Biomass: the next hot commodity?

By Biomass Magazine


Arc Flash Training - CSA Z462 Electrical Safety

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Biomass is used around the world to generate heat, steam and electricity. However, coal is preferred over biomass for energy production because it generates between 7,000 and 12,500 British thermal units (Btus) per pound while woody biomass produces between 5,300 and 6,400 Btus per pound.

But coal prices are rising.

Meanwhile, climate change initiatives around the world are calling for greenhouse gas (GHG) reductions. Demand for clean-burning biomass for heat and power generation is increasing.

Government programs in the United States and Europe are funding projects to develop a more streamlined, far-reaching system of trade for biomass. Could biomass become a commodity that is bought and sold on a trading floor?

Global coal markets are tightening and the United States is exporting more coal. The average price of exported coal in the second quarter of 2008 was $97.24 per short ton, its highest value in history and an increase of more than 50 percent year-over-year, according to the Energy Information Administration, a service of the U.S. DOE.

Meanwhile, the European Union and its member states, which more than six years ago ratified the Kyoto Protocol to the United Nations Framework Convention on Climate Change, have committed to reducing their collective GHG emissions by at least 8 percent by 2012. The EUÂ’s Biomass Action Plan includes a directive to promote renewable electricity generation by increasing production in member states from 14 percent in 1997 up to 21 percent by 2010. In the United States, 28 states have individually established renewable portfolio standards, specifying that electric utilities must generate a certain amount of electricity from renewable resources by specific dates, according to the Pew Center on Global Climate Change.

This market environment has led electric utilities in the United States and around the world to use woody biomass from timber harvesting and sawmill operations, as well as waste wood destined for landfills, for power generation.

For example in the United States, Xcel Energy plans to spend $55 million to $70 million to convert the last remaining coal-fired unit at its Bay Front Power Plant in Ashland, Wis., to a biomass gasification system. The plant has been burning waste wood to generate electricity since 1979 and currently uses just over 200,000 tons of waste wood each year. When the project is complete, the plant will use an additional 185,000 to 250,000 tons per year.

In Europe, Prenergy Power Ltd. of Switzerland is building a $788 million wood-burning power station capable of generating 350 megawatts of electricity in deep-water Port Talbot on the western side of Wales. Approximately 3 million tons of wood chips will be imported by cargo ship for the plant annually. In addition, Drax Group Plc in the U.K. is planning to build three 300-megawatt biomass-fed plants at the deep water ports of Immingham and Kingston upon Hull; the third location is to be determined.

During the past five years, global trade of woody biomass has almost doubled, especially trade for wood pellets for energy generation, according to Håkan Ekström of Wood Resources International LLC.

Global trade of woody biomass was just over 11 million tons in 2007, up from 5.6 million tons in 2003, Ekström says, and a record of more than 3 million tons of wood pellets was traded globally in 2007. Most of the trade has been between European countries or exports from Canada to Europe. Germany exported 1.4 million tons of biomass to neighboring countries in 2007. Canada exported 1.3 million tons of biomass last year, including an estimated 600,000 tons of wood pellets for the European market.

In response to increased demand for wood pellets, Mitsubishi Corp., JapanÂ’s largest general trading company with offices in 80 countries, has acquired a 45 percent stake in Vis Nova Trading GmbH, a manufacturer in Bremen, Germany, that produces wood pellets from waste wood. Mitsubishi invested $8.2 million in VNT, which supplies 180,000 metric tons of wood pellets per year to electric power companies in the EU. VNT plans to build additional factories and achieve 500,000 metric tons in wood pellet sales by 2010.

As global trade in woody biomass increases, is it possible that woody biomass will someday be traded as a commodity?

The U.S. Forest Service Technology Marketing Unit, located at the Forest Products Laboratory in Madison, Wis., has awarded a $75,000 grant to CleanTech Partners Inc. of Middleton, Wis., to develop a plan for implementing a commodity exchange program for biomass in the United States, specifically to increase the efficiency of the existing woody biomass fuel supply chain and to support emerging biorefineries through the future trade of energy crops, such as switchgrass.

Coordinated by Heartland Business Consultants, the Biomass Commodity Exchange (BCEX) should be operational by late 2009, according to Stephen Dinehart, a principal for the consultancy. Dinehart says his experience working for the U.S. Commodity Futures Trading Commission, as well as the Chicago Board of Trade — where he looked at developing nontraditional markets — and his experience in investment banking have been helpful in developing the plan for the exchange.

The project began in November 2007, Dinehart says, and the first step was to survey the marketplace to understand what large biomass users are currently doing in terms of contracting and pricing. He says the biomass industry is changing dramatically with the implementation of portfolio standards for electric utilities, continued growth in the wood pellet industry, renewable fuels standard volume requirements, and an increased push to develop cellulosic ethanol. Demand for biomass, as well as the number of market players, will increase dramatically in the near future, therefore, “rather than just doing a study, what we determined to do is actually put together a business plan for an exchange that will address the woody biomass market,” he says. “But more broadly, it will incorporate nonwoody products, such as corn stover, switchgrass, wheat straw and so on. The bottom line is to encompass the biomass market on an exchange platform.”

Dinehart says the need for an exchange grew out of concerns expressed by companies that are looking at using biomass for power generation. Because there is no way to confidently report what the cost of woody biomass feedstock will be, it is difficult for those projects to obtain financing, he says. “A very important element (of the exchange) is that we will provide publicly available prices,” Dinehart says. “A major part of the problem right now is that most people don’t know what the value of biomass is. The lack of pricing means that we’re not eliciting as much supply as we can from the marketplace. If people don’t know what the value is of what they have, they’re not going to sell it.”

Initially, the exchange will provide indicative pricing on a monthly basis with plans for weekly and, ultimately, daily price reports, depending on the volume of trades, Dinehart says. Price reports will begin with prices for large categories of biomass across large geographic areas and will become more specific as the exchange matures, he says.

To be market-traded as a commodity, a product must typically be qualitatively uniform across the market. It might be suggested that the inherent diversity of woody biomass is the main barrier preventing it from becoming a commodity. The limbs, branches and twigs derived from timber harvesting and the woodchips and sawdust derived from sawmills are as diverse as the trees they come from. While wood pellets are more uniform in size and shape, they too are made from diverse materials, including switchgrass, nut hulls, and so on. An argument can be made that before biomass can be market-traded, the various categories of biomass must be standardized and there must be broad consensus concerning which biomass is acceptable for one purpose or another.

However, Dinehart says the BCEX will not pre-impose standards on the exchange. He says the BCEX will be an Internet-based electronic listing platform that will be a focal point for biomass buyers and sellers to come together and that standards will grow organically through active trading. “We are not prescribing what people can trade,” he says. “They can trade whatever they want. If they want to solicit delivery of rice hulls to Savannah, Ga., they can do so.”

Initially, how biomass will be identified on the exchange will be up to the buyers and sellers, Dinehart says. The BCEX might supply a lexicon of suggested terminology, he says, or might also list the CEN/TC 335 Solid Biofuels standards that have been described by the European Committee for Standardization under the European Commission, which he said are being proposed as an International Organization for Standardization standard.

Dinehart initially expects the largest volumes of trade on the exchange will be for forest residuals, followed by pulpwood, round wood, urban waste wood, industrial waste wood and bark. The lowest-volume trading will be for cellulosic ethanol biomass feedstocks, such as switchgrass. Whether wood pellets will be traded on the exchange is an open question, he says, because typically, wood pellet manufacturers are branding their pellets and might not be interested in commoditization.

In order to become a mature exchange with futures contracts, the BCEX will need to identify actively traded spot markets. Dinehart says because there currently are no spot markets for biomass in the United States, the spot markets, too, will have to grow organically from the exchange through active trading. He says there are areas of high wood consumption in the United States and it is logical to expect that spot markets will emerge in those areas. Currently, because of the relatively low value of biomass, the productÂ’s price is extremely transportation sensitive, which means there are relatively small markets, with most markets only 200 miles in diameter. In order for biomass markets to grow in size geographically, the base value of biomass will need to increase to push relative transportation costs down, Dinehart says.

“Right now we don’t think a futures market is viable,” Dinehart says, “but what we do think is viable is an exchange that facilitates cash market trading.” He notes that the BCEX would begin life as an exempt commercial exchange and would be free from CFTC regulation. Only if the BCEX can grow to support futures contracts will CFTC regulation be necessary, he says. “Once you allow pure speculators to go and trade on an exchange, or once it is marketed to the public, then it comes under the auspices of the CFTC as a regulated exchange,” he says. “I don’t see that occurring for a very, very long time.”

In traditional commodity exchanges, CFTC regulation protects market participants against fraud, manipulation, and abusive trading practices and ensures the financial integrity of the clearing process. Dinehart says the BCEX platform will offer trade confirmation and verification and could provide delivery notices and settlement services, as needed, as well as an audit trail. He says a beta version of the BCEX electronic listing platform will be tested in early 2009. The business plan for the exchange will be completed next year, when a decision will be made whether to move forward with BCEX.

Ultimately, if BCEX is successful, the price of biomass as a commodity will be determined by the market as a whole. Futures contracts might ultimately be possible and market participants might be able to hedge themselves against price fluctuations.

Related News

Opinion: The dilemma over electricity rates and innovation

Canadian Electricity Innovation drives a customer-centric, data-driven grid, integrating renewable energy, EVs, storage, and responsive loads to boost reliability, resilience, affordability, and sustainability while aligning regulators, utilities, and policy for decarbonization.

 

Key Points

A plan to modernize the grid, aligning utilities, regulators, and tech to deliver clean, reliable, affordable power.

✅ Smart grid supports EVs, storage, solar, and responsive loads.

✅ Innovation funding and regulatory alignment cut long-term costs.

✅ Resilience rises against extreme weather and outage risks.

 

For more than 100 years, Canadian electricity companies had a very simple mandate: provide reliable, safe power to all. Keep the lights on, as some would say. And they did just that.

Today, however, they are expected to also provide a broad range of energy services through a data-driven, customer-centric system operations platform that can manage, among other things, responsive loads, electric vehicles, storage devices and solar generation. All the while meeting environmental and social sustainability — and delivering on affordability.

Not an easy task, especially amid a looming electrical supply crunch that complicates planning.

That’s why this new mandate requires an ironclad commitment to innovation excellence. Not simply replacing “like with like,” or to make incremental progress, but to fundamentally reimagine our electricity system and how Canadians relate to it.

Our innovators in the electricity sector are stepping up to the plate and coming up with ingenious ideas, thanks to an annual investment of some $20 billion.

#google#

But they are presented with a dilemma.

Although Canada enjoys among the cleanest, most reliable electricity in the world, we have seen a sharp spike in its politicization. Electricity rates have become the rage and a top-of-mind issue for many Canadians, as highlighted by the Ontario hydro debate over rate plans. Ontario’s election reflects that passion.

This heightened attention places greater pressure on provincial governments, who regulate prices, and in jurisdictions like the Alberta electricity market questions about competition further influence those decisions. In turn, they delegate down to the actual regulators where, at their public hearings, the overwhelming and almost exclusive objective becomes: Keeping costs down.

Consequently, innovation pilot applications by Canadian electricity companies are routinely rejected by regulators, all in the name of cost constraints.

Clearly, electricity companies must be frugal and keep rates as low as possible.

No one likes paying more for their electricity. Homeowners don’t like it and neither do businesses.

Ironically, our rates are actually among the lowest in the world. But the mission of our political leaders should not be a race to the basement suite of prices. Nor should cheap gimmicks masquerade as serious policy solutions. Not if we are to be responsible to future generations.

We must therefore avoid, at all costs, building on the cheap.

Without constant innovation, reliability will suffer, especially as we battle more extreme weather events. In addition, we will not meet the future climate and clean energy targets such as the Clean Electricity Regulations for 2050 that all governments have set and continuously talk about. It is therefore incumbent upon our governments to spur a dynamic culture of innovation. And they must sync this with their regulators.

This year’s federal budget failed to build on the 2017 investments. One-time public-sector funding mechanisms are not enough. Investments must be sustained for the long haul.

To help promote and celebrate what happens when innovation is empowered by utilities, the Canadian Electricity Association has launched Canada’s first Centre of Excellence on electricity. The centre showcases cutting-edge development in how electricity is produced, delivered and consumed. Moreover, it highlights the economic, social and environmental benefits for Canadians.

One of the innovations celebrated by the centre was developed by Nova Scotia’s own NS Power. The company has been recognized for its groundbreaking Intelligent Feeder Project that generates power through a combination of a wind farm, a substation, and nearly a dozen Tesla batteries, reflecting broader clean grid and battery trends across Canada.

Political leaders must, of course, respond to the emotions and needs of their electors. But they must also lead.

That’s why ongoing long-term investments must be embedded in the policies of federal, provincial and territorial governments, and their respective regulatory systems. And Canada’s private sector cannot just point the finger to governments. They, too, must deliver, by incorporating meaningful innovation strategies into their corporate cultures and vision.

That’s the straightforward innovation challenge, as it is for the debate over rates.

But it also represents a generational opportunity, because if we get innovation right we will build that better, greener future that Canadians aspire to.

Sergio Marchi is president and CEO of the Canadian Electricity Association. He is a former Member of Parliament, cabinet minister, and Canadian Ambassador to the World Trade Organization and United Nations in Geneva.

 

Related News

View more

France nuclear power stations to limit energy output due to high river temps

France Nuclear Heatwave Restrictions signal reduced nuclear power along the Rhone River as EDF imposes output limits due to high water temperatures, grid needs, with minimal price impact amid strong solar and exports.

 

Key Points

Temporary EDF output limits at Rhone River reactors due to hot water, protecting ecosystems and grid reliability.

✅ EDF expects halved output at Bugey and Saint Alban.

✅ Cuts align with water temperature and discharge rules.

✅ Weekend midday curtailments offset by solar supply.

 

The high temperature warning has come early this year but will affect fewer nuclear power plants. High temperatures could halve nuclear power production, with river temperature limits at plants along France's Rhone River this week. 

Output restrictions are expected at two nuclear plants in eastern France due to high temperature forecasts, nuclear operator EDF said. It comes several days ahead of a similar warning that was made last year but will affect fewer plants, and follows a period when power demand has held firm during lockdowns across Europe.

The hot weather is likely to halve the available power supply from the 3.6 GW Bugey plant from 13 July and the 2.6 GW Saint Alban plant from 16 July, the operator said.

However, production will be at least 1.8 GW at Bugey and 1.3 GW at Saint Alban to meet grid requirements, and may change according to grid needs, the operator said.

Kpler analyst Emeric de Vigan said the restrictions were likely to have little effect on output in practice. Cuts are likely only at the weekend or midday when solar output was at its peak so the impact on power prices would be slim.

He said the situation would need monitoring in the coming weeks, however, noting it was unusually early in the summer for nuclear-powered France to see such restrictions imposed.

Water temperatures at the Bugey plant already eclipsed the initial threshold for restrictions on 9 July, as European power hits records during the heatwave. They are currently forecast to peak next week and then drop again, Refinitiv data showed.

"France is currently net exporting large amounts of power – and, despite a nuclear power dispute with Germany, single nuclear units' supply restrictions will not have the same effect as last year," Refinitiv analyst Nathalie Gerl said.

The Garonne River in southern France has the highest potential for critical levels of warming, but its Golfech plant is currently offline for maintenance until mid-August, as Europe faces nuclear losses, the data showed.

"(The restrictions were) to be expected and it will probably occur more often," Greenpeace campaigner Roger Spautz said.

"The authorities must stick to existing regulations for water discharges. Otherwise, the ecosystems will be even more affected," he added.

 

Related News

View more

BC Hydro says three LNG companies continue to demand electricity, justifying Site C

BC Hydro LNG Load Forecast signals rising electricity demand from LNG Canada, Woodfibre, and Tilbury, aligning Site C dam capacity with BCUC review, hydroelectric supply, and a potential fourth project in feasibility study British Columbia.

 

Key Points

BC Hydro's projection of LNG-driven power demand, guiding Site C capacity, BCUC review, and grid planning.

✅ Includes LNG Canada, Woodfibre, and Tilbury load requests

✅ Aligns Site C hydroelectric output with industrial electrification

✅ Notes feasibility study for a fourth LNG project

 

Despite recent project cancellations, such as the Siwash Creek independent power project now in limbo, BC Hydro still expects three LNG projects — and possibly a fourth, which is undergoing a feasibility study — will need power from its controversial and expensive Site C hydroelectric dam.

In a letter sent to the British Columbia Utilities Commission (BCUC) on Oct. 3, BC Hydro’s chief regulatory officer Fred James said the provincially owned utility’s load forecast includes power demand for three proposed liquefied natural gas projects because they continue to ask the company for power.

The letter and attached report provide some detail on which of the LNG projects proposed in B.C. are more likely to be built, given recent project cancellations.

The documents are also an attempt to explain why BC Hydro continues to forecast a surge in electricity demand in the province, as seen in its first call for power in 15 years driven by electrification, even though massive LNG projects proposed by Malaysia’s state owned oil company Petronas and China’s CNOOC Nexen have been cancelled.

An explanation is needed because B.C.’s new NDP government had promised the BCUC would review the need for the $9-billion Site C dam, which was commissioned to provide power for the province’s nascent LNG industry, amid debates over alternatives like going nuclear among residents. The commission had specifically asked for an explanation of BC Hydro’s electric load forecast as it relates to LNG projects by Wednesday.

The three projects that continue to ask BC Hydro for electricity are Shell Canada Ltd.’s LNG Canada project, the Woodfibre LNG project and a future expansion of FortisBC’s Tilbury LNG storage facility.

None of those projects have officially been sanctioned but “service requests from industrial sector customers, including LNG, are generally included in our industrial load forecast,” the report noted, even as Manitoba Hydro warned about energy-intensive customers in a separate notice.

In a redacted section of the report, BC Hydro also raises the possibility of a fourth LNG project, which is exploring the need for power in B.C.

“BC Hydro is currently undertaking feasibility studies for another large LNG project, which is not currently included in its Current Load Forecast,” one section of the report notes, though the remainder of the section is redacted.

The Site C dam, which has become a source of controversy in B.C. and was an important election issue, is currently under construction and, following two new generating stations recently commissioned, is expected to be in service by 2024, a timeline which had been considered to provide LNG projects with power by the time they are operational.

BC Hydro’s letter to the BCUC refers to media and financial industry reports that indicate global LNG markets will require more supply by 2023.

“While there remains significant uncertainty, global LNG demand will continue to grow and there is opportunity for B.C. LNG,” the report notes.

 

Related News

View more

Hydro One announces pandemic relief fund for Hydro One customers

Hydro One Pandemic Relief Fund offers COVID-19 financial assistance, payment flexibility, and Winter Relief to Ontario electricity customers facing hardship, with disconnection protection and customer support to help manage bills during the health crisis.

 

Key Points

COVID-19 aid offering bill credits, payment flexibility, and disconnection protection for electricity customers.

✅ Financial assistance and bill credits for hardship cases

✅ Flexible payment plans and extended Winter Relief

✅ No-disconnect policy and dedicated customer support hours

 

We are pleased to announce a Pandemic Relief Fund to assist customers affected by the novel coronavirus (COVID-19). As part of our commitment to customers, we will offer financial assistance as well as increased payment flexibility to customers experiencing hardship. The fund is designed to support customers impacted by these events and those that may experience further impacts.

In addition to this, we've also extended our Winter Relief program, aligning with our ban on disconnections policy so no customer experiencing any hardship has to worry about potential disconnection.

We recognize that this is a difficult time for everyone and we want our customers to know that we’re here to support them. We hope this fund and the added measures, such as extended off-peak rates that help provide our customers peace of mind so they can concentrate on what matters most — keeping their loved ones safe.

If you are concerned about paying your bill, are experiencing hardship or have been impacted by the pandemic, including electricity relief announced by the province, we want to help you. Call us to discuss the fund and see what options are available for you.


CUSTOMER CONTACT CENTRE HOURS
Call us at 1-888-664-9376

Monday to Friday from 7:30 a.m. to 8:00 p.m.

Saturdays from 9:00 a.m. to 3:00 p.m.


KEEPING ONTARIANS AND OUR ELECTRICITY SYSTEM SAFE
We recognize the critical role we play in powering communities across the province and our support for the Province of Ontario during COVID-19. This is a responsibility to employees, customers, businesses and the people of Ontario that we take very seriously.

Since the novel coronavirus (COVID-19) outbreak began, Hydro One’s Pandemic Team along with our leadership, have been actively monitoring the issues to ensure we can continue to deliver the service Ontarians depend on while keeping our employees, customers and the public safe, even as there has been no cut in peak hydro rates yet for self-isolating customers across Ontario. While the risk in Ontario remains low, we believe we can best protect our people and our operations by taking proactive measures.

As information continues to evolve, our leadership team along with the Pandemic Planning Team and our Emergency Operations Centre are committed to maintaining business continuity while minimizing risk to employees and communities.

Over the days and weeks to come, we will work with the sector and government, which is preparing to extend disconnect moratoriums across the province, to enhance safety protocols and champion the needs of electricity customers in Ontario.
 

 

Related News

View more

Australia PM rules out taxpayer funded power plants amid energy battle

ACCC energy underwriting guarantee proposes government-backed certainty for new generation, cutting electricity prices and supporting gas, pumped hydro, renewables, batteries, and potentially coal-fired power, addressing market failure without direct subsidies.

 

Key Points

A tech-neutral, government-backed plan underwriting new generation revenue to increase certainty and cut power prices.

✅ Government guarantee provides a revenue floor for new generators.

✅ Technology neutral: coal, gas, renewables, pumped hydro, batteries.

✅ Intended to reduce bills by up to $400 and address market failure.

 

Australian Taxpayers won't directly fund any new power plants despite some Coalition MPs seizing on a new report to call for a coal-fired power station.

The Australian Competition and Consumer Commission recommended the government give financial certainty to new power plants, guaranteeing energy will be bought at a cheap price if it can't be sold, as part of an electricity market plan to avoid threats to supply.

It's part of a bid to cut up to $400 a year from average household power prices.

Prime Minister Malcolm Turnbull said the finance proposal had merit, but he ruled out directly funding specific types of power generation.

"We are not in the business of subsidising one technology or another," he told reporters in Queensland today.

"We've done enough of that. Frankly, there's been too much of that."

Renewable subsidies, designed in the 1990s to make solar and wind technology more affordable, have worked and will end in 2020.

Some Coalition MPs claim the ACCC's recommendation to underwrite power generation is vindication for their push to build new coal-fired power plants.

But ACCC chair Rod Sims said no companies had proposed building new coal plants - instead they're trying to build new gas projects, pumped hydro or renewable projects.

Opposition Leader Bill Shorten said Mr Turnbull was offering solutions years away, having overseen a rise in power prices over the past year.

"You don't just go down to K-Mart and get a coal-fired power station off the shelf," Mr Shorten told reporters, admitting he had not read the ACCC report.

Energy Minister Josh Frydenberg said the recommendation to underwrite new power generators had a lot of merit, as it would address a market failure highlighted by AEMO warnings about reduced reserves.

"What they're saying is the government needs to step in here to provide some sort of assurance," Mr Frydenberg told 9NEWS today.

He said that could include coal, gas, renewable energy or battery storage.

Deputy Nationals leader Bridget McKenzie said science should determine which technology would get the best outcomes for power bills, with a scrapping coal report suggesting it can be costly.

Mr Turnbull said there was strong support for the vast majority of the ACCC's 56 recommendations, but the government would carefully consider the report, which sets out a blueprint to cut electricity bills by 25 percent.

Acting Greens leader Adam Bandt said Australia should exit coal-fired power in favour of renewable energy to cut pollution.

In contrast, Canada has seen the Stop the Shock campaign advocate a return to coal power in some provinces.

The Australian Energy Council, which represents 21 major energy companies, said the government should consult on changes to avoid "unintended consequences".

 

Related News

View more

Mines found at Ukraine's Zaporizhzhia nuclear plant, UN watchdog says

Zaporizhzhia Nuclear Plant Mines reported by IAEA at the Russian-occupied site: anti-personnel devices in a buffer zone, restricted areas; access limits to reactor rooftops and turbine halls heighten nuclear safety and security concerns in Ukraine.

 

Key Points

IAEA reports anti-personnel mines at Russian-held Zaporizhzhia, raising nuclear safety risks in buffer zones.

✅ IAEA observes mines in buffer zone at occupied site

✅ Restricted areas; no roof or turbine hall access granted

✅ Safety systems unaffected, but staff under pressure

 

The United Nations atomic watchdog said it saw anti-personnel mines at the site of Ukraine's Zaporizhzhia nuclear power plant which is occupied by Russian forces.

Europe's largest nuclear facility fell to Russian forces shortly after the invasion of Ukraine in February last year, as Moscow later sought to build power lines to reactivate it amid ongoing control of the area. Kyiv and Moscow have since accused each other of planning an incident at the site.

On July 23 International Atomic Energy Agency (IAEA) experts "saw some mines located in a buffer zone between the site's internal and external perimeter barriers," agency chief Rafael Grossi said in a statement on Monday.

The statement did not say how many mines the team had seen.

The devices were in "restricted areas" that operating plant personnel cannot access, Mr Grossi said, adding the IAEA's initial assessment was that any detonation "should not affect the site's nuclear safety and security systems".

Laying explosives at the site was "inconsistent with the IAEA safety standards and nuclear security guidance" and, amid controversial proposals on Ukraine's nuclear plants that have circulated internationally, created additional psychological pressure on staff, he added.

Ukrainians in Nikopol are out of water and within Russia's firing line. But Zaporizhzhia nuclear power plant could pose the biggest threat, even as Ukraine has resumed electricity exports to regional grids.

Last week the IAEA said its experts had carried out inspections at the plant, without "observing" the presence of any mines, although they had not been given access to the rooftops of the reactor buildings, while a possible agreement to curb attacks on plants was being discussed.

The IAEA had still not been given access to the roofs of the reactor buildings and their turbine halls, its latest statement said, even as a proposal to control Ukraine's nuclear plants drew scrutiny.

After falling into Russian hands, Europe's biggest power plant was targeted by gunfire and has been severed from the grid several times, raising nuclear risk warnings from the IAEA and others.

The six reactor units, which before the war produced around a fifth of Ukraine's electricity, have been shut down for months, prompting interest in wind power development as a harder-to-disrupt source.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.