Japan vows to stabilize stricken plant

By Toronto Star


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
Japan said it will stabilize and shut down its stricken nuclear power plant in six to nine months, as planned, as residents of two more towns around it evacuated amid concerns about accumulated radiation.

The governmentÂ’s timeline for stabilizing the plant was called into question after new data showed that the damage to one reactor at the Fukushima Daiichi nuclear complex was worse than expected.

That assessment also prompted the government to acknowledge that the reactorÂ’s fuel rods had mostly melted soon after the March 11 earthquake and tsunami knocked out the plantÂ’s cooling system.

Until all the reactors are safely shut down, they continue to leak radiation, though in much smaller amounts than in the early days of the disaster.

Still, the sheer volume of contaminants spewed from the plant — and their buildup in places outside the 20-kilometre evacuation zone — persuaded the government to order residents to leave more towns in late April. Some of those evacuations have already begun.

In a rare bit of good news, authorities said that their original timeline for stabilizing the reactors is achievable because the temperature inside the Unit 1 reactor core has fallen to nearly 100 Celsius, a level considered safe and close to a cold shutdown.

“We believe we can stick to the current time frame,” said Goshi Hosono, the prime minister’s aide and nuclear crisis task force director, referring to the timeline laid out in April of bringing the plants three troubled reactors to a cold and stable shutdown in six to nine months.

“What’s crucial is how we can proceed with cooling. Even though the cores had melted, they are somewhat kept cool,” Hosono said.

The plant, operated by the Tokyo Electric Power Co., is still leaking a massive amount of contaminated water — just one of many problems facing workers who have been trying to bring it under control the last two months.

Hosono said that a similar meltdown had probably occurred Units 2 and 3 as they were both out of water for more than six hours after the March 11 power outage. Unit 1Â’s reactor core was out of water for more than 14 hours, he revealed.

Most of the fuel in Unit 1 has melted and slumped to the bottom of the pressure vessel that holds the rods together, and some of that ate through the vessel and trickled into the large beaker-shaped containment vessel, officials said.

Meanwhile, about 50 residents from Kawamata and four families from Iitate have already vacated their homes and began to adjust to life in evacuation centres after leaving their homes on previous government orders.

The towns are among several that have registered relatively high radiation readings but are outside a previous 20-km radius evacuation zone around the nuclear plant.

In late April, the government said residents in these areas should prepare to evacuate over the coming month due to concerns about cumulative radiation.

Officials in Iitate said they intend to have most of the townÂ’s residents evacuated by the end of the month. The scenic, rural village had a population of 6,500 before the earthquake and about 2,000 people have already moved out voluntarily.

Four families with babies or pregnant women left the town, according to an Iitate official who did not give his name because he was not authorized to speak to the media.

He said it is difficult to estimate how many people remain in the town because many are evacuating on their own and the village does not have details on their circumstances.

Officials said they have not set an exact date for the final evacuations because some residents may have trouble leaving — because they own livestock or for other reasons — and may require extra time.

Related News

US power coalition demands action to deal with Coronavirus

Renewable Energy Tax Incentive Extensions urged by US trade groups to offset COVID-19 supply chain delays, tax equity shortages, and financing risks, enabling direct pay, PTC and ITC qualification, and standalone energy storage credits.

 

Key Points

Policy measures that extend and monetize clean energy credits to counter COVID-19 disruptions and financing shortfalls.

✅ Extend start construction and safe harbor deadlines

✅ Enable direct pay to offset reduced tax equity

✅ Add a standalone energy storage credit

 

Renewable energy and other trade bodies in the US are calling on Capitol Hill to extend provision of tax incentives to help the sector “surmount the impacts” of the COVID-19 crisis facing clean energy.

In a signed joint letter, the American Council on Renewable Energy (ACORE), American Wind Energy Association (AWEA), Energy Storage Association (ESA), National Hydropower Association (NHA), Renewable Energy Buyers Alliance (REBA), and the Solar Energy Industries Association (SEIA) stated: “With over $50bn in annual investment over each of the past five years, the clean energy sector is one of the nation’s most important economic drivers. But that growth is placed at risk by a range of COVID-19 related impacts”.

These include “supply chain disruptions that have the potential to delay utility solar construction timetables and undermine the ability of wind, solar and hydropower developers to qualify for time-sensitive tax credits, and a sudden reduction in the availability of tax equity, which is crucial to monetising tax credits and financing clean energy projects of all types.”
The letter goes onto state: “Like all sectors of our economy the renewable and clean grid industry – including developers, manufacturers, construction workers, electric utilities, investors and major corporate consumers of renewable power – needs stability.

“The current uncertainty about the ability to qualify for and monetise tax incentives will have real and substantial negative impacts to the entire economy.

On behalf of the thousands of companies that participate in America’s renewable and clean energy economy, the coalition of organisations is requesting the US Government, echoing Senate calls to support clean energy, take three “critical” steps to address pandemic-related disruptions.

The first is an extension of start construction and safe harbour deadlines to ensure that renewable projects can qualify for renewable tax credits amid the Solar ITC extension debate and despite delays associated with supply chain disruptions.

The second is the implementation of provisions that will allow renewable tax credits to be available for direct pay to facilitate their monetisation, supporting U.S. solar and wind growth in the face of reduced availability of tax equity.

Thirdly, the signatories have requested the enactment of a direct pay tax credit for standalone energy storage to foster renewable growth as the industry sets sights on market majority and help secure a more resilient grid.

 

Related News

View more

Balancing Act: Germany's Power Sector Navigates Energy Transition

Germany January Power Mix shows gas-fired generation rising, coal steady, and nuclear phaseout impacts, amid cold weather, energy prices, industrial demand, and emissions targets shaping renewables, grid stability, and security of supply.

 

Key Points

The January electricity mix, highlighting gas, coal, renewables, and nuclear exit effects on emissions, prices, and demand.

✅ Gas output up 13% to 8.74 TWh, share at 18.6%.

✅ Coal share 23%, down year on year, steady vs late 2023.

✅ Nuclear gap filled by gas and coal; emissions below Jan 2023.

 

Germany's electricity generation in January presented a fascinating snapshot of its energy transition journey. As the country strives to move away from fossil fuels, with renewables overtaking coal and nuclear in its power mix, it grapples with the realities of replacing nuclear power and meeting fluctuating energy demands.

Gas Takes the Lead:

Gas-fired power plants saw their highest output in two years, generating 8.74 terawatt hours (TWh). This 13% increase compared to January 2023 compensated for the closure of nuclear reactors, which were extended during the energy crisis to shore up supply, and colder weather driving up heating needs. This reliance on gas, however, pushed its share in the electricity mix to 18.6%, highlighting Germany's continued dependence on fossil fuels.

Coal Fades, but Not Forgotten:

While gas surged, coal-fired generation remained below previous levels, dropping 29% from January 2023. However, it stayed relatively flat compared to late 2023, suggesting utilities haven't entirely eliminated it. Coal still held a 23% share, and periodic coal reliance remains evident, exceeding gas' contribution, reflecting its role as a reliable backup for intermittent renewable sources like wind.

Nuclear Void and its Fallout:

The shutdown of nuclear plants in April 2023 created a significant gap, previously accounting for an average of 12% of annual electricity output. This loss is being compensated through gas and coal, with gas currently the preferred choice, even as a nuclear option debate persists among policymakers. This strategy kept January's power sector emissions lower than the previous year, but rising demand could shift the balance.

Industry's Uncertain Impact:

Germany's industrial sector, a major energy consumer, is facing challenges like high energy prices and weak consumer demand. While the government aims to foster industrial recovery, uncertainties linger due to a shaky coalition and limited budget, and debate about a possible nuclear resurgence continues in parallel, which could reshape policy. Any future industrial revival would likely increase energy demand and potentially necessitate more gas or coal.

Cost-Driven Choices and Emission Concerns:

The choice between gas and coal depends on their relative costs, in a system pursuing a coal and nuclear phase-out under long-term policy. Currently, gas seems more favorable emission-wise, but if its price rises, coal might become more attractive, impacting overall emissions.

Looking Ahead:

Germany's energy transition faces a complex balancing act, with persistent grid expansion woes and exposure to cheap gas complicating progress. While the reliance on gas and coal highlights the difficulties in replacing nuclear, the focus on emissions reduction is encouraging. Navigating the challenges of affordability, industrial needs, and climate goals will be crucial for a successful transition to a clean and secure energy future.

 

Related News

View more

How Energy Use Has Evolved Throughout U.S. History

U.S. Energy Transition traces the shift from coal and oil to natural gas, nuclear power, and renewables like wind and solar, driven by efficiency, grid modernization, climate goals, and economic innovation.

 

Key Points

The U.S. Energy Transition is the shift from fossil fuels to cleaner power, driven by tech, policy, and markets.

✅ Shift from coal and oil to gas, nuclear, wind, and solar

✅ Enabled by grid modernization, storage, and efficiency

✅ Aims to cut emissions while ensuring reliability and affordability

 

The evolution of energy use in the United States is a dynamic narrative that reflects technological advancements, economic shifts, environmental awareness, and societal changes over time. From the nation's early reliance on wood and coal to the modern era dominated by oil, natural gas, and renewable sources, the story of energy consumption in the U.S. is a testament to innovation and adaptation.

Early Energy Sources: Wood and Coal

In the early days of U.S. history, energy needs were primarily met through renewable resources such as wood for heating and cooking. As industrialization took hold in the 19th century, coal emerged as a dominant energy source, fueling steam engines and powering factories, railways, and urban growth. The widespread availability of coal spurred economic development and shaped the nation's infrastructure.

The Rise of Petroleum and Natural Gas

The discovery and commercialization of petroleum in the late 19th century transformed the energy landscape once again. Oil quickly became a cornerstone of the U.S. economy, powering transportation, industry, and residential heating, and informing debates about U.S. energy security in policy circles. Concurrently, natural gas emerged as a significant energy source, particularly for heating and electricity generation, as pipelines expanded across the country.

Electricity Revolution

The 20th century witnessed a revolution in electricity generation and consumption, and understanding where electricity comes from helps contextualize how systems evolved. The development of hydroelectric power, spurred by projects like the Hoover Dam and Tennessee Valley Authority, provided clean and renewable energy to millions of Americans. The widespread electrification of rural areas and the proliferation of appliances in homes and businesses transformed daily life and spurred economic growth.

Nuclear Power and Energy Diversification

In the mid-20th century, nuclear power emerged as a promising alternative to fossil fuels, promising abundant energy with minimal greenhouse gas emissions. Despite concerns about safety and waste disposal, nuclear power plants became a significant part of the U.S. energy mix, providing a stable base load of electricity, even as the aging U.S. power grid complicates integration of variable renewables.

Renewable Energy Revolution

In recent decades, the U.S. has seen a growing emphasis on renewable energy sources such as wind, solar, and geothermal power, yet market shocks and high fuel prices alone have not guaranteed a rapid green revolution, prompting broader policy and investment responses. Advances in technology, declining costs, and environmental concerns have driven investments in clean energy infrastructure and policies promoting renewable energy adoption. States like California and Texas lead the nation in wind and solar energy production, demonstrating the feasibility and benefits of transitioning to sustainable energy sources.

Energy Efficiency and Conservation

Alongside shifts in energy sources, improvements in energy efficiency and conservation have played a crucial role in reducing per capita energy consumption and greenhouse gas emissions. Energy-efficient appliances, building codes, and transportation innovations have helped mitigate the environmental impact of energy use while reducing costs for consumers and businesses, and weather and economic factors also influence demand; for example, U.S. power demand fell in 2023 on milder weather, underscoring the interplay between efficiency and usage.

Challenges and Opportunities

Looking ahead, the U.S. faces both challenges and opportunities in its energy future, as recent energy crisis effects ripple across electricity, gas, and EVs alike. Addressing climate change requires further investments in renewable energy, grid modernization, and energy storage technologies. Balancing energy security, affordability, and environmental sustainability remains a complex task that requires collaboration between government, industry, and society.

Conclusion

The evolution of energy use throughout U.S. history reflects a continuous quest for innovation, economic growth, and environmental stewardship. From wood and coal to nuclear power and renewables, each era has brought new challenges and opportunities in meeting the nation's energy needs. As the U.S. transitions towards a cleaner and more sustainable energy future, leveraging technological advancements and embracing policy solutions, amid debates over U.S. energy dominance, will be essential in shaping the next chapter of America's energy story.

 

Related News

View more

Electric vehicles to transform the aftermarket … eventually

Heavy-Duty Truck Electrification is disrupting the aftermarket as diesel declines: fewer parts, regenerative braking, emissions rules, e-drives, gearboxes, and software engineering needs reshape service demand, while ICE fleets persist for years.

 

Key Points

Transition of heavy trucks to EV systems, reducing parts and emissions while reshaping aftermarket service and skills.

✅ 33% fewer parts; regenerative braking slashes brake wear

✅ Diesel share declines; EVs and natural gas slowly gain

✅ Aftermarket shifts to e-drives, gearboxes, software and service

 

Those who sell parts and repair trucks might feel uneasy when reports emerge about a coming generation of electric trucks.

There are reportedly about 33% fewer parts to consider when internal combustion engines and transmissions are replaced by electric motors. Features such as regenerative braking are expected to dramatically reduce brake wear. As for many of the fluids needed to keep components moving? They can remain in their tanks and drums.

Think of them as disruptors. But presenters during the annual Heavy Duty Aftermarket Dialogue are stressing that the changes are not coming overnight. Chris Patterson, a consultant and former Daimler Trucks North America CEO, noted that the Daimler electrification plan underscores the shift as he counts just 50 electrified heavy trucks in North America.

About 88% of today’s trucks run on diesel, with the remaining 12% mostly powered by gasoline, said John Blodgett, MacKay and Company’s vice-president of sales and marketing. Five years out, even amid talk of an EV inflection point, he expects 1% to be electric, 2% to be natural gas, 12% to be gasoline, and 84% on diesel.

But a decade from now, forecasts suggest a split of 76% diesel, 11% gasoline, 7% electric, and 5% natural gas, with a fraction of a percent relying on hydrogen-electric power. Existing internal combustion engines will still be in service, and need to be serviced, but aftermarket suppliers are now preparing for their roles in the mix, especially as Canada’s EV opportunity comes into focus for North American players.

“This is real, for sure,” said Delphi Technologies CEO Rick Dauch.

Aftermarket support is needed
“As programs are launched five to six years from now, what are the parts coming back?” he asked the crowd. “Braking and steering. The fuel injection business will go down, but not for 20-25 years.” The electric vehicles will also require a gear box and motor.

“You still have a business model,” he assured the crowd of aftermarket professionals.

Shifting emissions standards are largely responsible for the transformation that is occurring. In Europe, Volkswagen’s diesel emissions scandal and future emissions rules of Euro 7 will essentially sideline diesel-powered cars, even as electric buses have yet to take over transit systems. Delphi’s light-duty diesel business has dropped 70% in just five years, leading to plant closures in Spain, France and England.

“We’ve got a billion-dollar business in electrification, last year down $200 million because of the downturn in light-duty diesel controllers,” Dauch said. “We think we’re going to double our electrification business in five years.”

That has meant opening five new plants in Eastern European markets like Turkey, Romania and Poland alone.

Deciding when the market will emerge is no small task, however. One new plant in China offered manufacturing capacity in July 2019, but it has yet to make any electric vehicle parts, highlighting mainstream EV challenges tied to policy shifts, because the Chinese government changed the incentive plans for electric vehicles.

‘All in’ on electric vehicles
Dana has also gone “all in” on electrification, said chairman and CEO Jim Kamsickas, referring to Dana’s work on e-drives with Kenworth and Peterbilt. Its gasket business is focusing on the needs of battery cooling systems and enclosures.

But he also puts the demand for new electric vehicle systems in perspective. “The mechanical piece is still going to be there.”

The demand for the new components and systems, however, has both companies challenged to find enough capable software engineers. Delphi has 1,600 of them now, and it needs more.

“Just being a motor supplier, just being an inverter supplier, just being a gearbox supplier itself, yes you’ll get value out of that. But in the longhaul you’re going to need to have engineers,” Kamsickas said of the work to develop systems.

Dauch noted that Delphi will leave the capital-intensive work of producing batteries to other companies in markets like China and Korea. “We’re going to make the systems that are in between – inverters, chargers, battery management systems,” he said.

Difficult change
But people working for European companies that have been built around diesel components are facing difficult days. Dauch refers to one German village with a population of 1,200, about 800 of whom build diesel engine parts. That business is working furiously to shift to producing gasoline parts.

Electrification will face hurdles of its own, of course. Major cities around the world are looking to ban diesel-powered vehicles by 2050, but they still lack the infrastructure needed to charge all the cars and truck fleet charging at scale, he added.

Kamsickas welcomes the disruptive forces.

“This is great,” he said. “It’s making us all think a little differently. It’s just that business models have had to pivot – for you, for us, for everybody.”

They need to be balanced against other business demands, including evolving cross-border EV collaboration dynamics, too.

Said Kamsickas: “Working through the disruption of electrification, it’s how do you financially manage that? Oh, by the way, the last time I checked there are [company] shareholders and stakeholders you need to take care of.”

“It’s going to be tough,” Dauch agreed, referring to the changes for suppliers. “The next three to four years are really going to be game changes. “There’ll be some survivors and some losers, that’s for sure.”

 

Related News

View more

EPA, New Taipei spar over power plant

Shenao Power Plant Controversy intensifies as the EPA, Taipower, and New Taipei officials clash over EIA findings, a marine conservation area, fisheries, public health risks, and protests against a coal-fired plant in Rueifang.

 

Key Points

Dispute over coal plant EIA, marine overlap, and health risks, pitting EPA and Taipower against New Taipei and residents.

✅ EPA approved EIA changes; city cites marine conservation conflict

✅ Rueifang residents protest; 400+ signatures, wardens oppose

✅ Debate centers on fisheries, public health, and coal plant impacts

 

The controversy over the Shenao Power Plant heated up yesterday as Environmental Protection Administration (EPA) and New Taipei City Government officials quibbled over the project’s potential impact on a fisheries conservation area and other issues, mirroring New Hampshire hydropower clashes seen elsewhere.

State-run Taiwan Power Co (Taipower) wants to build a coal-fired plant on the site of the old Shenao plant, which was near Rueifang District’s (瑞芳) Shenao Harbor.

The company’s original plan to build a new plant on the site passed an environmental impact assessment (EIA) in 2006, similar to how NEPA rules function in the US, and the EPA on March 14 approved the firm’s environmental impact difference analysis report covering proposed changes to the project.

#google#

That decision triggered widespread controversy and protests by local residents, environmental groups and lawmakers, echoing enforcement disputes such as renewable energy pollution cases reported in Maryland.

The controversy reached a new peak after New Taipei City Mayor Eric Chu on Tuesday last week posted on Facebook that construction of wave breakers for the project would overlap with a marine conservation area that was established in November 2014.

The EPA and Taipower chose to ignore the demarcation lines of the conservation area, Chu wrote.

Dozens of residents from Rueifang and other New Taipei City districts yesterday launched a protest at 9am in front of the Legislative Yuan in Taipei, amid debates similar to the Maine power line proposal in the US, where the Health, Environment and Labor Committee was scheduled to review government reports on the project.

More than 400 Rueifang residents have signed a petition against the project, including 17 of the district’s 34 borough wardens, Anti-Shenao Plant Self-Help Group director Chen Chih-chiang said.

Ruifang residents have limited access to information, and many only became aware of the construction project after the EPA’s March 14 decision attracted widespread media coverage, Chen said,

Most residents do not support the project, despite Taipower’s claims to the contrary, Chen said.

New Power Party Executive Chairman Huang Kuo-chang, who represents Rueifang and adjacent districts, said the EPA has shown an “arrogance of power” by neglecting the potential impact on public health and the local ecology of a new coal-fired power plant, even as it moves to revise coal wastewater limits elsewhere.

Huang urged residents in Taipei, Keelung, Taoyaun and Yilan County to reject the project.

If the New Taipei City Government was really concerned about the marine conservation area, it should have spoken up at earlier EIA meetings, rather than criticizing the EIA decision after it was passed, Environmental Protection Administration Deputy Minister Chan Shun-kuei told lawmakers at yesterday’s meeting.

Chan said he wondered if Chu was using the Shenao project for political gain.

However, New Taipei City Environmental Protection Department specialist Sun Chung-wei  told lawmakers that the Fisheries Agency and other experts voiced concerns about the conservation area during the first EIA committee meeting on the proposed changes to the Shenao project on June 15 last year.

Sun was invited to speak to the legislative committee by Chinese Nationalist Party (KMT) Legislator Arthur Chen.

While the New Taipei City Fisheries and Fishing Port Affairs Management Office did not present a “new” opinion during later EIA committee meetings, that did not mean it agreed to the project, Sun said.

However, Chan said that Sun was using a fallacious argument and trying to evade responsibility, as the conservation area had been demarcated by the city government.

 

Related News

View more

Energy storage poised to tackle grid challenges from rising EVs as mobile chargers bring new flexibility

EV Charging Grid Readiness addresses how rising EV adoption, larger batteries, and fast charging affect electric utilities, using vehicle-to-grid, energy storage, mobile and temporary chargers, and smart charging to mitigate distribution stress.

 

Key Points

Planning and tech to manage EV load growth with V2G, storage and smart charging to avoid overloads on distribution grids.

✅ Lithium-ion costs may drop 60%, enabling new charger models

✅ Mobile and temporary chargers buffer local distribution peaks

✅ Smart charging and V2G defer transformer and feeder upgrades

 

The impacts of COVID-19 likely mean flat electric vehicle (EV) sales this year, but a trio of new reports say the long-term outlook is for strong growth — which means the electric grid and especially state power grids will need to respond.

As EV adoption grows, newer vehicles will put greater stress on the electric grid due to their larger batteries and capacity for faster charging, according to Rhombus Energy Solutions, while a DOE lab finds US electricity demand could rise 38% as EV adoption scales. A new white paper from the company predicts the cost of lithium-ion batteries will drop by 60% over the next decade, helping enable a new set of charging solutions.

Meanwhile, mobile and temporary EV charging will grow from 0.5% to 2% of the charging market by 2030, according to new Guidehouse research. The overall charging market is expected to reach reach almost $16 billion in revenues in 2020 and more than $60 billion by 2030. ​A third report finds long-range EVs are growing their share of the market as well, and charging them could cause stress to electric distribution systems. 

"One can expect that the number of EVs in fleets will grow very rapidly over the next ten years," according to Rhombus' report. But that means many fleet staging areas will have trouble securing sufficient charging capacity as electric truck fleets scale up.

"Given the amount of time it takes to add new megawatt-level power feeds in most cities (think years), fleet EVs will run into a significant 'power crisis' by 2030," according to Rhombus.

"Grid power availability will become a significant problem for fleets as they increase the number of electric vehicles they operate," Rhombus CEO Rick Sander said in a statement. "Integrating energy storage with vehicle-to-grid capable chargers and smart [energy management system] solutions as seen in California grid stability efforts is a quick and effective mitigation strategy for this issue."

Along with energy storage, Guidehouse says a new, more flexible approach to charger deployment enabled by grid coordination strategies will help meet demand. That means chargers deployed by a van or other mobile stations, and "temporary" chargers that can help fleets expand capacity. 

According to Guidehouse, the temporary units "are well positioned to de-risk large investments in stationary charging infrastructure" while also providing charge point networks and service providers "with new capabilities to flexibly supply predictable changes in EV transportation behaviors and demand surges."

"Mobile charging is a bit of a new area in the EV charging scene. It primarily leverages batteries to make chargers mobile, but it doesn't necessarily have to," Guidehouse Senior Research Analyst Scott Shepard told Utility Dive. 

"The biggest opportunity is with the temporary charging format," said Shepard. "The bigger units are meant to be located at a certain site for a period of time. Those units are interesting because they create a little more scale-ability for sites and a little risk mitigation when it comes to investing in a site."

"Utilities could use temporary chargers as a way to provide more resilient service, using these chargers in line with on-site generation," Shepard said.

Increasing rates of EV adoption, combined with advances in battery size and charging rates, "will impact electric utility distribution infrastructure at a higher rate than previously projected," according to new analysis from FleetCarma.

The charging company conducted a study of over 3,900 EVs, illustrating the rapid change in vehicle capabilities in just the last five years. According to FleetCarma, today's EVs use twice as much energy and draw it at twice the power level. The long-range EV has increased as a proportion of new electric vehicle sales from 14% in 2014 to 66% in 2019 in the United States, it found.

Long-range EVs "are very different from older electric vehicles: they are driven more, they consume more energy, they draw power at a higher level and they are less predictable," according to FleetCarma.

Guidehouse analysts say grid modernization efforts and energy storage can help smooth the impacts of charging larger vehicles. 

Mobile and temporary charging solutions can act as a "buffer" to the distribution grid, according to Guidehouse's report, allowing utilities to avoid or defer some transmission and distribution upgrade costs that could be required due to stress on the grid from newer vehicles.

"At a high level, there's enough power and energy to supply EVs with proper management in place," said Shepard. "And in a lot of different locations, those charging deployments will be built in a way that protects the grid. Public fast charging, large commercial sites, they're going to have the right infrastructure embedded."

"But for certain areas of the grid where there is low visibility, there is the potential for grid disruption and questions about whether the UK grid can cope with EV demand," said Shepard. "This has been on the mind of utilities but never realized: overwhelming residential transformers."

As EVs with higher charging and energy capacities are connected to the grid, Shepard said, "you are going to start to see some of those residential systems come under pressure, and probably see increased incidences of having to upgrade transformers." Some residential upgrades can be deferred through smarter charging programs, he added.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified