TVA a part of nuclear simulation project

By Knoxville News Sentinel


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
A team that's headed by Oak Ridge National Laboratory and includes TVA will receive up to $122 million over the next five years to establish and operate a Nuclear Energy Modeling and Simulation Hub, the U.S. Department of Energy announced recently.

The new program is supposed to use the world's most powerful computers to make "significant leaps" in the design and engineering of nuclear reactors, improve operations of existing reactors and help extend their lifetime, and ultimately re-establish U.S. leadership in nuclear energy. If the five-year effort is successful, it could be extended for another five years.

"We're really honored and excited to have this opportunity. I can't wait to get started," Doug Kothe, scientific director at ORNL's National Center for Computational Sciences, said. Kothe, a nuclear engineer, headed the proposal team and will become director of what's being called the Consortium for Advanced Simulation of Light Water Reactors CASL.

Besides TVA, other major partners include the Westinghouse Electric Co. Los Alamos National Laboratory Electric Power Research Institute Idaho National Laboratory Massachusetts Institute of Technology Sandia National Laboratories North Carolina State University and the University of Michigan.

The project will bring together experts from different disciplines and institutions, enabling engineers to create enhanced simulations of a currently operating nuclear reactor. That will serve as a "virtual model" of the reactor, and researchers can then validate their results with actual data from an operating reactor.

ORNL Director Thom Mason said TVA has different types of reactors in its fleet, representing many of the designs currently used in operating U.S. reactors. "That diversity is actually helpful," he said.

A bonus aspect of the TVA partnership is that the Watts Bar 2 reactor is coming online shortly - in 2012, Mason said. "It will be a brand-new start, where all the initial conditions are known, so from a modeling point of view, that's attractive," the ORNL director said.

Mason said Jaguar, ORNL's Cray XT5 supercomputer that's currently rated as the world's fastest machine, will be used for the reactor simulation work. But other computers will be used as well, including the Kraken - a University of Tennessee/National Science Foundation machine that's also located at ORNL - and the IBM Roadrunner machine at Los Alamos National Lab in New Mexico, he said.

"A predictive simulation tool is kind of like a time machine," Kothe said. "We can predict what's going to happen in 30 years."

Extending the life of a nuclear reactor usually boils down to dealing with material problems, Kothe said. By simulating how materials are going to age in the harsh environment of a nuclear core, engineers can better assess how long a reactor can safely operate or determine what changes can be made to allow the reactor to run longer, the ORNL official said.

Related News

Abengoa, Acciona to start work on 110MW Cerro Dominador CSP plant in Chile

Cerro Dominador CSP Plant delivers 110MW concentrated solar power in Chile's Atacama Desert, with 10,600 heliostats, 17.5-hour molten salt storage, and 24/7 dispatchable energy; built by Acciona and Abengoa within a 210MW complex.

 

Key Points

A 110MW CSP solar-thermal plant in Chile with heliostats and 17.5h molten salt storage, delivering 24/7 dispatchable clean power.

✅ 110MW CSP with 17.5h molten salt for 24/7 dispatch

✅ 10,600 heliostats; part of a 210MW hybrid CSP+PV complex

✅ Built by Acciona and Abengoa; first of its kind in LatAm

 

A consortium formed by Spanish groups Abengoa and Acciona, as Spain's renewable sector expands with Enel's 90MW wind build activity, has signed a contract to complete the construction of the 110MW Cerro Dominador concentrated solar power (CSP) plant in Chile.

The consortium received notice to proceed to build the solar-thermal plant, which is part of the 210MW Cerro Dominador solar complex.

Under the contract, Acciona, which has 51% stake in the consortium and recently launched a 280 MW Alberta wind farm, will be responsible for building the plant while Abengoa will act as the technological partner.

Expected to be the first of its kind in Latin America upon completion, the plant is owned by Cerro Dominador, which in turn is owned by funds managed by EIG Global Energy Partners.

The project will add to a Abengoa-built 100MW PV plant, comparable to California solar projects in scope, which was commissioned in February 2018, to form a 210MW combined CSP and PV complex.

Spread across an area of 146 hectares, the project will feature 10,600 heliostats and will have capacity to generate clean and dispatachable energy for 24 hours a day using its 17.5 hours of molten salt storage technology, a field complemented by battery storage advances.

Expected to prevent 640,000 tons of CO2 emission, the plant is located in the commune of María Elena, in the Atacama Desert, in the Antofagasta Region.

“In total, the complex will avoid 870,000 tons of carbon dioxide emissions into the atmosphere every year and, in parallel with Enel's 450 MW U.S. wind operations, will deliver clean energy through 15-year energy purchase agreements with distribution companies, signed in 2014.

“The construction of the solarthermal plant of Cerro Dominador will have an important impact on local development, with the creation of more than 1,000 jobs in the area during its construction peak, and that will be priority for the neighbors of the communes of the region,” Acciona said in a statement.

The Cerro Dominador plant represents Acciona’s fifth solar thermal plant being built outside of Spain. The firm has constructed 10 solarthermal plants with total installed capacity of 624MW.

Acciona has been operating in Chile since 1993. The company, through its Infrastructure division, executed various construction projects for highways, hospitals, hydroelectric plants and infrastructures for the mining sector.

 

Related News

View more

Mines found at Ukraine's Zaporizhzhia nuclear plant, UN watchdog says

Zaporizhzhia Nuclear Plant Mines reported by IAEA at the Russian-occupied site: anti-personnel devices in a buffer zone, restricted areas; access limits to reactor rooftops and turbine halls heighten nuclear safety and security concerns in Ukraine.

 

Key Points

IAEA reports anti-personnel mines at Russian-held Zaporizhzhia, raising nuclear safety risks in buffer zones.

✅ IAEA observes mines in buffer zone at occupied site

✅ Restricted areas; no roof or turbine hall access granted

✅ Safety systems unaffected, but staff under pressure

 

The United Nations atomic watchdog said it saw anti-personnel mines at the site of Ukraine's Zaporizhzhia nuclear power plant which is occupied by Russian forces.

Europe's largest nuclear facility fell to Russian forces shortly after the invasion of Ukraine in February last year, as Moscow later sought to build power lines to reactivate it amid ongoing control of the area. Kyiv and Moscow have since accused each other of planning an incident at the site.

On July 23 International Atomic Energy Agency (IAEA) experts "saw some mines located in a buffer zone between the site's internal and external perimeter barriers," agency chief Rafael Grossi said in a statement on Monday.

The statement did not say how many mines the team had seen.

The devices were in "restricted areas" that operating plant personnel cannot access, Mr Grossi said, adding the IAEA's initial assessment was that any detonation "should not affect the site's nuclear safety and security systems".

Laying explosives at the site was "inconsistent with the IAEA safety standards and nuclear security guidance" and, amid controversial proposals on Ukraine's nuclear plants that have circulated internationally, created additional psychological pressure on staff, he added.

Ukrainians in Nikopol are out of water and within Russia's firing line. But Zaporizhzhia nuclear power plant could pose the biggest threat, even as Ukraine has resumed electricity exports to regional grids.

Last week the IAEA said its experts had carried out inspections at the plant, without "observing" the presence of any mines, although they had not been given access to the rooftops of the reactor buildings, while a possible agreement to curb attacks on plants was being discussed.

The IAEA had still not been given access to the roofs of the reactor buildings and their turbine halls, its latest statement said, even as a proposal to control Ukraine's nuclear plants drew scrutiny.

After falling into Russian hands, Europe's biggest power plant was targeted by gunfire and has been severed from the grid several times, raising nuclear risk warnings from the IAEA and others.

The six reactor units, which before the war produced around a fifth of Ukraine's electricity, have been shut down for months, prompting interest in wind power development as a harder-to-disrupt source.

 

Related News

View more

California’s Solar Power Cost Shift: A Misguided Policy Threatening Energy Equity

California Rooftop Solar Cost Shift examines PG&E rate hikes, net metering changes, and utility infrastructure spending impacts on low-income households, distributed generation, and clean energy adoption, potentially raising bills and undermining grid resilience.

 

Key Points

A claim that rooftop solar shifts fixed grid costs to others; critics cite PG&E rates, avoided costs, and impacts.

✅ PG&E rates outpace national average, underscoring cost drivers.

✅ Net metering cuts risk burdening low- and middle-income homes.

✅ Distributed generation avoids infrastructure spend and grid strain.

 

California is grappling with soaring electricity prices across the state, with Pacific Gas & Electric (PG&E) rates more than double the national average and increasing at an average of 12.5% annually over the past six years. In response, Governor Gavin Newsom issued an executive order directing state energy agencies to identify ways to reduce power costs. However, recent policy shifts targeting rooftop solar users may exacerbate the problem rather than alleviate it.

The "Cost Shift" Theory

A central justification for these pricing changes is the "cost shift" theory. This theory posits that homeowners with rooftop solar panels reduce their electricity consumption from the grid, thereby shifting the fixed costs of maintaining and operating the electrical grid onto non-solar customers. Proponents argue that this leads to higher rates for those without solar installations.

However, this theory is based on a flawed assumption: that PG&E owns 100% of the electricity generated by its customers and is entitled to full profits even for energy it does not deliver. In reality, rooftop solar users supply only about half of their energy needs and still pay for the rest. Moreover, their investments in solar infrastructure reduce grid strain and save ratepayers billions by avoiding costly infrastructure projects and reducing energy demand growth, aligning with efforts to revamp electricity rates to clean the grid as well.

Impact on Low- and Middle-Income Households

The majority of rooftop solar users are low- and middle-income households. These individuals often invest in solar panels to lower their energy bills and reduce their carbon footprint. Policy changes that undermine the financial viability of rooftop solar disproportionately affect these communities, and efforts to overturn income-based charges add uncertainty about affordability and access.

For instance, Assembly Bill 942 proposes to retroactively alter contracts for millions of solar consumers, cutting the compensation they receive from providing energy to the grid, raising questions about major changes to your electric bill that could follow if their home is sold or transferred. This would force those with solar leases—predominantly lower-income individuals—to buy out their contracts when selling their homes, potentially incurring significant financial burdens.

The Real Drivers of Rising Energy Costs

While rooftop solar users are being blamed for rising electricity rates, calls for action have mounted as the true culprits lie elsewhere. Unchecked utility infrastructure spending has been a significant factor in escalating costs. For example, PG&E's rates have increased rapidly, yet the utility's spending on infrastructure projects has often been criticized for inefficiency and lack of accountability. Instead of targeting solar users, policymakers should scrutinize utility profit motives and infrastructure investments to identify areas where costs can be reduced without sacrificing service quality.

California's approach to addressing rising electricity costs by targeting rooftop solar users is misguided. The "cost shift" theory is based on flawed assumptions and overlooks the substantial benefits that rooftop solar provides to the grid and ratepayers. To achieve a sustainable and equitable energy future, the state must focus on controlling utility spending, promoting clean energy access for all, especially as it exports its energy policies across the West, and ensuring that policies support—not undermine—the adoption of renewable energy technologies.

 

Related News

View more

IEA warns fall in global energy investment may lead to shortages

Global Energy Investment Decline risks future oil and electricity supply, says the IEA, as spending on upstream, coal plants, and grids falls while renewables, storage, and flexible generation lag in the energy transition.

 

Key Points

Multi-year cuts to oil, power, and grid spending that increase risks of future supply shortages and market tightness.

✅ IEA warns underinvestment risks oil supply squeeze

✅ China and India slow coal plant additions; renewables rise

✅ Batteries aid flexibility but cannot replace seasonal storage

 

An almost 20 per cent fall in global energy investment over the past three years could lead to oil and electricity shortages, as surging electricity demand persists, and there are concerns about whether current business models will encourage sufficient levels of spending in the future, according a new report.

The International Energy Agency’s second annual IEA benchmark analysis of energy investment found that while the world spent $US1.7 trillion ($2.2 trillion) on fossil-fuel exploration, new power plants and upgrades to electricity grids last year, with electricity investment surpassing oil and gas even as global energy investment was down 12 per cent from a year earlier and 17 per cent lower than 2014.

While the IEA said continued oversupply of oil and electricity globally would prevent any imminent shock, falling investment “points to a risk of market tightness and undercapacity at some point down the line’’.

The low crude oil price drove a 44 per cent drop in oil and gas investment between 2014 and 2016. It fell 26 per cent last year. It was due to falls in upstream activity and a slowdown in the sanctioning of conventional oilfields to the lowest level in more than 70 years.

“Given the depletion of existing fields, the pace of investment in conventional fields will need to rise to avoid a supply squeeze, even on optimistic assumptions about technology and the impact of climate policies on oil demand,’’ the IEA warned in its report released yesterday evening. “The energy transition has barely begun in several key sectors, such as transport and industry, which will continue to rely heavily on oil, gas and coal for the foreseeable future.’’

The fall in global energy spending also reflected declining investment in power generation, particularly from coal plants.

While 21 per cent of global ­energy investment was made by China in 2016, the world’s fastest growing economy had a 25 per cent decline in the commissioning of new coal-fired power plants, due largely to air pollution issues and investment in renewables.

Investment in new coal-fired plants also fell in India.

“India and China have slammed the brakes on coal-fired generation. That is the big change we have seen globally,’’ said ­Bruce Mountain a director at CME Australia.

“What it confirms is the ­pressures and the changes we are seeing in Australia, the restructuring of our energy supply, is just part of a global trend. We are facing the pressures more sharply in Australia because our power prices are very high. But that same shift in energy source in Australia are being mirrored internationally.’’ The IEA — a Paris-based adviser to the OECD on energy policy — also highlighted Australia’s reduced power reserves in its report and called for regulatory change to encourage greater use of renewables.

“Australia has one of the highest proportions of households with PV systems on their roof of any country in the world, and its ­electricity use in its National ­Electricity Market is spread out over a huge and weakly connected network,’’ the report said.

“It appears that a series of accompanying investments and regulatory changes are needed, including a plan to avoid supply threats, to use Australia’s abundant wind and solar potential: changing system operation methods and reliability procedures as well as investment into network capacity, flexible generation and storage.’’ The report found that in Australia there had been an increase in grid-scale installations mostly associated with large-scale solar PV plants.

Last month the Turnbull ­government revealed it was prepared to back the construction of new coal-fired power stations to prevent further shortfalls in electricity supplies, while the PM ruled out taxpayer-funded plants and declared it was open to using “clean coal” technology to replace existing generators.

He also pledged “immediate” ­action to boost the supply of gas by forcing exporters to divert ­production into the domestic ­market.

Since then technology billionaire Elon Musk has promised to solve South Australia’s energy ­issues by building the world’s largest lithium-ion battery in the state.

But the IEA report said batteries were unlikely to become a “one size fits all” single solution to ­electricity security and flexibility provision.

“While batteries are well-suited to frequency control and shifting hourly load, they cannot provide seasonal storage or substitute the full range of technical services that conventional plants provide to stabilise the system,’’ the report said.

“In the absence of a major technological breakthrough, it is most likely that batteries will complement rather than substitute ­conventional means of providing system flexibility. While conventional plants continue to provide essential system services, their business model is increasingly being called into question in ­unbundled systems.’’

 

Related News

View more

London Underground Power Outage Disrupts Rush Hour

London Underground Power Outage 2025 disrupted Tube lines citywide, with a National Grid voltage dip causing service suspensions, delays, and station closures; TfL recovery efforts spotlight infrastructure resilience, contingency planning, and commuter safety communications.

 

Key Points

A citywide Tube disruption on May 12, 2025, triggered by a National Grid voltage dip, exposing resilience gaps.

✅ Bakerloo, Waterloo & City, Northern suspended; Jubilee disrupted.

✅ Cause: brief National Grid fault leading to a voltage dip.

✅ TfL focuses on recovery, communication, and resilience upgrades.

 

On May 12, 2025, a significant power outage disrupted the London Underground during the afternoon rush hour, affecting thousands of commuters across the city. The incident highlighted vulnerabilities in the city's transport infrastructure, echoing a morning outage in London reported earlier, and raised concerns about the resilience of urban utilities.

The Outage and Its Immediate Impact

The power failure occurred around 2:30 PM, leading to widespread service suspensions and delays on several key Tube lines. The Bakerloo and Waterloo & City lines were completely halted, while the Jubilee line experienced disruptions between London Bridge and Finchley Road. The Northern line was also suspended between Euston and Kennington, as well as south of Stockwell. Additionally, Elizabeth Line services between Abbey Wood and Paddington were suspended. Some stations were closed for safety reasons due to the lack of power.

Commuters faced severe delays, with many stranded in tunnels or on platforms. The lack of information and communication added to the confusion, as passengers were left uncertain about the cause and duration of the disruptions.

Cause of the Power Failure

Transport for London (TfL) attributed the outage to a brief fault in the National Grid's transmission network. Although the fault was resolved within seconds, it caused a voltage dip that affected local distribution networks, leading to the power loss in the Underground system.

The incident underscored the fragility of the city's transport infrastructure, particularly the aging electrical and signaling systems that are vulnerable to such faults, as well as weather-driven events like a major windstorm outage that can trigger cascading failures. While backup systems exist, their capacity to handle sudden disruptions remains a concern.

Broader Implications for Urban Infrastructure

This power outage is part of a broader pattern of infrastructure challenges facing London. In March 2025, a fire at an electrical substation in Hayes led to the closure of Heathrow Airport, affecting over 200,000 passengers, while similar disruptions at BWI Airport have underscored aviation vulnerabilities. These incidents have prompted discussions about the resilience of the UK's energy and transport networks.

Experts argue that aging infrastructure, coupled with increasing demand and climate-related stresses, poses significant risks to urban operations, as seen in a North Seattle outage and in Toronto storm-related outages that tested local grids. There is a growing call for investment in modernization and diversification of energy sources to ensure reliability and sustainability.

TfL's Response and Recovery Efforts

Following the outage, TfL worked swiftly to restore services. By 11 PM, all but one line had resumed operations, with only the Elizabeth Line continuing to experience severe delays. TfL officials acknowledged the inconvenience caused to passengers and pledged to investigate the incident thoroughly, similar to the Atlanta airport blackout inquiry conducted after a major outage, to prevent future occurrences.

In the aftermath, TfL emphasized the importance of clear communication with passengers during disruptions and committed to enhancing its contingency planning and infrastructure resilience.

Public Reaction and Ongoing Concerns

The power outage sparked frustration among commuters, many of whom took to social media to express their dissatisfaction, echoing sentiments during Houston's extended outage about communication gaps and delays. Some passengers reported being trapped in tunnels for extended periods without clear guidance from staff.

The incident has reignited debates about the adequacy of London's transport infrastructure and the need for comprehensive upgrades. While TfL has initiated reviews and improvement plans, the public remains concerned about the potential for future disruptions and the city's preparedness to handle them.

The May 12 power outage serves as a stark reminder of the vulnerabilities inherent in urban infrastructure. As London continues to grow and modernize, ensuring the resilience of its transport and energy networks will be crucial. This includes investing in modern technologies, enhancing communication systems, and developing robust contingency plans to mitigate the impact of future disruptions. For now, Londoners are left reflecting on the lessons learned from this incident and hoping for a more reliable and resilient transport system in the future.

 

 

Related News

View more

Biden Imposes Higher Tariffs on Chinese Electric Cars and Solar Cells

U.S. Tariffs on Chinese EVs and Solar Cells target trade imbalances, subsidies, and intellectual property risks, bolstering domestic manufacturing, supply chains, and national security across clean energy, automotive technology, and renewable markets.

 

Key Points

Policy measures raising duties on Chinese EVs and solar cells to protect U.S. industry, IP, and national security.

✅ Raises duties to counter subsidies and IP risks

✅ Supports domestic EV and solar manufacturing jobs

✅ May reshape supply chains, prices, and trade flows

 

In a significant move aimed at bolstering domestic industries and addressing trade imbalances, the Biden administration has announced higher tariffs on Chinese-made electric cars and solar cells. This decision marks a strategic shift in U.S. trade policy, with market observers noting EV tariffs alongside industrial and financial implications across sectors today.

Tariffs on Electric Cars

The imposition of tariffs on Chinese electric cars comes amidst growing competition in the global electric vehicle (EV) market. U.S. automakers and policymakers have raised concerns about unfair trade practices, subsidies, and market access barriers faced by American EV manufacturers in China amid escalating trade tensions with key partners. The tariffs aim to level the playing field and protect U.S. interests in the burgeoning electric vehicle sector.

Impact on Solar Cells

Similarly, higher tariffs on Chinese solar cells address concerns regarding intellectual property theft, subsidies, and market distortions in the solar energy industry, where tariff threats have influenced investment signals across North American markets.

The U.S. solar sector, a key player in renewable energy development, has called for measures to safeguard fair competition and promote domestic manufacturing of solar technologies.

Economic and Political Implications

The tariff hikes underscore broader economic tensions between the United States and China, spanning trade, technology, and geopolitical issues. While aimed at protecting American industries, these tariffs could lead to retaliatory measures from China and impact global supply chains, particularly in renewable energy and automotive sectors, as North American electricity exports at risk add to uncertainty across markets.

Industry and Market Responses

Industry stakeholders have responded with mixed reactions to the tariff announcements. U.S. automakers and solar manufacturers supportive of the tariffs argue they will help level the playing field and encourage domestic production. However, critics warn of potential energy price spikes for consumers, supply chain disruptions, and unintended consequences for global clean energy goals.

Strategic Considerations

The Biden administration's tariff policy reflects a broader strategy to promote economic resilience, innovation, and national security in critical industries, even as cross-border electricity exports become flashpoints in trade policy debates today.

Efforts to strengthen domestic supply chains, invest in renewable energy infrastructure, and foster international partnerships remain central to U.S. economic competitiveness and climate objectives.

Future Outlook

Looking ahead, navigating U.S.-China trade relations will continue to be a complex challenge for policymakers. Balancing economic interests, diplomatic engagements, and environmental priorities, alongside regional public support for tariffs, will shape future trade policy decisions affecting electric vehicles, renewable energy, and technology sectors globally.

Conclusion

The Biden administration's decision to impose higher tariffs on Chinese electric cars and solar cells represents a strategic response to economic and geopolitical dynamics reshaping global markets. While aimed at protecting American industries and promoting fair trade practices, the tariffs signal a commitment to fostering competitiveness, innovation, and sustainability in critical sectors of the economy. As these measures unfold, stakeholders will monitor their impact on industry dynamics, supply chain resilience, and international trade relations in the evolving landscape of global commerce.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified