Hydro One wants to spend another $6-million to redesign bills


hydro one logo

NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today

Hydro One Bill Redesign Spending sparks debate over Ontario Energy Board regulation, rate applications, privatization, and digital billing upgrades, as surveys cite confusing invoices under the Fair Hydro Plan for residential, commercial, and industrial customers.

 

Key Points

$15M project to simplify Hydro One bills, upgrade systems, and improve digital billing for commercial customers.

✅ $9M spent; $6M proposed for C&I and large-account changes.

✅ OEB to rule amid rate application and privatization scrutiny.

✅ Survey: 40% of customers struggled to understand bills.

 

Ontario's largest and recently privatized electricity utility has spent $9-million to redesign bills and is proposing to spend an additional $6-million on the project.

Hydro One has come under fire for spending since the Liberal government sold more than half of the company, notably for its CEO's $4.5-million pay.

Now, the NDP is raising concerns with the $15-million bill redesign expense contained in a rate application from the formerly public utility.

"I don't think the problem we face is a bill that people can't understand, I think the problem is rates that are too high," said energy critic Peter Tabuns. "Fifteen million dollars seems awfully expensive to me."

But Hydro One says a 2016 survey of its customers indicated about 40 per cent had trouble understanding their bills.

Ferio Pugliese, the company's executive vice-president of customer care and corporate affairs, said the redesign was aimed at giving customers a simpler bill.

"The new format is a format that when tested and put in front of our customers has been designed to give customers the four or five salient items they want to see on their bill," he said.

About $9-million has already gone into redesigning bills, mostly for residential customers, Pugliese said. Cosmetic changes to bills account for about 25 per cent of the cost, with the rest of the money going toward updating information systems and improving digital billing platforms, he said.

The additional $6-million Hydro One is looking to spend would go toward bill changes mostly for its commercial, industrial and large distribution account customers.

Energy Minister Glenn Thibeault noted in a statement that the Ontario Energy Board has yet to decide on the expense, but he suggested he sees the bill redesign as necessary alongside legislation to lower electricity rates introduced by the province.

"With Ontarians wanting clearer bills that are easier to understand, Hydro One's bill redesign project is a necessary improvement that will help customers," he wrote.

"Reductions from the Fair Hydro Plan (the government's 25 per cent cut to bills last year) are important information for both households and businesses, and it's our job to provide clear, helpful answers whenever possible."

The OEB recently ordered Hydro One to lower a rate increase it had been seeking for this year to 0.2 per cent down from 4.8 per cent.

The regulator also rejected a Hydro One proposal to give shareholders all of the tax savings generated by the IPO in 2015 when the Liberal government first began partially privatizing the utility. The OEB instead mandated shareholders receive 62 per cent of the savings while ratepayers receive the remaining 38 per cent.

 

 

Related News

Related News

EVs could drive 38% rise in US electricity demand, DOE lab finds

EV-Driven Electricity Demand Growth will reshape utilities through electrification, EV adoption, grid modernization, and ratebasing of charging, as NREL forecasts rising terawatt-hours, CAGR increases, and demand-side flexibility to manage emissions and reliability.

 

Key Points

Growth in power consumption fueled by EV adoption and electrification, increasing utility sales and grid investment.

✅ NREL projects 20%-38% higher U.S. load by 2050

✅ Utilities see CAGR up to 1.6% and 80 TWh/year growth

✅ Demand-side flexibility and EV charging optimize grids

 

Utilities have struggled with flat demand for years, but analysis by the National Renewable Energy Laboratory predicts steady growth across the next three decades — largely driven by the adoption of electric vehicles, including models like the Tesla Model 3 that are reshaping expectations.

The study considers three scenarios, a reference case and medium- and high-adoption electrification predictions. All indicate demand growth, but in the medium and high scenarios for 2050, U.S. electricity consumption increases by 20% and 38%, respectively, compared to business as usual.

Utilities could go from stagnant demand to compound annual growth rates of 1.6%, which would amount to sustained absolute growth of 80 terawatt-hours per year.

"This unprecedented absolute growth in annual electricity consumption can significantly alter supply-side infrastructure development requirements," the report says, and could challenge state power grids in multiple regions.

NREL's Trieu Mai, principal investigator for the study, cautions that more research is needed to fully assess the drivers and impacts of electrification, "as well as the role and value of demand-side flexibility."

"Although we extensively and qualitatively discuss the potential drivers and barriers behind electric technology adoption in the report, much more work is needed to quantitatively understand these factors," Mai said in a statement.

However, utilities have largely bought into the dream.

"Electric vehicles are the biggest opportunity we see right now," Energy Impact Partners CEO Hans Kobler told Utility Dive. And the impact could go beyond just higher kilowattt-hour sales, particularly as electric truck fleets come online.

"When the transportation sector is fully electrified, it will result in around $6 trillion in investment," Kobler said. "Half of that is on the infrastructure side of the utility." And the industry can also benefit through ratebasing charging stations and managing the new demand.

One benefit that NREL's report points to is the possibility of "expanded value streams enabled by electric and/or grid-connected technologies," such as energy storage and mobile chargers that enhance flexibility.

"Many electric utilities are carefully watching the trend toward electrification, as it has the potential to increase sales and revenues that have stagnated or fallen over the past decade," the report said, highlighting potential benefits for all customers as adoption grows. "Beyond power system planning, other motivations to study electrification include its potential to impact energy security, emissions, and innovation in electrical end-use technologies and overall efficient system integration. The impacts of electrification could be far-reaching and have benefits and costs to various stakeholders."

 

Related News

View more

Americans Keep Using Less and Less Electricity

U.S. Electricity Demand Decoupling signals GDP growth without higher load, driven by energy efficiency, LED adoption, services-led output, and rising renewables integration with the grid, plus EV charging and battery storage supporting decarbonization.

 

Key Points

GDP grows as electricity use stays flat, driven by efficiency, renewables, and a shift toward services and output.

✅ LEDs and codes cut residential and commercial load intensity.

✅ Wind, solar, and gas gain share as coal and nuclear struggle.

✅ EVs and storage can grow load and enable grid decarbonization.

 

By Justin Fox

Economic growth picked up a little in the U.S. in 2017. But electricity use fell, with electricity sales projections continuing to decline, according to data released recently by the Energy Information Administration. It's now been basically flat for more than a decade:


 

Measured on a per-capita basis, electricity use is in clear decline, and is already back to the levels of the mid-1990s.

 


 

Sources: U.S. Energy Information Administration, U.S. Bureau of Economic Analysis

*Includes small-scale solar generation from 2014 onward

 

I constructed these charts to go all the way back to 1949 in part because I can (that's how far back the EIA data series goes) but also because it makes clear what a momentous change this is. Electricity use rose and rose and rose and then ... it didn't anymore.

Slower economic growth since 2007 has been part of the reason, but the 2017 numbers make clear that higher gross domestic product no longer necessarily requires more electricity, although the Iron Law of Climate is often cited to suggest rising energy use with economic growth. I wrote a column last year about this big shift, and there's not a whole lot new to say about what's causing it: mainly increased energy efficiency (driven to a remarkable extent by the rise of LED light bulbs), and the continuing migration of economic activity away from making tangible things and toward providing services and virtual products such as games and binge-watchable TV series (that are themselves consumed on ever-more-energy-efficient electronic devices).

What's worth going over, though, is what this means for those in the business of generating electricity. The Donald Trump administration has made saving coal-fired electric plants a big priority; the struggles of nuclear power plants have sparked concern from multiple quarters. Meanwhile, U.S. natural gas production has grown by more than 40 percent since 2007, thanks to hydraulic fracturing and other new drilling techniques, while wind and solar generation keep making big gains in cost and market share. And this is all happening within the context of a no-growth electricity market.

In China, a mystery in China's electricity data has complicated global comparisons.

 

Here are the five main sources of electric power in the U.S.:


 

The big story over the past decade has been coal and natural gas trading places as the top fuel for electricity generation. Over the past year and a half coal regained some of that lost ground as natural gas prices rose from the lows of early 2016. But with overall electricity use flat and production from wind and solar on the rise, that hasn't translated into big increases in coal generation overall.

Oh, and about solar. It's only a major factor in a few states (California especially), so it doesn't make the top five. But it's definitely on the rise.

 

 

What happens next? For power generators, the best bet for breaking out of the current no-growth pattern is to electrify more of the U.S. economy, especially transportation. A big part of the attraction of electric cars and trucks for policy-makers and others is their potential to be emissions-free. But they're only really emissions-free if the electricity used to charge them is generated in an emissions-free manner -- creating a pretty strong business case for continuing "decarbonization" of the electric industry. It's conceivable that electric car batteries could even assist in that decarbonization by storing the intermittent power generated by wind and solar and delivering it back onto the grid when needed.

I don't know exactly how all this will play out. Nobody does. But the business of generating electricity isn't going back to its pre-2008 normal. 

 

Related News

View more

After alert on Russian hacking, a renewed focus on protecting U.S. power grid

U.S. Power Grid Cybersecurity combats DHS-FBI flagged threats to energy infrastructure, with PJM Interconnection using ICS/SCADA segmentation, phishing defenses, incident response, and resilience exercises against Russia-linked attacks and pipeline intrusions.

 

Key Points

Strategies, controls, and training that protect U.S. electric infrastructure from cyber threats and disruptions.

✅ ICS/SCADA network segmentation and zero-trust architecture

✅ Employee phishing drills and incident response playbooks

✅ DOE-led grid exercises and threat intelligence sharing

 

The joint alert from the FBI and Department of Homeland Security last month warning that Russia was hacking into critical U.S. energy infrastructure, as outlined in six essential reads on Russian hacks from recent coverage, came as no surprise to the nation’s largest grid operator, PJM Interconnection.

“You will never stop people from trying to get into your systems. That isn’t even something we try to do.” said PJM Chief Information Officer, Tom O’Brien. “People will always try to get into your systems. The question is, what controls do you have to not allow them to penetrate? And how do you respond in the event they actually do get into your system?”

PJM is the regional transmission organization for 65 million people, covering 13 states, including Pennsylvania, and Washington D.C.

On a rainy day in early April, about 10 people were working inside PJM’s main control center, outside Philadelphia, closely monitoring floor-to-ceiling digital displays showing real-time information from the electric power sector throughout PJM’s territory in the mid-Atlantic and parts of the midwest, amid reports that hackers accessed control rooms at U.S. utilities.

#google#

Donnie Bielak, a reliability engineering manager, was overseeing things from his office, perched one floor up.

“This is a very large, orchestrated effort that goes unnoticed most of the time,” Bielak said. “That’s a good thing.”

But the industry certainly did take notice in late 2015 and early 2016, when hackers successfully disrupted power to the Ukrainian grid. The outages lasted a few hours and affected about 225,000 customers. It was the first publicly-known case of a cyber attack causing major disruptions to a power grid. It was widely blamed on Russia.

One of the many lessons of the Ukraine attacks was a reminder to people who work on critical infrastructure to keep an eye out for odd communications.

“A very large percentage of entry points to attacks are coming through emails,” O’Brien said. “That’s why PJM, as well as many others, have aggressive phishing campaigns. We’re training our employees.”

O’Brien doesn’t want to get into specifics about how PJM deals with cyber threats. But one common way to limit exposure is by having separate systems: For example, industrial controls in a power plant are not connected to corporate business networks, a separation underscored after breaches at U.S. power plants prompted reviews across the sector.

Since 2011, North American grid operators and government agencies have also done large, security exercises every two years. Thousands of people practice how they’d respond to a coordinated physical or cyber event, including rising substation attacks that highlight resilience gaps.

So far, nothing like that has happened in the U.S. It’s possible, but not likely, according to Robert M. Lee, a former military intelligence analyst, who runs the industrial cybersecurity firm Dragos.

“The more complex the system, the harder it is to have a scalable attack,” said Lee, who co-authored a report analyzing the Ukraine attacks. “If you wanted to take out a power generation station– that isn’t the most complex thing. Let’s say you cause an hour of outage. But now you want to cause two months of outages? That’s an exponential increase in effort required.”

For example, he said, it would very difficult for hackers to knock out power to the entire east coast for a long time. But briefly disrupting a major city is easier. That’s the sort of thing that keeps him up at night.

“I worry about an adversary getting into, maybe, Washington D.C.’s portion of the grid, taking down power for 30 minutes,” he said.

The Department of Energy is creating a new office focused on cybersecurity and emergency response, following the U.S. government’s condemnation of power grid hacking by Russia.

Deterrence may be one reason why there has not yet been a major attack on the U.S. grid, said John MacWilliams, a former senior DOE official who’s now a fellow at Columbia University’s Center on Global Energy Policy.

“That’s obviously an act of war,” he said. “We have the capability of responding either through cyber mechanisms or kinetic military.”

In the meantime, small-scale incidents keep happening.

This spring, another cyber attack targeted natural gas pipelines. Four companies shut down their computer systems, just in case, but they say no service was disrupted.

 

Related News

View more

Kaspersky Lab Discovers Russian Hacker Infrastructure

Crouching Yeti APT targets energy infrastructure with watering-hole attacks, compromising servers to steal credentials and stage intrusions; Kaspersky Lab links the Energetic Bear group to ICS threats across Russia, US, Europe, and Turkey.

 

Key Points

Crouching Yeti APT, aka Energetic Bear, is a threat group that targets energy firms using watering-hole attacks.

✅ Targets energy infrastructure via watering-hole compromises

✅ Uses open-source tools and backdoored sshd for persistence

✅ Scans global servers to stage intrusions and steal credentials

 

A hacker collective known for attacking industrial companies around the world have had some of their infrastructure identified by Russian security specialists.

Kaspersky Lab said that it has discovered a number of servers compromised by the group, belonging to different organisations based in Russia, the US, and Turkey, as well as European countries.

The Russian-speaking hackers, known as Crouching Yeti or Energetic Bear, mostly focus on energy facilities, as seen in reports of infiltration of the U.S. power grid targeting critical infrastructure, for the main purpose of stealing valuable data from victim systems.

 

Hacked servers

Crouching Yeti is described as an advanced persistent threat (APT) group that Kaspersky Lab has been tracking since 2010.

#google#

Kaspersky Lab said that the servers it has compromised are not just limited to industrial companies. The servers were hit in 2016 and 2017 with different intentions. Some were compromised to gain access to other resources or to be used as intermediaries to conduct attacks on other resources.

Others, including those hosting Russian websites, were used as watering holes.

It is a common tactic for Crouching Yeti to utilise watering hole attacks where the attackers inject websites with a link redirecting visitors to a malicious server.

“In the process of analysing infected servers, researchers identified numerous websites and servers used by organisations in Russia, US, Europe, Asia and Latin America that the attackers had scanned with various tools, possibly to find a server that could be used to establish a foothold for hosting the attackers’ tools and to subsequently develop an attack,” said the security specialists in a blog posting.

“The range of websites and servers that captured the attention of the intruders is extensive,” the firm said. “Kaspersky Lab researchers found that the attackers had scanned numerous websites of different types, including online stores and services, public organisations, NGOs, manufacturing, etc.

Kaspersky Lab said that the hackers used publicly available malicious tools, designed for analysing servers, and for seeking out and collecting information. The researchers also found a modified sshd file with a preinstalled backdoor. This was used to replace the original file and could be authorised with a ‘master password’.

“Crouching Yeti is a notorious Russian-speaking group that has been active for many years and is still successfully targeting industrial organisations through watering hole attacks, among other techniques,” explained Vladimir Dashchenko, head of vulnerability research group at Kaspersky Lab ICS CERT.

 

Russian government?

“Our findings show that the group compromised servers not only for establishing watering holes, but also for further scanning, and they actively used open-sourced tools that made it much harder to identify them afterwards,” he said.

“The group’s activities, such as initial data collection, the theft of authentication data, and the scanning of resources, are used to launch further attacks,” said Dashchenko. “The diversity of infected servers and scanned resources suggests the group may operate in the interests of the third parties.”

This may well tie into a similar conclusion from a rival security vendor.

In 2014 CrowdStrike claimed that the ‘Energetic Bear’ group was also tracked in Symantec's Dragonfly research and had been hacking foreign companies on behalf of the Russian state.

The security vendor had said the group had been carrying out attacks on foreign companies since 2012, with reports of breaches at U.S. power plants that underscored the campaign, and there was evidence that these operations were sanctioned by the Russian government.

Last month the United States for the first time publicly accused Russia in a condemnation of Russian grid hacking of attacks against the American power grid.

Symantec meanwhile warned last year of a resurgence in cyber attacks on European and US energy companies, including reports of access to U.S. utility control rooms that could result in widespread power outages.

And last July the UK’s National Cyber Security Centre (NCSC) acknowledged it was investigating a broad wave of attacks on companies in the British energy and manufacturing sectors.

 

Related News

View more

EU Smart Meters Spur Growth in the Customer Analytics Market

EU Smart Meter Analytics integrates AMI data with grid edge platforms, enabling back-office efficiency, revenue assurance, and customer insights via cloud and PaaS solutions, while system integration cuts costs and improves utility performance.

 

Key Points

EU smart meter analytics uses AMI data and cloud to improve utility performance, revenue assurance, and outcomes.

✅ AMI underpins grid edge analytics and utility IT/OT integration

✅ Cloud and PaaS reduce costs and scale data-driven applications

✅ Focus shifts from meter rollout to back-office and revenue analytics

 

Europe's investment in smart meters has begun to open up the market for analytics that benefit both utilities and customers.

Two new reports from GTM Research demonstrate the substantial investment in both advanced metering infrastructure (AMI) and specific customer analytics segments -- the first report analyzes the progress of AMI deployment in Europe, while the second is a comprehensive assessment of analytics use cases, including AI in utility operations, enabled by or interacting with AMI.

The Third Energy Package mandated EU member states to perform a cost-benefit analysis to evaluate the economic viability of deploying smart meters and broader grid modernization costs across member states. Two-thirds of the member states found there was a net positive result, while seven members found negative or inconclusive results.

“The mandate spurred AMI deployment in the EU, but all member states are deploying some AMI. Even without an overall positive cost-benefit outcome, utilities found pockets of customers where there is a positive business case for AMI,” said Paulina Tarrant, research associate at GTM Research and lead author of “Racing to 2020: European Policy, Deployment and Market Share Primer.”

Annual AMI contracting peaked in 2013 -- two years after the mandate -- with 29 million contracted that year. Today, 100 million meters have been contracted overall. As member states reach their respective targets, the AMI market will cool in Europe and spending on analytics and applications will continue to ramp up, aligning with efforts to invest in smarter infrastructure across the sector, Tarrant noted.

Between 2017 and 2021, more than $30 billion will be spent on utility back-office and revenue-assurance analytics in the EU, reflecting the shift toward the digital grid architecture, according to GTM Research’s Grid Edge Customer Utility Analytics Ecosystems: Competitive Analysis, Forecasts and Case Studies.

The report examines the broad landscape of customer analytics showing how AMI interacts with the larger IT/OT environment of a utility.

“The benefits of AMI expand beyond revenue assurance -- in fact, AMI represents the backbone of many customer utility analytics and grid edge solutions,” said Timotej Gavrilovic, author of the Grid Edge Customer Utility Ecosystems report.

Integration is key, according to the report.

“Technology providers are integrating data sets, solutions and systems and partnering with others to provide a one-stop shop serving broad utility needs, increasing efficiencies and reducing costs,” Gavrilovic said. “Cloud-based deployments and platform-as-a-service offerings are becoming commonplace, creating an opportunity for utilities to balance the cost versus performance tradeoff to optimize their analytics systems and applications.”

A diverse array of customer analytics applications is a critical foundation for demonstrating the positive cost-benefit of AMI.

“Advanced analytics and applications are key to ensuring that AMI investments provide a positive return after smart meters are initiated,” said Tarrant. “Improved billing and revenue assurance was not enough everywhere to show customer benefit -- these analytics packages will leverage the distributed network infrastructure, including advanced inverters used with distributed energy resources, and subsequent increased data access, uniting the electricity markets of the EU.”

 

Related News

View more

Dutch produce more green electricity but target still a long way off

Netherlands renewable energy progress highlights rising wind energy and solar power output, delivering 17 billion kWh of green electricity from sustainable sources, yet trailing EU targets, with wind providing 60% and solar 34%.

 

Key Points

It is the country's growth in green electricity, led by wind and solar, yet short of EU targets at 13.8% of generation.

✅ 17 billion kWh green output; 13.8% of total generation

✅ Wind energy up 16% to 9.6 billion kWh; 60% of green power

✅ Solar power up about 13%; 34% of renewable production

 

The Netherlands is generating more electricity from sustainable sources as US renewable record 28% in April underscores broader momentum but is still far from reaching its targets, the national statistics office CBS said on Friday.

In total, the Netherlands produced 17 billion kilowatts of green energy last year, a rise of 10% on 2016. Sustainable sources now account for 13.8 per cent of energy generation, even as solar reshapes prices in Northern Europe across the region.

The biggest growth was in wind energy – up 16 per cent to 9.6 billion kWh – or the equivalent of energy for three million households. Wind energy now accounts for 60 per cent of green Dutch power. The amount of solar power, which accounts for 34% of green energy production, rose almost 13 per cent, and Dutch solar outpaces Canada according to recent reports.

In January, European statistics agency Eurostat said the Netherlands is near the bottom of a new table on renewable energy use in Europe. The EU has a target of a fifth of all energy use from green sources by 2020 and – while some countries have reached their own targets, including Germany's 50% clean power milestones – the Dutch, French and Irish need to increase their rates by at least 6%, Eurostat said, and Ireland has set green electricity goals for the next four years to close the gap.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified