households, especially those on fixed incomes, as some utilities explore minimum charges for low-usage customers in their rate structures. Seattle City Light recognizes the need for ongoing support and resources to help residents navigate these financial challenges.

The utility is committed to expanding its programs to reach even more customers in the future. This includes enhancing outreach efforts to ensure that residents are aware of the available resources, even as debates like utility revenue in a free-electricity future shape planning, and potentially forming partnerships with local organizations to broaden the impact of its initiatives.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.