ABB wins $20 million HVDC refurbishment order

By Electricity Forum


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
ABB has won an order worth about $20 million from Vermont Electrical Power Company VELCO to refurbish a more than 25-year old HVDC high-voltage direct current transmission station.

The original station was delivered by ABB in 1985. The order was booked in the first quarter.

ABB will modernize the Highgate back-to-back converter station, which links the electrical systems of the state of Vermont and the province of Quebec. A contract to import hydropower to Vermont from Quebec has recently been extended for another 25 years.

The project’s scope includes the installation of ABB’s state-of-the-art control and protection system MACH2, and replacement of the valves and valve cooling system. The planned outage time for the link is only 21 days – an important factor that will minimize the impact of the station being out of service. The upgraded station is expected to be in operation by the end of 2012.

“The upgrade of the HVDC station will bring greater transmission efficiency, improve stability and provide greater security of power supply,” said Martin Gross, head of ABB’s Grid Systems business, a part of the Power Systems division. “It will also facilitate the transfer of clean hydropower from Canada.”

The MACH2 system is the world's most popular control system for HVDC and FACTS with over 700 systems in operation. It is extensively used across a range of installations from highly demanding HVDC Light installations, to large HVDC power links with power ratings of over 6,400 megawatts MW.

Related News

Electric vehicles are a hot topic in southern Alberta

Canada Electric Vehicle Adoption is accelerating as EV range doubles, fast-charging networks expand along the Trans-Canada Highway, and drivers shift from internal combustion to clean transportation to cut emissions and support climate goals.

 

Key Points

Canada Electric Vehicle Adoption reflects rising EV uptake, longer range, and expanding fast-charging infrastructure.

✅ Average EV range in Canada has nearly doubled in six years.

✅ Fast chargers expanding along Trans-Canada and major corridors.

✅ Gasoline and diesel demand projected to fall sharply by 2040.

 

As green technology for vehicles continues to grow in popularity, with a recent EV event in Regina drawing strong interest, attendance at a seminar in southern Alberta Wednesday showed plenty people want to switch to electric.

FreeU, a series of informal education sessions about electric power and climate change, including electricity vs hydrogen considerations, helped participants to learn more about the world-changing technology.

Also included at the talks was a special electric vehicle meet up, where people interested in the technology could learn about it, first hand, from drivers who've already gone gasless despite EV shortages and wait times in many regions.

"That's kind of a warning or a caution or whatever you want to call it. You get addicted to these things and that's a good example."

James Byrne, a professor of geography at the University of Lethbridge says people are much more willing these days to look to alternatives for their driving needs, though cost remains a key barrier for many.

"The internal combustion engine is on its way out. It served us well, but electric vehicles are much cleaner, aligning with Canada's EV goals set by policymakers today."

According to the Canada Energy Regulator, the average range of electric vehicles in Canada have almost doubled in the past six years.

The agency also predicts a massive decrease in gasoline and diesel use (359 petajoules and 92 petajoules respectively) in Canada by 2040. In that same timeframe, electricity use, even though fossil-fuel share remains, is expected to increase by 118 petajoules.

The country is also developing its network of fast charging stations, so running out of juice will be less of a worry for prospective buyers, even as 2035 EV mandate debate continues among analysts.

"They have just about Interstate in the U.S. covered," Marshall said. "In Canada, they're building out the [Trans-Canada Highway] right now."

 

Related News

View more

Ontario Launches Largest Competitive Energy Procurement in Province’s History

Ontario Competitive Energy Procurement accelerates renewables, boosts grid reliability, and invites competitive bids across solar, wind, natural gas, and storage, driving innovation, lower costs, and decarbonization to meet rising electricity demand and ensure power supply.

 

Key Points

Ontario Competitive Energy Procurement is a competitive bidding program to deliver reliable, low-carbon electricity.

✅ Competitive bids from renewables, gas, and storage

✅ Targets grid reliability, affordability, and emissions

✅ Phased evaluations: technical, financial, environmental

 

Ontario has recently marked a significant milestone in its energy sector with the launch of what is being touted as the largest competitive energy procurement process in the province’s history. This ambitious initiative is set to transform the province’s energy landscape through a broader market overhaul that fosters innovation, enhances reliability, and addresses the growing demands of Ontario’s diverse population.

A New Era of Energy Procurement

The Ontario government’s move to initiate this massive competitive procurement process underscores a strategic shift towards modernizing and diversifying the province’s energy portfolio. This procurement exercise will invite bids from a broad spectrum of energy suppliers and technologies, ranging from traditional sources like natural gas to renewable energy options such as solar and wind power. The aim is to secure a reliable and cost-effective energy supply that aligns with Ontario’s long-term environmental and economic goals.

This historic procurement process represents a major leap from previous approaches by emphasizing a competitive marketplace where various energy providers can compete on an equal footing through electricity auctions and transparent bidding. By doing so, the government hopes to drive down costs, encourage technological advancements, and ensure that Ontarians benefit from a more dynamic and resilient energy system.

Key Objectives and Benefits

The primary objectives of this procurement initiative are multifaceted. First and foremost, it seeks to enhance the reliability of Ontario’s electricity grid. As the province experiences population growth and increased energy demands, maintaining a stable and dependable supply of electricity is crucial, and interprovincial imports through an electricity deal with Quebec can complement local generation. This procurement process will help identify and integrate new sources of power that can meet these demands effectively.

Another significant goal is to promote environmental sustainability. Ontario has committed to reducing its greenhouse gas emissions through Clean Electricity Regulations and transitioning to a cleaner energy mix. By inviting bids from renewable energy sources and innovative technologies, the government aims to support its climate action plan and contribute to the province’s carbon reduction targets.

Cost-effectiveness is also a central focus of the procurement process. By creating a competitive environment, the government anticipates that energy providers will strive to offer more attractive pricing structures and fair electricity cost allocation practices for ratepayers. This, in turn, could lead to lower energy costs for consumers and businesses, fostering economic growth and improving affordability.

The Competitive Landscape

The competitive energy procurement process will be structured to encourage participation from a wide range of energy providers. This includes not only established companies but also emerging players and startups with innovative technologies. By fostering a diverse pool of bidders, the government aims to ensure that all viable options are considered, ultimately leading to a more robust and adaptable energy system.

Additionally, the process will likely involve various stages of evaluation, including technical assessments, financial analyses, and environmental impact reviews. This thorough evaluation will help ensure that selected projects meet the highest standards of performance and sustainability.

Implications for Stakeholders

The implications of this procurement process extend beyond just energy providers and consumers. Local communities, businesses, and environmental organizations will all play a role in shaping the outcomes. For communities, this initiative could mean new job opportunities and economic development, particularly in regions where new energy projects are developed. For businesses, the potential for lower energy costs and access to innovative energy solutions, including demand-response initiatives like the Peak Perks program, could drive growth and competitiveness.

Environmental organizations will be keenly watching the process to ensure that it aligns with broader sustainability goals. The inclusion of renewable energy sources and advanced technologies will be a critical factor in evaluating the success of the initiative in meeting Ontario’s climate objectives.

Looking Ahead

As Ontario embarks on this unprecedented energy procurement journey, the outcomes will be closely watched by various stakeholders. The success of this initiative will depend on the quality and diversity of the bids received, the efficiency of the evaluation process, and the ability to integrate new energy sources into the existing grid, while advancing energy independence where feasible.

In conclusion, Ontario’s launch of the largest competitive energy procurement process in its history is a landmark event that holds promise for a more reliable, sustainable, and cost-effective energy future. By embracing competition and innovation, the province is setting a new standard for energy procurement that could serve as a model for other regions seeking to modernize their energy systems. The coming months will be crucial in determining how this bold initiative will shape Ontario’s energy landscape for years to come.

 

Related News

View more

Working From Home Will Drive Up Electricity Bills for Consumers

Remote Work Energy Costs are rising as home offices and telecommuting boost electricity bills; utilities, broadband usage, and COVID-19-driven stay-at-home policies affect productivity, consumption patterns, and household budgets across the U.K. and Europe.

 

Key Points

Remote Work Energy Costs are increased household electricity and utility expenses from telecommuting and home office use.

✅ WFH shifts energy load from offices to households.

✅ Higher device, lighting, and heating/cooling usage drives bills.

✅ Broadband access gaps limit remote work equity.

 

Household electricity bills are set to soar, with rising residential electricity use tied to the millions of people now working at home to avoid catching the coronavirus.

Running laptops and other home appliances will cost consumers an extra 52 million pounds ($60 million) each week in the U.K., according to a study from Uswitch, a website that helps consumers compare the energy prices that utilities charge.

For each home-bound household, the pain to the pocketbook may be about 195 pounds per year extra, even as some utilities pursue pandemic cost-cutting to manage financial pressures.

The rise in price for households comes even as overall demand is falling rapidly in Europe, with wide swaths of the economy shut down to keep workers from gathering in one place, and the U.S. grid overseer issuing warnings about potential pandemic impacts on operations.

People stuck at home will plug in computers, lights and appliances when they’d normally be at the office, increasing their consumption.

With the Canadian government declaring a state of emergency due to the coronavirus, companies are enabling work-from-home structures to keep business running and help employees follow social distancing guidelines, and some utilities have even considered housing critical staff on site to maintain operations. However, working remotely has been on the rise for a while.

“The coronavirus is going to be a tipping point. We plodded along at about 10% growth a year for the last 10 years, but I foresee that this is going to really accelerate the trend,” Kate Lister, president of Global Workplace Analytics.

Gallup’s State of the Workplace 2017 study found that 43% of employees work remotely with some frequency. Research indicates that in a five-day workweek, working remotely for two to three days is the most productive. That gives the employee two to three days of meetings, collaboration and interaction, with the opportunity to just focus on the work for the other half of the week.

Remote work seems like a logical precaution for many companies that employ people in the digital economy, even as some federal agencies sparked debate with an EPA telework policy during the pandemic. However, not all Americans have access to the internet at home, and many work in industries that require in-person work.

According to the Pew Research Center, roughly three-quarters of American adults have broadband internet service at home. However, the study found that racial minorities, older adults, rural residents and people with lower levels of education and income are less likely to have broadband service at home. In addition, 1 in 5 American adults access the internet only through their smartphone and do not have traditional broadband access. 

Full-time employees are four times more likely to have remote work options than part-time employees. A typical remote worker is college-educated, at least 45 years old and earns an annual salary of $58,000 while working for a company with more than 100 employees, according to Global Workplace Analytics, and in Canada there is growing interest in electricity-sector careers among younger workers. 

New York, California and other states have enacted strict policies for people to remain at home during the coronavirus pandemic, which could change the future of work, and Canadian provinces such as Saskatchewan have documented how the crisis has reshaped local economies across sectors.

“I don’t think we’ll go back to the same way we used to operate,” Jennifer Christie, chief HR officer at Twitter, told CNBC. “I really don’t.”

 

Related News

View more

Texans to vote on funding to modernize electricity generation

Texas Proposition 7 Energy Fund will finance ERCOT grid reliability via loans and grants for new on-demand natural gas plants, maintenance, and modernization, administered by the Public Utility Commission of Texas after Winter Storm Uri.

 

Key Points

State-managed fund providing loans and grants to expand and upgrade ERCOT power generation for grid reliability.

✅ $7.2B incentives for new dispatchable plants in ERCOT

✅ Administered by Public Utility Commission of Texas

✅ Aims to prevent outages like Winter Storm Uri

 

Texans are set to vote on Tuesday on a constitutional amendment to determine whether the state will create a special fund for financing the "construction, maintenance, and modernization of its electric generating facilities."

The energy fund would be administered and used only by the Public Utility Commission of Texas to provide loans and grants to maintain and upgrade electric generating facilities and improve electricity reliability across the state.

The biggest chunk of the fund, $7.2 billion, would go into loans and incentives to build new power-generating facilities in the ERCOT (Electric Reliability Council of Texas) region, where ERCOT has issued an RFP for winter capacity to address seasonal concerns.

The proposal, titled Proposition 7, is one of several electricity market reforms under consideration by lawmakers and regulators in Texas to avoid another energy crisis like the one caused by a deadly winter storm in February 2021.

That storm, known as Winter Storm Uri, left millions without power, water and heat for days as ERCOT struggled to prevent a grid collapse after the shutdown of an unusually large amount of generation, and bailout proposals soon surfaced in the Legislature as the market reeled.

Pablo Vegas, president and CEO of ERCOT, emphasized the grid has become more “volatile” given the current resources, as the Texas power grid faces recurring challenges.

“The complexities of managing a growing demand, and a very dynamic load environment with those types of resources becomes more and more challenging,” Vegas said Tuesday during a meeting of the ERCOT board of directors.

Vegas said one solution to overcome the challenge is investing in power production that is available on demand, like power plants fueled by natural gas. Those plants can help during times when the need for electricity strains the supply.

“With the passing of Proposition 7 on the ballot this November, we’ll see those incentives combined to incentivize a more balanced development strategy going forward,” Vegas told board members.

If Proposition 7 is passed by voters, it would enact S.B. 2627, which establishes an advisory committee to oversee the fund and the various projects it could be used for, amid severe-heat blackout risks that affect the broader U.S. $5 billion would be transferred from the General Revenue Fund to the Texas Energy Fund if Proposition 7 passes.

Opposition for Proposition 7 comes from the Lone Star chapter of the Sierra Club, an environmental organization based in Austin and which has issued a statement on Gov. Abbott's demands regarding grid policy. Cyrus Reed, conservation director of the Lone Star chapter, said the Texas energy fund is slated to benefit private utilities to build gas plants using taxpayer’s money.

 

Related News

View more

Turning thermal energy into electricity

Near-Field Thermophotovoltaics captures radiated energy across a nanoscale gap, using thin-film photovoltaic cells and indium gallium arsenide to boost power density and efficiency, enabling compact Army portable power from emitters via radiative heat transfer.

 

Key Points

A nanoscale TPV method capturing near-field photons for higher power density at lower emitter temperatures.

✅ Nanoscale gap boosts radiative transfer and usable photon flux

✅ Thin-film InGaAs cells recycle sub-band-gap photons via reflector

✅ Achieved ~5 kW/m2 power density with higher efficiency

 

With the addition of sensors and enhanced communication tools, providing lightweight, portable power has become even more challenging, with concepts such as power from falling snow illustrating how diverse new energy-harvesting approaches are. Army-funded research demonstrated a new approach to turning thermal energy into electricity that could provide compact and efficient power for Soldiers on future battlefields.

Hot objects radiate light in the form of photons into their surroundings. The emitted photons can be captured by a photovoltaic cell and converted to useful electric energy. This approach to energy conversion is called far-field thermophotovoltaics, or FF-TPVs, and has been under development for many years; however, it suffers from low power density and therefore requires high operating temperatures of the emitter.

The research, conducted at the University of Michigan and published in Nature Communications, demonstrates a new approach, where the separation between the emitter and the photovoltaic cell is reduced to the nanoscale, enabling much greater power output than what is possible with FF-TPVs for the same emitter temperature.

This approach, which enables capture of energy that is otherwise trapped in the near-field of the emitter is called near-field thermophotovoltaics or NF-TPV and uses custom-built photovoltaic cells and emitter designs ideal for near-field operating conditions, alongside emerging smart solar inverters that help manage conversion and delivery.

This technique exhibited a power density almost an order of magnitude higher than that for the best-reported near-field-TPV systems, while also operating at six-times higher efficiency, paving the way for future near-field-TPV applications, including remote microgrid deployments in extreme environments, according to Dr. Edgar Meyhofer, professor of mechanical engineering, University of Michigan.

"The Army uses large amounts of power during deployments and battlefield operations and must be carried by the Soldier or a weight constrained system," said Dr. Mike Waits, U.S. Army Combat Capabilities Development Command's Army Research Laboratory. "If successful, in the future near-field-TPVs could serve as more compact and higher efficiency power sources for Soldiers as these devices can function at lower operating temperatures than conventional TPVs."

The efficiency of a TPV device is characterized by how much of the total energy transfer between the emitter and the photovoltaic cell is used to excite the electron-hole pairs in the photovoltaic cell, where insights from near-light-speed conduction research help contextualize performance limits in semiconductors. While increasing the temperature of the emitter increases the number of photons above the band-gap of the cell, the number of sub band-gap photons that can heat up the photovoltaic cell need to be minimized.

"This was achieved by fabricating thin-film TPV cells with ultra-flat surfaces, and with a metal back reflector," said Dr. Stephen Forrest, professor of electrical and computer engineering, University of Michigan. "The photons above the band-gap of the cell are efficiently absorbed in the micron-thick semiconductor, while those below the band-gap are reflected back to the silicon emitter and recycled."

The team grew thin-film indium gallium arsenide photovoltaic cells on thick semiconductor substrates, and then peeled off the very thin semiconductor active region of the cell and transferred it to a silicon substrate, informing potential interfaces with home battery systems for distributed use.

All these innovations in device design and experimental approach resulted in a novel near-field TPV system that could complement distributed resources in virtual power plants for resilient operations.

"The team has achieved a record ~5 kW/m2 power output, which is an order of magnitude larger than systems previously reported in the literature," said Dr. Pramod Reddy, professor of mechanical engineering, University of Michigan.

Researchers also performed state-of-the-art theoretical calculations to estimate the performance of the photovoltaic cell at each temperature and gap size, informing hybrid designs with backup fuel cell solutions that extend battery life, and showed good agreement between the experiments and computational predictions.

"This current demonstration meets theoretical predictions of radiative heat transfer at the nanoscale, and directly shows the potential for developing future near-field TPV devices for Army applications in power and energy, communication and sensors," said Dr. Pani Varanasi, program manager, DEVCOM ARL that funded this work.

 

Related News

View more

Nord Stream: Norway and Denmark tighten energy infrastructure security after gas pipeline 'attack'

Nord Stream Pipeline Sabotage triggers Baltic Sea gas leaks as Norway and Denmark tighten energy infrastructure security, offshore surveillance, and exclusion zones, after drone sightings near platforms and explosions reported by experts.

 

Key Points

An alleged attack causing Baltic gas leaks and heightened energy security measures in Norway and Denmark.

✅ Norway boosts offshore and onshore site security

✅ Denmark enforces 5 nm exclusion zone near leaks

✅ Drones spotted; police probe sabotage and safety breaches

 

Norway and Denmark will increase security and surveillance around their energy infrastructure sites after the alleged sabotage of Russia's Nord Stream gas pipeline in the Baltic Sea, as the EU pursues a plan to dump Russian energy to safeguard supplies. 

Major leaks struck two underwater natural gas pipelines running from Russia to Germany, which has moved to a 200 billion-euro energy shield amid surging prices, with experts reporting that explosions rattled the Baltic Sea beforehand.

Norway -- an oil-rich nation and Europe's biggest supplier of gas -- will strengthen security at its land and offshore installations, even as it weighs curbing electricity exports to avoid shortages, the country's energy minister said.

The Scandinavian country's Petroleum Safety Authority also urged vigilance on Monday after unidentified drones were seen flying near Norway's offshore oil and gas platforms.

"The PSA has received a number of warnings/notifications from operator companies on the Norwegian Continental Shelf concerning the observation of unidentified drones/aircraft close to offshore facilities" the agency said in a statement.

"Cases where drones have infringed the safety zone around facilities are now being investigated by the Norwegian police."

Meanwhile Denmark will increase security across its energy sector after the Nord Stream incident, as wider market strains, including Germany's struggling local utilities, ripple across Europe, a spokesperson for gas transmission operator Energinet told Upstream.

The Danish Maritime Agency has also imposed an exclusion zone for five nautical miles around the leaks, warning ships of a danger they could lose buoyancy, and stating there is a risk of the escaping gas igniting "above the water and in the air," even as Europe weighs emergency electricity measures to limit prices.

Denmark's defence minister said there was no cause for security concerns in the Baltic Sea region.

"Russia has a significant military presence in the Baltic Sea region and we expect them to continue their sabre-rattling," Morten Bodskov said in a statement.

Video taken by a Danish military plane on Tuesday afternoon showed the extent of one of gas pipeline leaks, with the surface of the Baltic bubbling up as gas escapes, highlighting Europe's energy crisis for global audiences:

Meanwhile police in Sweden have opened a criminal investigation into "gross sabotage" of the Nord Stream 1 and Nord Stream 2 pipelines, and Sweden's crisis management unit was activated to monitor the situation. The unit brings together representatives from different government agencies. 

Swedish Foreign Minister Ann Linde had a call with her Danish counterpart Jeppe Kofod on Tuesday evening, and the pair also spoke with Norwegian Foreign Minister Anniken Huitfeldt on Wednesday, as the bloc debates gas price cap strategies to address the crisis, with Kofod saying there should be a "clear and unambiguous EU statement about the explosions in the Baltic Sea." 

"Focus now on uncovering exactly what has happened - and why. Any sabotage against European energy infrastructure will be met with a robust and coordinated response," said Kofod. 

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.