Coal dependency hits environment

By Newsday


NFPA 70b Training - Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$599
Coupon Price:
$499
Reserve Your Seat Today
It takes five to 10 days for the pollution from China's coal-fired plants to make its way to the United States, like a slow-moving storm.

It shows up as mercury in the bass and trout caught in Oregon's Willamette River. It increases cloud cover and raises ozone levels. And along the way, it contributes to acid rain in Japan and South Korea and health problems everywhere from Taiyuan to the United States.

This is the dark side of the world's growing use of coal.

Cheap and abundant, coal has become the fuel of choice in much of the world, powering economic booms in China and India that have lifted millions of people out of poverty. Worldwide demand is projected to rise by about 60 percent through 2030 to 6.9 billion tons a year, most of it going to electrical power plants.

But the growth of coal-burning is also contributing to global warming, and is linked to environmental and health issues including acid rain and asthma. Air pollution kills more than 2 million people prematurely, according to the World Health Organization.

"Hands down, coal is by far the dirtiest pollutant," said Dan Jaffe, an atmospheric scientist at the University of Washington who has detected pollutants from Asia at monitoring sites on Mount Bachelor in Oregon and Cheeka Peak in Washington state. "It is a pretty bad fuel on all scores."

To understand the conflict over coal, look at Taiyuan and the surrounding Shanxi Province, the country's top coal-producing region - and one of its most polluted.

Almost overnight, coal has turned poor farmers in this city of 3 million people into Mercedes-driving millionaires, known derisively as "baofahu" or the quick rich. Flashy hotels display chunks of coal in the lobby, and sprawling malls advertise designer goods from Versace and Karl Lagerfeld. Real estate prices have doubled, residents say, and construction cranes fill the skyline.

A museum in Taiyuan celebrates all things coal. Amid photos of smiling miners, coal is presented as the foundation of the country's economic development, credited with making possible everything from the railroad to skin care products.

"Today, coal has penetrated into every aspect of people's lives," the museum says in one of many cheery pronouncements. "We can't live comfortably without coal."

Yet the cornstalks lining a highway outside the city 254 miles southwest of Beijing are covered in soot. The same soot settles on vegetables sold at the roadside, and the thick, acrid smoke blots out the morning sun. At its worst, the haze forces highway closures and flight delays.

With pressure to clean up major cities such as Shanghai and Beijing, particularly in the run-up to next year's Beijing Olympics, the central government is turning increasingly to provinces such as Shanxi to meet the country's power demands.

"They look at polluted places like Taiyuan and say it's so polluted there so it doesn't matter if they have another five power plants," said Ramanan Laxminarayan, a senior fellow at Resources For the Future, an American think tank that found links between air pollution and rising hospital admissions in Taiyuan.

"I visited these power plants and there is no concept of pollution control," he said. "They sort of had a laugh and asked, 'Why would you expect us to install pollution control equipment?'"

China is home to 20 of the world's 30 most polluted cities, according to a World Bank report.

Health costs related to air pollution total $68 billion a year, nearly 4 percent of the country's economic output, the report said. And acid rain has contaminated a third of the country, Sheng Huaren, a senior Chinese parliamentary official, said last year. It is said to destroy some $4 billion worth of crops every year.

"What we are facing in China is enormous economic growth, and... China is paying a price for it," said Henk Bekedam, the country representative for the World Health Organization. "Their growth is not sustainable from an environmental perspective. The good news is that they realize it. The bad news is they're dependent on coal as an energy source."

But the costs go far beyond China. The soot from power plants boosts global warming because coal emits almost twice as much carbon dioxide as natural gas. And researchers from Texas A&M University found that air pollution from China and India has increased in cloud cover and major Pacific Ocean storms by 20 percent to 50 percent over the past 20 years.

"We know dust from factories in China, India, Mexico and Africa does not simply disappear; the wind brings it here," said the U.S. Chamber of Commerce's Bill Kovacs.

Kovacs said overseas dust is adding to the number of counties that do not qualify for federal transportation funds because they are out of compliance with ozone standards. More than 100 counties do not meet the limit of 84 parts per billion. China alone contributes 3 to 5 parts per billion, estimates Daniel J. Jacob, professor of atmospheric chemistry and environmental engineering at Harvard University.

Mercury, a byproduct of some coal-mining, is another major concern. The potent toxin falls into waterways and shows up in fish. Asia's contribution to U.S. mercury levels has shot up over the past 20 years. Jacob estimated half of the mercury in the United States comes from overseas, especially China.

"It's a global problem and right now China is a source on the rise," he said. "If we want to bring down mercury levels in fish, then we have to go after emissions in East Asia."

A fifth of the mercury in the Willamette River came from China and other foreign sources, said Bruce K. Hope of the Oregon Department of Environmental Quality. Pregnant or nursing women who eat the fish put their babies at risk of neurological damage.

"It's frustrating to realize that part of your problem is someone else's behavior and you can't really go to them and say, 'Can you do something different?'" Hope said.

China has closed some polluting factories and says it will retire 50 gigawatts of inefficient power plants, or 8 percent of the total power grid, by 2010, according to the Pew Center for Global Climate Change. The government has also mandated that solar, wind, hydroelectric and other forms of renewable energy provide 10 percent of the nation's power by 2010, and ordered key industries to reduce energy consumption by 20 percent.

President Hu Jintao, in a speech to a key party congress last month, promised a cleanup. But China has fallen short of its national targets for using energy more efficiently, and coal remains a major energy source.

"Everyone knows coal is dirty, but there is no way that China can get rid of coal," the World Bank's Zhao Jianping said in Beijing. "It must rely on it for years to come, until humans can find a new magic solution."

Robert N. Schock, the director of studies for the World Energy Council, agreed that coal, cheap and abundant, will remain a crucial source of energy for many years and be crucial to improving living standards in developing countries.

"Twenty-five percent of the world's electric power is now generated by coal, and those plants are not likely to disappear overnight," Schock said. In Shanxi province, authorities have pledged to close 900 coal mines and dozens of makeshift factories that process coal for the steel industry, according to the official Xinhua News Agency. The Asian Development Bank is providing more than $200 million in loans to improve air quality in the province, through programs to shift to cleaner-burning natural gas for household heating and a demonstration project to capture methane, a greenhouse gas released in coal mining.

Taiyuan, dubbed the world's most polluted city in the 1990s, is no longer thought to be the worst, thanks to various efforts including phasing out coal-burning boilers. But the level of pollutants in the air remains five to 10 times higher than levels in New York or London. Residents say they see blue skies fewer than 120 days a year.

Australians Paul and Helen Douglas, who work for Evergreen in Taiyuan, an American social service agency, said their 21-month-old daughter Rose has been found in tests to have elevated lead levels. She has developed a chronic cough, Paul Douglas said, and the family will likely return to Australia before their contract ends if their daughter's toxin levels rise further.

"People say we are irresponsible and that we are making decisions that are injuring our children," he said of coming under fire from relatives and church members for staying in Taiyuan.

Taiyuan residents, though, shrug wearily when the talk turns to pollution, fearful that speaking out could get them in trouble. But when pressed, the complaints tumble forth and expose a community held hostage by the soot.

Residents seal their windows to keep out the dirty air. Parents are warned not to let their toddlers play outside, for fear of being covered in coal dust. Fruits and vegetables must be washed in detergent.

"I'm worried about my children," said a woman who lives in the shadow of a power plant and fertilizer factory. She would only give her surname, Zhang. "We worry about everything. If you get sick seriously, you will die."

Many complain of chronic sore throats, bronchitis, lung cancer and pulmonary fibrosis. One study, by researchers at Norway's Center for International Climate and Environmental Research, found Taiyuan's pollution increased death rates by 15 percent and chronic respiratory ailments by 40 to 50 percent.

"I feel terrible and I'm coughing all the time," said William Li, a retired engineer from Taiyuan. His father died of lung cancer and his son has tracheitis, an upper respiratory condition. "The coal, it produces electric power that we send to other provinces. But we are left with the pollution."

Related News

Electricity demand set to reduce if UK workforce self-isolates

UK Energy Networks Coronavirus Contingency outlines ESO's lockdown electricity demand forecast, reduced industrial and commercial load, rising domestic use, Ofgem guidance needs, grid resilience, control rooms, mutual aid, and backup centers.

 

Key Points

A coordinated plan with ESO forecasts, safeguards, and mutual aid to keep power and gas services during a lockdown.

✅ ESO forecasts lower industrial use, higher domestic demand

✅ Control rooms protected; backup sites and cross-trained staff

✅ Mutual aid and Ofgem coordination bolster grid resilience

 

National Grid ESO is predicting a reduction in electricity demand, consistent with residential use trends observed during the pandemic, in the case of the coronavirus spread prompting a lockdown across the country.

Its analysis shows the reduction in commercial and industrial use would outweigh an upsurge in domestic demand, mirroring Ontario demand data seen as people stayed home, according to similar analyses.

The prediction was included in an update from the Energy Networks Association (ENA), in which it sought to reassure the public that contingency plans are in place, reflecting utility disaster planning across electric and gas networks, to ensure services are unaffected by the coronavirus spread.

The body, which represents the UK's electricity and gas network companies, said "robust measures" had been put in place to protect control rooms and contact centres, similar to staff lockdown protocols considered by other system operators, to maintain resilience. To provide additional resilience, engineers have been trained across multiple disciplines and backup centres exist should operations need to be moved if, for example, deep cleaning is required, the ENA said.

Networks also have industry-wide mutual aid arrangements, similar to grid response measures outlined in the U.S., for people and the equipment needed to keep gas and electricity flowing.

ENA chief executive, David Smith, said, echoing system reliability assurances from other markets: "The UK's electricity and gas network is one of the most reliable in the world and network operators are working with the authorities to ensure that their contingency plans are reviewed and delivered in accordance with the latest expert advice. We are following this advice closely and reassuring customers that energy networks are continuing to operate as normal for the public."

Utility Week spoke to a senior figure at one of the networks who reiterated the robust measures in place to keep the lights on, even as grid alerts elsewhere highlight the importance of contingency planning. However, they pleaded for more clarity from Ofgem and government on how its workers will be treated if the coronavirus spread becomes a pandemic in the UK.

 

Related News

View more

Green energy could drive Covid-19 recovery with $100tn boost

Renewable Energy Economic Recovery drives GDP gains, job growth, and climate targets by accelerating clean energy investment, green hydrogen, and grid modernization, delivering high ROI and a resilient, low-carbon transition through stimulus and policy alignment.

 

Key Points

A strategy to boost GDP and jobs by accelerating clean power and green hydrogen while meeting climate goals.

✅ Adds $98tn to global GDP by 2050; $3-$8 return per $1 invested

✅ Quadruples clean energy jobs to 42m; improves health and welfare

✅ Cuts CO2 70% by 2050; enables net-zero via green hydrogen

 

Renewable energy could power an economic recovery from Covid-19 through a green recovery that spurs global GDP gains of almost $100tn (£80tn) between now and 2050, according to a report.

The International Renewable Energy Agency’s new IRENA report found that accelerating investment in renewable energy could generate huge economic benefits while helping to tackle the global climate emergency.

The agency’s director general, Francesco La Camera, said the global crisis ignited by the coronavirus outbreak exposed “the deep vulnerabilities of the current system” and urged governments to invest in renewable energy to kickstart economic growth and help meet climate targets.

The agency’s landmark report found that accelerating investment in renewable energy would help tackle the climate crisis and would in effect pay for itself.

Investing in renewable energy would deliver global GDP gains of $98tn above a business-as-usual scenario by 2050, as clean energy investment significantly outpaces fossil fuels, by returning between $3 and $8 on every dollar invested.

It would also quadruple the number of jobs in the sector to 42m over the next 30 years, and measurably improve global health and welfare scores, according to the report.

“Governments are facing a difficult task of bringing the health emergency under control while introducing major stimulus and recovery measures, as a US power coalition demands action,” La Camera said. “By accelerating renewables and making the energy transition an integral part of the wider recovery, governments can achieve multiple economic and social objectives in the pursuit of a resilient future that leaves nobody behind.”

The report also found that renewable energy could curb the rise in global temperatures by helping to reduce the energy industry’s carbon dioxide emissions by 70% by 2050 by replacing fossil fuels, with measures like a fossil fuel lockdown hastening the shift.

Renewables could play a greater role in cutting carbon emissions from heavy industry and transport to reach virtually zero emissions by 2050, particularly by investing in green hydrogen.

The clean-burning fuel, which can replace the fossil fuel gas in steel and cement making, could be made by using vast amounts of clean electricity to split water into hydrogen and oxygen elements.

Andrew Steer, chief executive of the World Resources Institute, said: “As the world looks to recover from the current health and economic crises, we face a choice: we can pursue a modern, clean, healthy energy system, or we can go back to the old, polluting ways of doing business. We must choose the former.”

The call for a green economic recovery from the coronavirus crisis comes after a warning from Dr Fatih Birol, head of the International Energy Agency, that government policies must be put in place to avoid an investment hiatus in the energy transition, even as the solar and wind industry faces Covid-19 disruptions.

“We should not allow today’s crisis to compromise the clean energy transition, even as wind power growth persists despite Covid-19,” he said. “We have an important window of opportunity.”

Ignacio Galán, the chairman and CEO of the Spanish renewables giant Iberdrola, which owns Scottish Power, said the company would continue to invest billions in renewable energy as well as electricity networks and batteries to help integrate clean energy in the electricity.

“A green recovery is essential as we emerge from the Covid-19 crisis. The world will benefit economically, environmentally and socially by focusing on clean energy,” he said. “Aligning economic stimulus and policy packages with climate goals is crucial for a long-term viable and healthy economy.”

 

Related News

View more

Planning for our electricity future should be led by an independent body

Nova Scotia Integrated Resource Plan evaluates NSPI supply options, UARB oversight, Muskrat Falls imports, coal retirements, wind and biomass expansion, transmission upgrades, storage, and least-cost pathways to decarbonize the grid for ratepayers.

 

Key Points

A 25-year roadmap assessing supply, imports, costs, and emissions to guide least-cost decarbonization for Nova Scotia.

✅ Compares wind, biomass, gas, imports, and storage costs

✅ Addresses coal retirements, emissions caps, and reliability

✅ Recommends transmission upgrades and Muskrat Falls utilization

 

Maintaining a viable electricity network requires good long-term planning and, as a recent grid operations report notes, ongoing operational improvements. The existing stock of generating assets can become obsolete through aging, changes in fuel prices or environmental considerations. Future changes in demand must be anticipated.

Periodically, an integrated resource plan is created to predict how all this will add up during the ensuing 25 years. That process is currently underway and is led by Nova Scotia Power Inc. (NSPI) and will be submitted for approval to the Utilities and Review Board (UARB).

Coal-fired plants are still the largest single source of electricity in Nova Scotia. They need to be replaced with more environmentally friendly sources when they reach the end of their useful lives. Other sources include wind, hydroelectricity from rivers, biomass, as seen in increased biomass use by NS Power, natural gas and imports from other jurisdictions.

Imports are used sparingly today but will be an important source when the electricity from Muskrat Falls comes on stream. That project has big capacity. It can produce all the power needed in Newfoundland and Labrador (NL), where Quebec's power ambitions influence regional flows, plus the amount already committed to Nova Scotia, and still have a lot left over.

Some sources of electricity are more valuable than others. The daily amount of power from wind and solar cannot be controlled. Fuel-based sources and hydro can.

Utilities make their profits by providing the capital necessary to build infrastructure. Most of the money is borrowed but a portion, typically 30 per cent, usually comes from NSPI or a sister company. On that they receive a rate of return of nine per cent. Nova Scotia can borrow money today at less than two per cent.

The largest single investment of that type is the $1.577-billion Maritime Link connecting power from Newfoundland to Nova Scotia. It continues through to the New Brunswick border to facilitate exports to the United States. NSPI’s sister company, NSP Maritime Link Inc. (NSPML), is making nine per cent on $473 million of the cost.

There is little unexploited hydro capacity in Nova Scotia and there will not be any new coal-fired plants. Large-scale solar is not competitive in Nova Scotia’s climate. Nova Scotia’s needs would not accommodate the amount of nuclear capacity needed to be cost-effective, even as New Brunswick explores small reactors in its strategy.

So the candidates for future generating resources are wind, natural gas, biomass (though biomass criticism remains) and imports from other jurisdictions. Tidal is a promising opportunity but is still searching for a commercially viable technology. 

NSPI is commendably transparent about its process (irp.nspower.ca). At this stage there is little indication of the conclusions they are reaching but that will presumably appear in due course.

The mountains of detail might obscure the fact that NSPI is not an unbiased arbiter of choices for the future.

It is reported that they want to prematurely close the Trenton 5 coal plant in 2023-25. It is valued at $88.5 million. If it is closed early, ratepayers will still have to pay off the remaining value even though the plant will be idle. NSPI wants to plan a decommissioning of five of its other seven plants. There is a federal emissions constraint but retiring coal plants earlier than needed will cost ratepayers a lot.

Whenever those plants are closed, there will be a need for new sources of power. NSPI is proposing to plan for new investments in new transmission infrastructure to facilitate imports. Other possibilities would be additional wind farms, consistent with the shift to more wind and solar projects, thermal plants that burn natural gas or biomass, or storage for excess wind power that arrives before it can be used. The investment in storage could be anywhere from $20 million to $200 million.

These will add to the asset burden funded by ratepayers, even as industrial customers seek discounts while still paying for shuttered coal infrastructure.

External sources of new power will not provide NSPI the same opportunity: wind power by independent producers might be less expensive because they are willing to settle for less than nine per cent or because they are more efficient. Buying more power from Muskrat Falls will use transmission infrastructure we are already paying for. If a successful tidal technology is found, it will not be owned by NSPI or a sister company, which are no longer trying to perfect the technology.

This is not to suggest that NSPI would misrepresent the alternatives. But they can tilt the discussion in their favour. How tough will they be negotiating for additional Muskrat Falls power when it hurts their profits? Arguing for premature coal retirement on environmental grounds is fair game but whether the cost should be accepted is a political choice. 

NSPI is in a conflict of interest. We need a different process. An independent body should author the integrated resource plan. They should be fully informed about NSPI’s views.

They should communicate directly with Newfoundland and Labrador for Muskrat power, with independent wind producers, and with tidal power companies. The UARB cannot do any of these things.

The resulting plan should undergo the same UARB review that NSPI’s version would. This enhances the likelihood that Nova Scotians will get the least-cost alternative.

 

Related News

View more

Major U.S. utilities spending more on electricity delivery, less on power production

U.S. Utility Spending Shift highlights rising transmission and distribution costs, grid modernization, and smart meters, while generation expenses decline amid fuel price volatility, capital and labor pressures, and renewable integration across the power sector.

 

Key Points

A decade-long trend where utilities spend more on delivery and grid upgrades, and less on electricity generation costs.

✅ Delivery O&M, wires, poles, and meters drive rising costs

✅ Generation spending declines amid fuel price changes and PPI

✅ Grid upgrades add reliability, resilience, and renewable integration

 

Over the past decade, major utilities in the United States have been spending more on delivering electricity to customers and less on producing that electricity, a shift occurring as electricity demand is flat across many regions.

After adjusting for inflation, major utilities spent 2.6 cents per kilowatthour (kWh) on electricity delivery in 2010, using 2020 dollars. In comparison, spending on delivery was 65% higher in 2020 at 4.3 cents/kWh, and residential bills rose in 2022 as inflation persisted. Conversely, utility spending on power production decreased from 6.8 cents/kWh in 2010 (using 2020 dollars) to 4.6 cents/kWh in 2020.

Utility spending on electricity delivery includes the money spent to build, operate, and maintain the electric wires, poles, towers, and meters that make up the transmission and distribution system. In real 2020 dollar terms, spending on electricity delivery increased every year from 1998 to 2020 as utilities worked to replace aging equipment, build transmission infrastructure to accommodate new wind and solar generation amid clean energy transition challenges that affect costs, and install new technologies such as smart meters to increase the efficiency, reliability, resilience, and security of the U.S. power grid.

Spending on power production includes the money spent to build, operate, fuel, and maintain power plants, as well as the cost to purchase power in cases where the utility either does not own generators or does not generate enough to fulfill customer demand. Spending on electricity production includes the cost of fuels including natural gas prices alongside capital, labor, and building materials, as well as the type of generators being built.

Other utility spending on electricity includes general and administrative expenses, general infrastructure such as office space, and spending on intangible goods such as licenses and franchise fees, even as electricity sales declined in recent years.

The retail price of electricity reflects the cost to produce and deliver power, the rate of return on investment that regulated utilities are allowed, and profits for unregulated power suppliers, and, as electricity prices at 41-year high have been reported, these components have drawn increased scrutiny.

In 2021, demand for consumer goods and the energy needed to produce them has been outpacing supply, though power demand sliding in 2023 with milder weather has also been noted. This difference has contributed to higher prices for fuels used by electric generators, especially natural gas. The increased cost for fuel, capital, labor, and building materials, as seen in the U.S. Bureau of Labor Statistics’ Producer Price Index, is increasing the cost of power production for 2021. U.S. average electricity prices have been higher every month of this year compared with 2020, according to our Monthly Electric Power Industry Report.

 

Related News

View more

The Evolution of Electric Vehicle Charging Infrastructure in the US

US EV Charging Infrastructure is evolving with interoperable NACS and CCS standards, Tesla Supercharger access, federal funding, ultra-fast charging, mobile apps, and battery advances that reduce range anxiety and expand reliable, nationwide fast-charging access.

 

Key Points

Nationwide network, standards, and funding enabling fast, interoperable EV charging access for drivers across the US.

✅ NACS and CCS interoperability expands cross-network access

✅ Tesla Superchargers opening to more brands accelerate adoption

✅ Federal funding builds fast chargers along highways and communities

 

The landscape of electric vehicle (EV) charging infrastructure in the United States is rapidly evolving, driven by technological advancements, collaborative efforts between automakers and charging networks across the country, and government initiatives to support sustainable transportation.

Interoperability and Collaboration

Recent developments highlight a shift towards interoperability among charging networks, even as control over charging continues to be contested across the market today. The introduction of the North American Charging Standard (NACS) and the adoption of the Combined Charging System (CCS) by major automakers underscore efforts to standardize charging protocols. This move aims to enhance convenience for EV drivers by allowing them to use multiple charging networks seamlessly.

Tesla's Role and Expansion

Tesla, a trailblazer in the EV industry, has expanded its Supercharger network to accommodate other EV brands. This initiative represents a significant step towards inclusivity, addressing range anxiety and supporting the broader adoption of electric vehicles. Tesla's expansive network of fast-charging stations across the US continues to play a pivotal role in shaping the EV charging landscape.

Government Support and Infrastructure Investment

The federal government's commitment to infrastructure development is crucial in advancing EV adoption. The Bipartisan Infrastructure Law allocates substantial funding for EV charging station deployment along highways and in underserved communities, while automakers plan 30,000 chargers to complement public investment today. These investments aim to expand access to charging infrastructure, promote economic growth, and reduce greenhouse gas emissions associated with transportation.

Technological Advancements and User Experience

Technological innovations in EV charging, including energy storage and mobile charging solutions, continue to improve user experience and efficiency. Ultra-fast charging capabilities, coupled with user-friendly interfaces and mobile apps, simplify the charging process for consumers. Advancements in battery technology also contribute to faster charging times and increased vehicle range, enhancing the practicality and appeal of electric vehicles.

Challenges and Future Outlook

Despite progress, challenges remain in scaling EV charging infrastructure to meet growing demand. Issues such as grid capacity constraints are coming into sharp focus, alongside permitting processes and funding barriers that necessitate continued collaboration between stakeholders. Addressing these challenges is crucial in supporting the transition to sustainable transportation and achieving national climate goals.

Conclusion

The evolution of EV charging infrastructure in the United States reflects a transformative shift towards sustainable mobility solutions. Through interoperability, government support, technological innovation, and industry collaboration, stakeholders are paving the way for a robust and accessible charging ecosystem. As investments and innovations continue to shape the landscape, and amid surging U.S. EV sales across 2024, the trajectory of EV infrastructure development promises to accelerate, ensuring reliable and widespread access to charging solutions that support a cleaner and greener future.

 

Related News

View more

Alberta Faces Challenges with Solar Energy Expansion

Alberta Solar Energy Expansion confronts high installation costs, grid integration and storage needs, and environmental impact, while incentives, infrastructure upgrades, and renewable targets aim to balance reliability, land use, and emissions reductions provincewide.

 

Key Points

Alberta Solar Energy Expansion is growth in solar tempered by costs, grid limits, environmental impact, and incentives.

✅ High capex and financing challenge utility-scale projects

✅ Grid integration needs storage, transmission, and flexibility

✅ Site selection must mitigate land and wildlife impacts

 

Alberta's push towards expanding solar power is encountering significant financial and environmental hurdles. The province's ambitious plans to boost solar power generation have been met with both enthusiasm and skepticism as stakeholders grapple with the complexities of integrating large-scale solar projects into the existing energy framework.

The Alberta government has been actively promoting solar energy as part of its strategy to diversify the energy mix in a province that is a powerhouse for both green energy and fossil fuels today and reduce greenhouse gas emissions. Recent developments have highlighted the potential of solar power to contribute to Alberta's clean energy goals. However, the path forward is fraught with challenges related to costs, environmental impact, and infrastructure needs.

One of the primary issues facing the solar energy sector in Alberta is the high cost of solar installations. Despite decreasing costs for solar technology in recent years, the upfront investment required for large-scale solar farms remains substantial, even as some facilities have been contracted at lower cost than natural gas in Alberta today. This financial barrier has led to concerns about the economic viability of solar projects and their ability to compete with other forms of energy, such as natural gas and oil, which have traditionally dominated Alberta's energy landscape.

Additionally, there are environmental concerns associated with the development of solar farms. While solar energy is considered a clean and renewable resource, the construction of large solar installations can have environmental implications. These include potential impacts on local wildlife habitats, land use changes, where approaches like agrivoltaics can co-locate farming and solar, and the ecological effects of large-scale land clearing. As solar projects expand, balancing the benefits of renewable energy with the need to protect natural ecosystems becomes increasingly important.

Another significant challenge is the integration of solar power into Alberta's existing energy grid. Solar energy production is variable and dependent on weather conditions, especially with Alberta's limited hydro capacity for flexibility, which can create difficulties in maintaining a stable and reliable energy supply. The need for infrastructure upgrades and energy storage solutions is crucial to address these challenges and ensure that solar power can be effectively utilized alongside other energy sources.

Despite these challenges, the Alberta government remains committed to advancing solar energy as a key component of its renewable energy strategy. Recent initiatives include financial incentives and support programs aimed at encouraging investment in solar projects and supporting a renewable energy surge that could power thousands of jobs across Alberta today. These measures are designed to help offset the high costs associated with solar installations and make the technology more accessible to businesses and homeowners alike.

Local communities and businesses are also playing a role in the growth of solar energy in Alberta. Many are exploring opportunities to invest in solar power as a means of reducing energy costs and supporting sustainability efforts and, increasingly, to sell renewable energy into the market as demand grows. These smaller-scale projects contribute to the overall expansion of solar energy and demonstrate the potential for widespread adoption across the province.

The Alberta government has also been working to address the environmental concerns associated with solar energy development. Efforts are underway to implement best practices for minimizing environmental impacts and ensuring that solar projects are developed in an environmentally responsible manner. This includes conducting environmental assessments and working with stakeholders to address potential issues before projects are approved and built.

In summary, while Alberta's solar energy initiatives hold promise for advancing the province's clean energy goals, they are also met with significant financial and environmental challenges. Addressing these issues will be crucial to the successful expansion of solar power in Alberta. The government's ongoing efforts to support solar projects through incentives and infrastructure improvements, coupled with responsible environmental practices, will play a key role in determining the future of solar energy in the province.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.