Coal chief a biomass enthusiast at heart

By The Independent


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
It might appear a little odd that the boss of Britain's biggest carbon emitter is an enthusiast for "green" energy, but Dorothy Thompson, the chief executive Drax, is just that.

Drax, of course, is just a giant coal-fired power plant, but Ms Thompson is busily working on plans to create three new biomass plants, and if her ideas for the company's future come to fruition, it could yet become not just Britain's biggest coal-fired electricity generator, but also its biggest renewable energy producer. Ms Thompson has even talked about the possibility of ditching coal in all of Drax's myriad of units in favour of biomass. That might be a step too far, but by June about 12 per cent of the output will be generated through biomass.

Drax might be an old traditional company in what remains quite a traditional part of the country, but Ms Thompson's approach is modern – employees use her first name, for example. When not tramping about the gargantuan site in Wellington boots she has no fears about getting her hands dirty, and wouldn't have lasted if she had Ms Thompson is a keen rambler and is not far off some of the best hill-walking country in England, something she has taken full advantage of.

In some quarters Ms Thompson, who is married with two children, has a reputation for being snippy. But others suggest it's more that she simply doesn't suffer fools gladly. Those who have met her say she is brisk, businesslike and personable. The company recently produced a decent enough set of results, but the share price has been heading south for some time now, and that's one trend that this graduate of the London School of Economics will be keen to see going into reverse as soon as possible.

Related News

New fuel cell concept brings biological design to better electricity generation

Quinone-mediated fuel cell uses a bio-inspired organic shuttle to carry electrons and protons to a nearby cobalt catalyst, improving hydrogen conversion, cutting platinum dependence, and raising efficiency while lowering costs for clean electricity.

 

Key Points

An affordable, bio-inspired fuel cell using an organic quinone shuttle and cobalt catalyst to move electrons efficiently

✅ Organic quinone shuttles electrons to a separate cobalt catalyst

✅ Reduces platinum use, lowering cost of hydrogen power

✅ Bio-inspired design aims to boost efficiency and durability

 

Fuel cells have long been viewed as a promising power source. But most fuel cells are too expensive, inefficient, or both. In a new approach, inspired by biology, a team has designed a fuel cell using cheaper materials and an organic compound that shuttles electrons and protons.

Fuel cells have long been viewed as a promising power source. These devices, invented in the 1830s, generate electricity directly from chemicals, such as hydrogen and oxygen, and produce only water vapor as emissions. But most fuel cells are too expensive, inefficient, or both.

In a new approach, inspired by biology and published today (Oct. 3, 2018) in the journal Joule, a University of Wisconsin-Madison team has designed a fuel cell using cheaper materials and an organic compound that shuttles electrons and protons.

In a traditional fuel cell, the electrons and protons from hydrogen are transported from one electrode to another, where they combine with oxygen to produce water. This process converts chemical energy into electricity. To generate a meaningful amount of charge in a short enough amount of time, a catalyst is needed to accelerate the reactions.

Right now, the best catalyst on the market is platinum -- but it comes with a high price tag, and while advances like low-cost heat-to-electric materials show promise, they address different conversion pathways. This makes fuel cells expensive and is one reason why there are only a few thousand vehicles running on hydrogen fuel currently on U.S. roads.

Shannon Stahl, the UW-Madison professor of chemistry who led the study in collaboration with Thatcher Root, a professor of chemical and biological engineering, says less expensive metals can be used as catalysts in current fuel cells, but only if used in large quantities. "The problem is, when you attach too much of a catalyst to an electrode, the material becomes less effective," he says, "leading to a loss of energy efficiency."

The team's solution was to pack a lower-cost metal, cobalt, into a reactor nearby, where the larger quantity of material doesn't interfere with its performance. The team then devised a strategy to shuttle electrons and protons back and forth from this reactor to the fuel cell.

The right vehicle for this transport proved to be an organic compound, called a quinone, that can carry two electrons and protons at a time. In the team's design, a quinone picks up these particles at the fuel cell electrode, transports them to the nearby reactor filled with an inexpensive cobalt catalyst, and then returns to the fuel cell to pick up more "passengers."

Many quinones degrade into a tar-like substance after only a few round trips. Stahl's lab, however, designed an ultra-stable quinone derivative. By modifying its structure, the team drastically slowed down the deterioration of the quinone. In fact, the compounds they assembled last up to 5,000 hours -- a more than 100-fold increase in lifetime compared to previous quinone structures.

"While it isn't the final solution, our concept introduces a new approach to address the problems in this field," says Stahl. He notes that the energy output of his new design produces about 20 percent of what is possible in hydrogen fuel cells currently on the market. On the other hand, the system is about 100 times more effective than biofuel cells that use related organic shuttles.

The next step for Stahl and his team is to bump up the performance of the quinone mediators, allowing them to shuttle electrons more effectively and produce more power. This advance would allow their design to match the performance of conventional fuel cells, but with a lower price tag.

"The ultimate goal for this project is to give industry carbon-free options for creating electricity, including thermoelectric materials that harvest waste heat," says Colin Anson, a postdoctoral researcher in the Stahl lab and publication co-author. "The objective is to find out what industry needs and create a fuel cell that fills that hole."

This step in the development of a cheaper alternative could eventually be a boon for companies like Amazon and Home Depot that already use hydrogen fuel cells to drive forklifts in their warehouses.

"In spite of major obstacles, the hydrogen economy, with efforts such as storing electricity in pipelines in Europe, seems to be growing," adds Stahl, "one step at a time."

Financial support for this project was provided by the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, and by the Wisconsin Alumni Research Foundation (WARF) through the WARF Accelerator Program.

 

Related News

View more

Niagara Falls Powerhouse Gets a Billion-Dollar Upgrade for the 21st Century

Sir Adam Beck I refurbishment boosts hydropower capacity in Niagara, upgrading turbines, generators, and controls for Ontario Power Generation. The billion-dollar project enhances grid reliability, clean energy output, and preserves heritage architecture.

 

Key Points

An OPG upgrade of the historic Niagara plant to replace equipment, add 150 MW, and extend clean power life.

✅ Adds at least 150 MW to Ontario's clean energy supply

✅ Replaces turbines, generators, transformers, and controls

✅ Creates hundreds of skilled construction and engineering jobs

 

Ontario's iconic Sir Adam Beck hydroelectric generating station in Niagara is set to undergo a massive, billion-dollar refurbishment. The project will significantly boost the power station's capacity and extend its lifespan, with efforts similar to revitalizing older dams seen across North America, ensuring a reliable supply of clean energy for decades to come.


A Century of Power Generation

The Sir Adam Beck generating stations have played a pivotal role in Ontario's power grid for over a century. The first generating station, Sir Adam Beck I, went online in 1922, followed by Sir Adam Beck II in 1954. A third station, the Sir Adam Beck Pump Generating Station, was added in 1957, highlighting the role of pumped storage in Ontario for grid flexibility, Collectively, they form one of the largest hydroelectric complexes in the world, harnessing the power of the Niagara River.


Preparing for Increased Demand

The planned refurbishment of Sir Adam Beck I is part of Ontario Power Generation's broader strategy, which includes the life extension at Pickering NGS among other initiatives, to meet the growing energy demands of the province. With the population expanding and a shift towards electrification, Ontario will need to increase its power generation capacity while also focusing on sustainable and clean sources of energy.


Billions to Secure Sustainable Energy

The project to upgrade Sir Adam Beck I carries a hefty price tag of over a billion dollars but is considered a vital investment in Ontario's energy infrastructure, and recent OPG financial results underscore the utility's capacity to manage long-term capital plans. The refurbishment will see the replacement of aging turbines, generators, and transformers, and a significant upgrade to the station's control systems. Following the refurbishment, the output of Sir Adam Beck I is expected to increase by at least 150 megawatts – enough to power thousands of homes and businesses.


Creating Green Jobs

In addition to securing the province's energy future, the upgrade presents significant economic benefits to the Niagara region. The project will create hundreds of well-paying construction and engineering jobs, similar to employment from the continued operation of Pickering Station across Ontario, during the several years it will take to implement the upgrades.


Commitment to Hydropower

Ontario Power Generation (OPG) has long touted the benefits of hydropower as a reliable, renewable, and affordable source of energy, even as an analysis of rising grid emissions underscores the importance of clean generation to meet demand. The Sir Adam Beck complex is a shining example and represents a significant asset in the fight against climate change while providing reliable power to Ontario's businesses and residents.


Balancing Energy Needs with Heritage Preservation

The refurbishment will also carefully integrate modern design with the station's heritage elements, paralleling decisions such as the refurbishment of Pickering B that weigh system needs and public trust. Sir Adam Beck I is a designated historic site, and the project aims to preserve the station's architectural significance while enhancing its energy generation capabilities.

 

Related News

View more

First Reactor Installed at the UK’s Latest Nuclear Power Station

Hinkley Point C Reactor Installation signals UK energy security, nuclear power expansion, and low-carbon baseload, featuring EPR technology in Somerset to cut emissions, support net-zero goals, and deliver reliable electricity for homes and businesses.

 

Key Points

First EPR unit fitted at Hinkley Point C, boosting low-carbon baseload, grid reliability, and UK energy security.

✅ Generates 3.2 GW across two EPRs for 7% of UK electricity.

✅ Provides low-carbon baseload to complement wind and solar.

✅ Creates jobs and strengthens supply chains during construction.

 

The United Kingdom has made a significant stride toward securing its energy future with the installation of the first reactor at its newest nuclear power station. This development marks an important milestone in the nation’s efforts to combat climate change, reduce carbon emissions, and ensure a stable and sustainable energy supply. As the world moves towards greener alternatives to fossil fuels, nuclear power remains a key part of the UK's green industrial revolution and low-carbon energy strategy.

The new power station, located at Hinkley Point C in Somerset, is set to be one of the most advanced nuclear facilities in the country. The installation of its reactor represents a crucial step in the construction of the plant, with earlier milestones like the reactor roof lifted into place underscoring steady progress, which is expected to provide reliable, low-carbon electricity for millions of homes and businesses across the UK. The completion of the first reactor is seen as a pivotal moment in the journey to bring the station online, with the second reactor expected to follow shortly after.

A Historic Milestone

Hinkley Point C will be the UK’s first nuclear power station built in over two decades. The plant, once fully operational, will play a key role in the country's energy transition. The reactors at Hinkley Point C are designed to be state-of-the-art, using advanced technology that is both safer and more efficient than older nuclear reactors. Each of the two reactors will have the capacity to generate 1.6 gigawatts of electricity, enough to power approximately six million homes. Together, they will contribute about 7% of the UK’s electricity needs, providing a steady, reliable source of energy even during periods of high demand.

The installation of the first reactor at Hinkley Point C is not just a technical achievement; it is also symbolic of the UK’s commitment to energy security and its goal to achieve net-zero carbon emissions by 2050, a target that industry leaders say multiple new stations will be needed to meet effectively. Nuclear power is a crucial part of this equation, as it provides a stable, baseload source of energy that does not rely on weather conditions, unlike wind or solar power.

Boosting the UK’s Energy Capacity

The addition of Hinkley Point C to the UK’s energy infrastructure is expected to significantly boost the country’s energy capacity and reduce its reliance on fossil fuels. The UK government has been focused on increasing the share of renewable energy in its mix, and nuclear power is seen as an essential complement to intermittent renewable sources, especially as wind and solar have surpassed nuclear in generation at times. Nuclear energy is considered a low-carbon, reliable energy source that can fill the gaps when renewable generation is insufficient, such as on cloudy or calm days when solar and wind energy output may be low.

With the aging of the UK’s existing nuclear fleet and the gradual phase-out of coal-fired power plants, Hinkley Point C will help ensure that the country does not face an energy shortage as it transitions to cleaner energy sources. The plant will help to bridge the gap between the current energy infrastructure and the future, enabling the UK to phase out coal while maintaining a steady, low-carbon energy supply.

Safety and Technological Innovation

The reactors at Hinkley Point C are being constructed using the latest in nuclear technology. They are based on the European Pressurized Reactor (EPR) design, which is known for its enhanced safety features and efficiency, and has been deployed in projects within China's nuclear program as well, making it a proven platform. These reactors are designed to withstand extreme conditions, including earthquakes and flooding, making them highly resilient. Additionally, the EPR technology ensures that the reactors have a low environmental impact, producing minimal waste and offering the potential for increased sustainability compared to older reactor designs.

One of the key innovations in the Hinkley Point C reactors is their advanced cooling system, which is designed to be more efficient and environmentally friendly than previous generations. This system ensures that the reactors operate at optimal temperatures while minimizing the environmental footprint of the plant.

Economic and Job Creation Benefits

The construction of Hinkley Point C has already provided a significant boost to the local economy. Thousands of jobs have been created, not only in the construction phase but also in the ongoing operation and maintenance of the facility. The plant is expected to create more than 25,000 jobs during its construction and around 900 permanent jobs once it is operational.

The project is also expected to have a positive impact on the wider UK economy. As a major infrastructure project, Hinkley Point C will provide long-term economic benefits, including boosting supply chains and providing opportunities for local businesses.

Challenges and the Road Ahead

Despite the progress, the construction of Hinkley Point C has not been without its challenges. The project has faced delays and cost overruns, with setbacks at Hinkley Point C documented by industry observers, and the total estimated cost now standing at around £22 billion. However, the successful installation of the first reactor is a step toward overcoming these hurdles and completing the project on schedule.

Looking ahead, Hinkley Point C’s successful operation could pave the way for future nuclear developments in the UK, including next-gen nuclear designs that aim to be smaller, cheaper, and safer. As the world grapples with the pressing need to reduce greenhouse gas emissions, nuclear energy may play an even more critical role in ensuring a clean, reliable energy future.

The installation of the first reactor at Hinkley Point C marks a crucial moment in the UK’s energy journey. As the country seeks to meet its carbon reduction targets and bolster its energy security, the new nuclear power station will be a cornerstone of its efforts. With its advanced technology, safety features, and potential to provide low-carbon energy for decades to come, Hinkley Point C offers a glimpse into the future of energy production in the UK and beyond.

 

Related News

View more

Opp Leader calls for electricity market overhaul to favor consumers over generators

Labor National Electricity Market Reform aims to rebalance NEM rules, support a fair-dinkum clean energy target, enable renewable zones, bolster storage and grid reliability, empower households, and unlock CEFC investment via the Finkel review.

 

Key Points

Labor's plan to overhaul NEM rules for households, clean energy targets, renewable zones, storage, and CEFC investment.

✅ Revises NEM rules to curb big generators' market power

✅ Backs a clean energy target informed by the Finkel review

✅ Expands renewable zones, storage, and CEFC finance

 

Australia's Labor leader Bill Shorten has called for significant changes to the rules governing the national electricity market, saying they are biased in favour of big energy generators, leaving households worse off even with measures like a WA electricity bill credit in place.

He said the national electricity market (NEM) rules are designed to help the big companies recoup the money they spent on purchasing government assets, a dynamic echoed in debates like a Calgary market overhaul dispute unfolding in Canada, rather than encourage households to generate their own power, and they need to change faster to adapt to consumer needs.

His comments hint at a possible overhaul of the NEM’s governance structure under a future Labor government, because the current rule-making process is too cumbersome and slow, with suggested rules changes taking years to be introduced.

Daniel Andrews defends claims that civil liberties a 'luxury' in fight against terrorism

Labor had promoted a similar idea in the lead-up to the 2016 election, with its call for an electricity modernization review, but now the Finkel review has been released it would be used to guide such a review.

In a speech to the Australian Financial Review’s National Energy Summit in Sydney on Monday, Shorten recommitted Labor to negotiating a “fair-dinkum” clean energy target with the Turnbull government, amid modelling that a strong clean energy target can lower electricity prices, saying “it’s time to put away the weapons of the climate change wars” and work together to find a way forward.

He said the media and business can all share the blame for Australia’s lost decade of energy policy development, with examples abroad showing how leadership steers change, such as in Alberta where Kenney's influence on power policy has been pronounced, but “we need to stop spoiling for a fight and start seeking a solution”.

“The scare campaigns and hyper-partisanship that got Australia into this mess, will not get us out of it,” he will say.

“That’s why, a bit over four months ago, before the chief scientist released his report, I wrote to the prime minister offering an olive branch.

“I said Labor was prepared to move from our preferred position of an emissions intensity scheme and negotiate a fair-dinkum clean energy target.

“That offer was greeted with some cynicism in the media. But let me be crystal clear – I made that offer in good faith, and that offer still stands.”

Shorten said Australia needs to resolve the current “gas crisis” and do more to drive investment in renewable energy that delivers more reliable electricity, a priority underscored by the IEA's warning that falling global energy investment risks shortages, and if Labor wins the next election it will organise Australia into a series of renewable energy zones – as recommended by the chief scientist, Alan Finkel – that identify wind, solar, pumped hydro and geothermal resources, and connect them to the existing network.

“These zones would be based on both existing generation and storage in the area – and the potential for future development,” he said.

Australia's politics only barrier to clean energy system, report finds

“Identifying these zones – from eastern Queensland, north-east New South Wales, west Victoria, the Eyre Peninsula in South Australia and the entire state of Tasmania – will also plant a flag for investors – signalling future sites for job-creating projects.”

Shorten also said Labor will free up the Clean Energy Finance Corporation to invest in more generation and more storage.

“Under Labor, the return benchmark for the CEFC was set at the weighted average of the Australian government bond rate.

“Under this government, it was initially increased to the weighted average plus 4% to 5% and is now set at the average plus 3% to 4%.

“Setting the return benchmark too high defeats the driving purpose of the CEFC and it holds back the crucial investment Australia needs – right now – in new generation and storage.

“This is why a Labor government would restore the original benchmark return of the Clean Energy Finance Corporation, to invest in more generation, more storage and more jobs.”

 

 

Related News

View more

Minnesota bill mandating 100% carbon-free electricity by 2040

Minnesota 100% Carbon-Free Electricity advances renewable energy: wind, solar, hydropower, hydrogen, biogas from landfill gas and anaerobic digestion; excludes incineration in environmental justice areas; uses renewable energy credits and streamlined permitting.

 

Key Points

Minnesota's mandate requires utilities to deliver 100% carbon-free power by 2040 with targets and EJ safeguards.

✅ Utilities must hit 90% carbon-free by 2035; 100% by 2040.

✅ Incineration in EJ areas excluded; biogas, wind, solar allowed.

✅ Compliance via renewable credits; streamlined permitting.

 

Minnesota Gov. Tim Walz, D, is expected to soon sign a bill establishing a clean electricity standard requiring utilities in the state to provide electricity from 100% carbon-free sources by 2040. The bill also calls for utilities to generate at least 55% of their electricity from renewable energy sources by 2035, a trajectory similar to New Mexico's clean electricity push underway this decade.

Electricity generated from landfill gas and anaerobic digestion are named as approved renewable energy technologies, but electricity generated from incinerators operating in “environmental justice areas”, reflecting concerns about renewable facilities violating pollution rules in some states, will not be counted toward the goal. Wind, solar, and certain hydropower and hydrogen energy sources are also considered renewable in the bill. 

The bill defines EJ areas as places where at least 40% of residents are not white, 35% of households have an income that’s below 200% of the federal poverty line, and 40% or more of residents over age 5 have “limited” English proficiency. Areas the U.S. state defines as “Indian country” are also considered EJ areas.

Some of the state’s largest electric utilities, like Xcel Energy and Minnesota Power, have already pledged to move to carbon-free energy, and utilities such as Alliant Energy have outlined carbon-neutral plans in the region, but this bill speeds up that goal by 10 years, Minnesota Public Radio reported. The bill calls for public utilities operating in the state to be 80% carbon-free and other electric utilities to be 60% carbon-free by 2030. All utilities must be 90% carbon-free by 2035 before ultimately hitting the 100% mark in 2040, according to the bill.  

The bill gives utilities some leniency if they demonstrate to state regulators that they can’t offer affordable power while working toward the benchmarks, acknowledging reliability challenges seen in places like California's grid during the clean energy transition. It also allows utilities to buy renewable energy credits to meet the standard instead of generating the energy themselves. 

Patrick Serfass, executive director of the American Biogas Council, said the bill will incentivize more biogas-related electricity projects, “which means the recycling of more organic material and more renewable electricity in the state. Those are all good things,” he said. ABC sees significant potential for biogas production in Minnesota, though the federal climate law has delivered mixed results for accelerating clean power deployment.

The bill also aims to streamline the permitting process for new energy projects in the state, even as some states consider limits on clean energy that would constrain utility use, and calls for higher minimum wage requirements for workers.

 

Related News

View more

Entergy Creates COVID-19 Emergency Relief Fund to Help Customers in Need

Entergy COVID-19 Emergency Relief Fund provides financial assistance to ALICE households, low-income seniors, and disabled customers via United Way grants for rent, mortgage, utilities, food, and bill payment support during COVID-19, alongside a disconnect moratorium.

 

Key Points

A shareholder-funded program offering essential grants and bill support to Entergy customers affected by COVID-19.

✅ Shareholders commit $700,000; grants distributed via United Way partners.

✅ Focus on ALICE families, low-income seniors, and disabled customers.

✅ Disconnects suspended; bill tools and LIHEAP advocacy underway.

 

In an effort to help working families experiencing financial hardships as a result of the coronavirus pandemic, the Entergy Charitable Foundation has established the COVID-19 Emergency Relief Fund, recognizing the need for electricity across communities.

"The health and safety of our customers, employees and communities is Entergy's top priority," said Leo Denault, chairman and CEO of Entergy Corporation. "For more than 100 years, Entergy has never wavered in our commitment to supporting our customers and the communities we serve. This pandemic is no different. During this challenging time, we are helping lessen the impact of this crisis on the most vulnerable in our communities. I strongly encourage our business partners to join us in this effort."

As devastating and disruptive as this crisis is for everyone, we know from past experience that those most heavily impacted are ALICE households (low-wage working families) and low-income elderly and disabled customers, who often face energy insecurity during such events - roughly 40%-50% of Entergy's customer base.

"We know from experience that working families and low-income elderly and disabled customers are hardest hit during times of crisis," said Patty Riddlebarger, vice president of Entergy's corporate social responsibility. "We are working quickly to make funds available to community partners that serve vulnerable households to lessen the economic impact of the COVID-19 crisis and ensure that families have the resources they need to get by during this time of uncertainty."

To support our most vulnerable customers, Entergy shareholders are committing $700,000 to the COVID-19 Emergency Relief Fund to help qualifying customers with basic needs such as food and nutrition, rent and mortgage assistance, and other critical needs, alongside measures like Texas utilities waiving fees that ease household costs, until financial situations become more stable. Grants from the fund will be provided to United Way organizations and other nonprofit partners across Entergy's service area that are providing services to impacted households.

Company shareholders will also match employee contributions to the COVID-19 relief efforts of local United Way organizations up to $100,000 to maximize impact.

In addition to establishing the COVID-19 Emergency Relief Fund, Entergy is taking additional steps to support and protect our customers during this crisis, similar to PG&E's pandemic response measures, including:

With support from our regulators, we are temporarily suspending customer disconnects, as seen in New Jersey and New York policies, as we continue to monitor the situation.

We are working with our network of community advocates, as the industry coordination with federal partners continues, to request a funding increase of the Low Income Home Energy Assistance Program to help alleviate financial hardships caused by COVID-19 on vulnerable households.

We are developing bill payment solutions and tools to help customers pay their accumulated balances once the disconnect moratorium is lifted.

Already in place to support vulnerable customers is Entergy's The Power to Care program, which provides emergency bill payment assistance to seniors and disabled individuals. To mark the 20th anniversary of Entergy's low-income customer initiative, the limit of shareholders' dollar for dollar match of customer donations was increased from $500,000 to $1 million per year. Shareholders continue to match employee donations dollar for dollar with no limit.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified