DC Tie between Texas and Mexico commissioned

By PR Newswire


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Sharyland Utilities, L.P. announced that a ceremonial commissioning event was held at the Sharyland Plantation in Mission, Texas, for its new $40 million, 150 megawatt High Voltage Direct Current Tie (DC Tie) project.

The 150 megawatt DC Tie is located along the Rio Grande border near Mission, Texas, and links the Electric Reliability Council of Texas (ERCOT) grid with the Comision Federal de Electricidad (CFE) grid of Mexico. This allows for the first commercial bidirectional electricity trade between the U.S. and Mexico.

"This DC Tie is an energy bridge between our two great nations, and we hope it is one of many to come," said Hunter Hunt, President of Sharyland Utilities, L.P. "Sharyland Utilities is strongly committed to the border and to the utility industry, and today's ceremony marks a milestone in our continued efforts to provide needed infrastructure and innovative solutions not just for the border region, but for the Texas grid as a whole."

This cross-border tie is the first of its kind to support both emergency power and commercial business activity in Texas and Mexico. Its technology will allow the two-way flow of electricity between both grids, thereby allowing each grid to rely on the other in times of peak demand.

Not only will this strengthen the stability of both grids, it has the potential to foster an international wholesale market that could bring together power generators and commercial customers on both sides of the border.

"At a time when both Mexico and the United States are struggling to meet the energy demands of our growing economies, this project represents a joint effort by our two countries to come together and provide an innovative solution, " said Mark Caskey, General Manager of Sharyland Utilities. "It was a pleasure to work with CFE on this project, and I look forward to other opportunities to work with them in the future."

Special guests at the ceremony included Hunter Hunt, President of Sharyland Utilities, L.P.; Mark Caskey, General Manager of Sharyland Utilities, L.P.; John Cornyn, United States Senator; Julie Parsley, Commissioner, Public Utility Commission of Texas; Helena Escalante, Director of Texas Border and Mexican Affairs Division; and special guests from the Comision Federal de Electricidad in Mexico.

"Meeting the energy needs of the rapidly growing Rio Grande Valley is a challenge that demands innovative solutions. It is encouraging that this project will help meet peak energy demand and help boost economic growth in Texas," said John Cornyn, U.S. Senator.

Related News

Alberta's Last Coal Plant Closes, Embracing Clean Energy

Alberta Coal Phase-Out signals a clean energy transition, replacing coal with natural gas and renewables, cutting greenhouse gas emissions, leveraging a carbon levy, and supporting workers in Alberta's evolving electricity market.

 

Key Points

Alberta Coal Phase-Out moves power from coal to lower-emission natural gas and renewables to reduce grid emissions.

✅ Last coal plant closed: Genesee Generating Station, Sept 30, 2023

✅ Shift to natural gas and renewables lowers emissions

✅ Carbon levy and incentives accelerated clean power build-out

 

The closure of the Genesee Generating Station on September 30, 2023, marked a significant milestone in Alberta's energy history, as the province moved to retire coal power by 2023 ahead of its 2030 provincial deadline. The Genesee, located near Calgary, was the province's last remaining coal-fired power plant. Its closure represents the culmination of a multi-year effort to transition Alberta's electricity sector away from coal and towards cleaner sources of energy.

For decades, coal was the backbone of Alberta's electricity grid. Coal-fired plants were reliable and relatively inexpensive to operate. However, coal also has a significant environmental impact. The burning of coal releases greenhouse gases, including carbon dioxide, a major contributor to climate change. Coal plants also produce air pollutants such as sulfur dioxide and nitrogen oxide, which can cause respiratory problems and acid rain, and in some regions electricity is projected to get dirtier as gas use expands.

In recognition of these environmental concerns, the Alberta government began to develop plans to phase out coal-fired power generation in the early 2000s. The government implemented a number of policies to encourage the shift from coal to cleaner energy such as natural gas and renewable energy. These policies included providing financial incentives for the construction of new natural gas plants and renewable energy facilities, as well as imposing a carbon levy on coal-fired generation.

The phase-out of coal was also driven by economic factors. The cost of natural gas has declined significantly in recent years, making it a more competitive fuel source for electricity generation as producers switch to gas under evolving market conditions. Additionally, the Alberta government faced increasing pressure from the federal government to reduce greenhouse gas emissions.

The transition away from coal has not been without its challenges. Coal mining and coal-fired power generation have long been important parts of Alberta's economy. The closure of coal plants has resulted in job losses in the affected communities. The government has implemented programs to help workers transition to new jobs in the clean energy sector.

Despite these challenges, the closure of the Genesee Generating Station is a positive development for Alberta's environment and climate. Coal-fired power generation is one of the largest sources of greenhouse gas emissions in Alberta, and recent wind generation outpacing coal underscores the sector's transformation. The closure of the Genesee is expected to result in a significant reduction in emissions, helping Alberta to meet its climate change targets.

The transition away from coal also presents opportunities for Alberta. The province has vast natural gas resources, which can be used to generate electricity with lower emissions than coal. Alberta is also well-positioned to develop renewable energy sources, such as wind power and solar power. These renewable energy sources can help to further reduce emissions and create new jobs in the clean energy sector.

The closure of the Genesee Generating Station is a significant milestone in Alberta's energy history. It represents the end of an era for coal-fired power generation in the province, a shift mirrored by the UK's last coal station going offline earlier this year. However, it also marks the beginning of a new era for Alberta's energy sector. By transitioning to cleaner sources of energy, Alberta can reduce its environmental impact and create a more sustainable energy future.

 

Related News

View more

Senate Democrats push for passage of energy-related tax incentives

Senate Renewable Energy Tax Credits face Finance Committee scrutiny, with Democrats urging action on tax extenders, clean energy incentives, and climate policy, while Republicans cite prior wins in wind, biodiesel, and EV credits.

 

Key Points

Legislative incentives debated in the Senate Finance Committee to extend and align clean energy tax benefits.

✅ Democrats press hearings and action on energy tax policy

✅ Focus on clean energy, EVs, wind, biodiesel, and resilience

✅ Grassley cites prior extenders; disputes push for bigger subsidies

 

A group of 27 Democratic senators is calling for action in the Senate Finance Committee on extending energy-related tax credits and examining new tax proposals, especially those that incentivize renewable energy projects and align with FERC action on aggregated DERs across the grid.

Sen. Ron Wyden, D-Ore., the ranking Democrat on the Senate Finance Committee, who recently introduced a wildfire-resilient grid bill with Sen. Merkley, led the group of Democrats in writing a letter Tuesday to Sen. Charles Grassley, R-Iowa, who chairs the committee.

“Despite numerous opportunities, including in the recent tax extenders package, the Finance Committee has failed to take action on the dozens of energy tax proposals pending before it,” they wrote. “It is critical that the Committee move to address these issues in a timely manner, along with much needed policy changes that heed warnings on regulatory rollbacks to combat the damage and growing dangers caused by global climate change.”

The number of Americans ages 65 and over is projected to nearly double by 2060. And most would prefer to age in place and hiresenior caregivers if needed.

They pointed out that the Senate Finance Committee hasn’t held a single hearing on energy tax policy during the previous congressional term, and has yet to hold one in the current one.

“The sole energy tax-related recommendation of the Committee’s temporary policy task forces was ignored in the tax extender legislation passed in December 2019, along with nearly all proposals put forward in members’ legislation this Congress,” they wrote. “This Committee must fulfill its role in examining members’ energy tax proposals and in bolstering our nation’s efforts to combat climate change, including a clean electricity standard approach that sets firm targets.”

They noted that In 2019, the global average temperature was the second highest ever recorded and the past decade was the hottest ever. The lawmakers pointed to raging wildfires and increased flooding in the western part of the U.S., as well as challenges in California’s power system during the transition, causing unprecedented destruction over the past several years. They called for tax incentives for renewable energy to help combat climate change.

“Gaps in the tax code have disadvantaged complementary technologies that could improve climate resiliency and provide additional emissions reductions,” they wrote. “While power sector emissions continue to decrease, emissions from transportation, heavy industry and agriculture have stayed level or increased over the past 10 years, even amid $5 gas not spurring a green shift in consumer behavior. The United States is not on pace to meet its international climate commitments, to say nothing of the reductions necessary to stave off the worst potential outcomes of global warming.”

Grassley reacted to the letter, noting that he had worked to get tax extenders legislation passed, even as some states consider bans on clean energy use by utilities. "I begged Democrats for a year to help me get an extenders package passed, about half of which were green energy policies, so this rings hollow," he said in a statement Tuesday. "We wouldn’t have a wind energy credit or a biodiesel credit but for me, let alone an extension of either. Democrats were holding up these green energy provisions in an attempt to get a big expansion of taxpayer subsidies for rich Tesla owners."

 

Related News

View more

Paris Finalises Energy Roadmap for 2025–2035 with Imminent Decree

France 2025–2035 Energy Roadmap accelerates carbon neutrality via renewables expansion, energy efficiency, EV adoption, heat pumps, hydrogen, CCS, nuclear buildout, and wind and solar targets, cutting fossil fuels and emissions across transport, housing, industry.

 

Key Points

A national plan to cut fossil use and emissions, boost renewables, and scale efficiency and clean technologies.

✅ Cuts fossil share to 30% by 2035 with efficiency gains

✅ Scales solar PV and wind; revives nuclear with EPR 2

✅ Electrifies transport and industry with EVs, hydrogen, CCS

 

Paris is on the verge of finalising its energy roadmap for the period 2025–2035, with an imminent decree expected to be published by the end of the first quarter of 2025. This roadmap is part of France's broader strategy to achieve carbon neutrality by 2050, aligning with wider moves toward clean electricity regulations in other jurisdictions.

Key Objectives of the Roadmap

The energy roadmap outlines ambitious targets for reducing greenhouse gas emissions across various sectors, including transport, housing, food, and energy. The primary goals are:

  • Reducing Fossil Fuel Dependency: Building on the EU's plan to dump Russian energy, the share of fossil fuels in final energy consumption is to fall from 60% in 2022 to 42% in 2030 and 30% in 2035.

  • Enhancing Energy Efficiency: A target of a 28.6% reduction in energy consumption between 2012 and 2030 is set, focusing on conservation and energy efficiency measures.

  • Expanding Decarbonised Energy Production: The roadmap aims to accelerate the development of renewable energies and the revival.

Sector-Specific Targets

  • Transport: The government aims to cut emissions by 31, focusing on the growth of electric vehicles, increasing public transport, and expanding charging infrastructure.

  • Housing: Emissions from buildings are to be reduced by 44%, with plans to replace 75% of oil-fired and install 1 million heat pumps.

  • Agriculture and Food: The roadmap includes measures to reduce emissions from agriculture by 9%, promoting organic farming and reducing the use of nitrogen fertilizers.

  • Industry: A 37% reduction in emissions is targeted through the use of electricity, biomass, hydrogen, and CO₂ capture and storage technologies informed by energy technology pathways outlined in ETP 2017.

Renewable Energy Targets

The roadmap sets ambitious targets for renewable energy production that align with Europe's ongoing electricity market reform efforts:

  • Photovoltaic Power: A sixfold increase in photovoltaic power between 2022

  • Offshore Wind Power: Reaching 18 gigawatts up from 0.6 GW

  • Onshore Wind Power: Doubling capacity from 21 GW to 45 GW over the same period.

  • Nuclear Power: The commissioning of the evolutionary power and the construction of six EPR 2 reactors, underpinned by France's deal on electricity prices with EDF to support long-term investment, with the potential for eight more.
     

Implementation and Governance

The final version of the roadmap will be adopted by decree, alongside a proposed electricity pricing scheme to address EU concerns, rather than being enshrined in law as required by the Energy Code. The government had previously abandoned the energy-climate planning. The decree is expected to be published at the end of the Multiannual Energy Program (PPE) and in the second half of the third National Low-Carbon Strategy (SNBC).

Paris's finalisation of its energy roadmap for 2025–2035 marks a significant step towards achieving carbon neutrality by 2050. The ambitious targets set across various sectors reflect a comprehensive approach to reducing greenhouse gas emissions and transitioning to a more sustainable energy system amid the ongoing EU electricity reform debate shaping market rules. The imminent decree will provide the legal framework necessary to implement these plans and drive the necessary changes across the country.

 

Related News

View more

Electricity Prices in France Turn Negative

Negative Electricity Prices in France signal oversupply from wind and solar, stressing the wholesale market and grid. Better storage, demand response, and interconnections help balance renewables and stabilize prices today.

 

Key Points

They occur when renewable output exceeds demand, pushing power prices below zero as excess energy strains the grid.

✅ Driven by wind and solar surges with low demand

✅ Challenges thermal plants; erodes margins at negative prices

✅ Needs storage, demand response, and cross-border interties

 

France has recently experienced an unusual and unprecedented situation in its electricity market: negative electricity prices. This development, driven by a significant influx of renewable energy sources, highlights the evolving dynamics of energy markets as countries increasingly rely on clean energy technologies. The phenomenon of negative pricing reflects both the opportunities and renewable curtailment challenges associated with the integration of renewable energy into national grids.

Negative electricity prices occur when the supply of electricity exceeds demand to such an extent that producers are willing to pay consumers to take the excess energy off their hands. This situation typically arises during periods of high renewable energy generation coupled with low energy demand. In France, this has been driven primarily by a surge in wind and solar power production, which has overwhelmed the grid and created an oversupply of electricity.

The recent surge in renewable energy generation can be attributed to a combination of favorable weather conditions and increased capacity from new renewable energy installations. France has been investing heavily in wind and solar energy as part of its commitment to reducing greenhouse gas emissions and transitioning towards a more sustainable energy system, in line with renewables surpassing fossil fuels in Europe in recent years. While these investments are essential for achieving long-term climate goals, they have also led to challenges in managing energy supply and demand in the short term.

One of the key factors contributing to the negative prices is the variability of renewable energy sources. Wind and solar power are intermittent by nature, meaning their output can fluctuate significantly depending on weather conditions, with solar reshaping price patterns in Northern Europe as deployment grows. During times of high wind or intense sunshine, the electricity generated can far exceed the immediate demand, leading to an oversupply. When the grid is unable to store or export this excess energy, prices can drop below zero as producers seek to offload the surplus.

The impact of negative prices on the energy market is multifaceted. For consumers, negative prices can lead to lower energy costs as wholesale electricity prices fall during oversupply, and even potential credits or payments from energy providers. This can be a welcome relief for households and businesses facing high energy bills. However, negative prices can also create financial challenges for energy producers, particularly those relying on conventional power generation methods. Fossil fuel and nuclear power plants, which have higher operating costs, may struggle to compete when prices are negative, potentially affecting their profitability and operational stability.

The phenomenon also underscores the need for enhanced energy storage and grid management solutions. Excess energy generated from renewable sources needs to be stored or redirected to maintain grid stability and avoid negative pricing situations. Advances in battery storage technology, such as France's largest battery storage platform, and improvements in grid infrastructure are essential to addressing these challenges and optimizing the integration of renewable energy into the grid. By developing more efficient storage solutions and expanding grid capacity, France can better manage fluctuations in renewable energy production and reduce the likelihood of negative prices.

France's experience with negative electricity prices is part of a broader trend observed in other countries with high levels of renewable energy penetration. Similar situations have occurred in Germany, where solar plus storage is now cheaper than conventional power, the United States, and other regions where renewable energy capacity is rapidly expanding. These instances highlight the growing pains associated with transitioning to a cleaner energy system and the need for innovative solutions to balance supply and demand.

The French government and energy regulators are closely monitoring the situation and exploring measures to mitigate the impact of negative prices. Policy adjustments, market reforms, and investments in energy infrastructure are all potential strategies to address the challenges posed by high renewable energy generation. Additionally, encouraging the development of flexible demand response programs and enhancing grid interconnections with neighboring countries can help manage excess energy and stabilize prices.

In the long term, the rise of renewable energy and the occurrence of negative prices represent a positive development for the energy transition. They indicate progress towards cleaner energy sources and a more sustainable energy system. However, managing the associated challenges is crucial for ensuring that the transition is smooth and economically viable for all stakeholders involved.

In conclusion, the recent instance of negative electricity prices in France highlights the complexities of integrating renewable energy into the national grid. While the phenomenon reflects the success of France’s efforts to expand its renewable energy capacity, it also underscores the need for advanced grid management and storage solutions. As the country continues to navigate the transition to a more sustainable energy system, addressing these challenges will be essential for maintaining a stable and efficient energy market. The experience serves as a valuable lesson for other nations undergoing similar transitions and reinforces the importance of innovation and adaptability in the evolving energy landscape.

 

Related News

View more

High Natural Gas Prices Make This The Time To Build Back Better - With Clean Electricity

Build Back Better Act Energy Savings curb volatile fossil fuel heating bills by accelerating electrification and renewable electricity, insulating households from natural gas, propane, and oil price spikes while cutting emissions and lowering energy costs.

 

Key Points

BBBA policies expand clean power and electrification to curb volatility, lower bills, and cut emissions.

✅ Tax credits for renewables, EVs, and efficient all-electric homes

✅ Shields households from natural gas, propane, and heating oil spikes

✅ Cuts methane, lowers bills, and improves grid reliability and jobs

 

Experts are forecasting serious sticker shock from home heating bills this winter. Nearly 60 percent of United States’ households heat their homes with fossil fuels, including natural gas, propane, or heating oil, and these consumers are expected to spend much more this winter because of fuel price increases.

That could greatly burden many families and businesses already operating on thin margins. Yet homes that use electricity for heating and cooking are largely insulated from the pain of volatile fuel markets, and they’re facing dramatically lower price increases as a result.

Projections say cost increases for households could range anywhere from 22% to 94% more, depending on the fuel used for heating and the severity of the winter temperatures. But the added expenditures for the 41% of U.S. households using electricity for heating are much less stark—these consumers will see only a 6% price increase on average. The projected fossil fuel price spikes are largely due to increased demand, limited supply, declining fuel stores, and shifting investment priorities in the face of climate change.

The fossil fuel industry is already seizing this moment to use high prices to persuade policymakers to vote against clean energy policies, particularly the Build Back Better Act (BBBA). Spokespeople with ties to the fossil fuel industry and some consumer groups are trying to pin higher fuel prices on the proposed legislation even before it has passed, even as analyses show the energy crisis is not spurring a green revolution on its own, let alone begun impacting fuel markets. But the claim the BBBA would cost Americans and the economy is false.

The facts tell a different story. Adopting smart climate policies and accelerating the clean energy transition are precisely the solutions to counter this vicious cycle by ending our dependance on volatile fossil fuels. The BBBA will ensure reliable, affordable clean electricity for millions of Americans, in line with a clean electricity standard many experts advocate—a key strategy for avoiding future vulnerability. Unlike fossil fuels subject to the whims of a global marketplace, wind and sunshine are always free. So renewable-generated electricity comes with an ultra-low fixed price decades into the future.

By expanding clean energy and electric vehicle tax credits, creating new incentives for efficient all-electric homes, and dedicating new funding for state and local programs, the BBBA provides practical solutions that build on lessons from Biden's climate law to protect Americans from price shocks, save consumers money, and reduce emissions fueling dangerous climate change.


What’s really causing the gas price spikes?
The U.S. Energy Information Administration’s winter 2021 energy price forecasts project that homes heated with natural gas, fuel oil, and propane will see average price increases of 30%, 43%, and 54%, respectively. Those who heat their homes with electricity, on the other hand, should expect a modest 6% increase. At the pump, drivers are seeing some of the highest gas prices in nearly a decade as the U.S. energy crisis ripples through electricity, gas, and EV markets today. And the U.S. is not alone. Countries around the globe are experiencing similar price jumps, including Britain's high winter energy costs this season.

A closer look confirms the cause of these high prices is not clean energy or climate policies—it’s fossil fuels themselves.  

First, the U.S. (and the world) are just now feeling the effects of the oil and gas industry’s reduced fuel production and spending due to the pandemic. COVID-19 brought the world’s economies to a screeching halt, and most countries have not returned to pre-COVID economic activity. During the past 20 months, the oil and gas industry curtailed its production to avoid oversupply as demand fell to all-time lows. Just as businesses were reopening, stored fuel was needed to meet high demand for cooling during 2021’s hottest summer on record, driving sky-high summer energy bills for many households. February’s Texas Big Freeze also disrupted gas distribution and production.

The world is moving again and demand for goods and services is rebounding to pre-pandemic levels. But even with higher energy demand, OPEC announced it would not inject more oil into the economy. Major oil companies have also held oil and gas spending flat in 2021, with their share of overall upstream spending at 25%, compared with nearly 40% in the mid-2010s. And as climate change threats loom in the financial world, investors are reducing their exposure to the risks of stranded assets, increasingly diversifying and divesting from fossil fuels. 

Second, despite strong and sustained growth for renewable energy, energy storage, and electric vehicles, the relatively slow pace to adopt fossil fuel alternatives at scale has left U.S. households and businesses tethered to an industry well-known for price volatility. Today, some oil drillers are using profits from higher gas prices to pay back debt and reward shareholders as demanded by investors, instead of increasing supply. Rising prices for a limited commodity in high demand is generating huge profits for many of the world’s largest companies at the expense of U.S. households.

Because 48% of homes use fossil gas for heating and another 10% heat with propane and fuel oil, more than half of U.S. households will feel the impact of rising prices on their home energy bills. One in four U.S. households continues to experience a high energy burden (meaning their energy expenses consume an inordinate amount of their income), including risks of pandemic power shut-offs that deepen energy insecurity, and many are still experiencing financial hardships exacerbated by the pandemic. Those with inefficient fossil-fueled appliances, homes, and cars will be hardest hit, and many families with fixed- and lower-incomes could be forced to choose between heat or other necessities.

We have the solutions—the BBBA will unlock their benefits for all households

Short-term band-aids may be enticing, but long-term policies are the only way out of this negative feedback loop. Clean energy and building electrification will prevent more costly disasters in the future, but they’re the very solutions the fossil fuel industry fights at every turn. All-electric homes and vehicles are a natural hedge against the price spikes we’re experiencing today since renewables are inherently devoid of fuel-related price fluctuations.

RMI analysis shows all-electric single-family homes in all regions of the country have lower energy bills than a comparable mixed fuel-homes (i.e., electricity and gas). Electric vehicles also save consumers money. Research from University of California, Berkeley and Energy Innovation found consumers could save a total of $2.7 trillion in 2050—or $1,000 per year, per household for the next 30 years—if we accelerate electric vehicle deployment in the coming decade.

The BBBA would help deliver these consumer savings by expanding and expediting clean energy, while ensuring equitable adoption among lower-income households and underserved communities. Extending and expanding clean energy tax credits; new incentives for electric vehicles (including used electric vehicles); and new incentives for energy efficient homes and all-electric appliances (and electrical upgrades) will reduce up-front costs and spur widespread adoption of all-electric homes, buildings, and cars.

A combination of grants, incentives, and programs will promote private sector investments in a decarbonized economy, while also funding and supporting state and local governments already leading the way. The BBBA also allocates dedicated funding and makes important modifications (such as higher rebate amounts and greater point-of-purchase availability) to ensure these technologies are available to low-income households, underserved urban and rural communities, tribes, frontline communities, and people living in multifamily housing.

Finally, the BBBA proposes to make oil and gas polluters pay for the harm they are causing to people’s health and the climate through a methane fee. This fee would cost companies less than 1% of their revenue, meaning the industry would retain over 99% of its profits. In return return we’d see substantial reductions of a powerful greenhouse gas and a healthier environment in communities living near fossil fuel production. These benefits also come with a stronger economy—Energy Innovation analysis shows the methane fee would create more than 70,000 jobs by 2050 and boost gross domestic product more than $250 billion from 2023 to 2050.

The facts speak for themselves. Gas prices are rising because of reasons totally unrelated to smart climate and clean energy policies, which research shows actually lower costs. For the first time in more than a decade, America has the opportunity to enact a comprehensive energy policy that will yield measurable savings to consumers and free us from oil and gas industry control over our wallets.

The BBBA will help the U.S. get off the fossil fuel rollercoaster and achieve a stable energy future, ensuring that today’s price spikes will be a thing of the past. Proving, once and for all, that the solution to our fossil fuel woes is not more fossil fuels.

 

Related News

View more

Revenue from Energy Storage for Microgrids to Total More Than $22 Billion in the Next Decade

Energy Storage for Microgrids enables renewables integration via ESS, boosting resilience and reliability while supporting solar PV and wind, innovative financing, and business models, with strong growth forecast across Asia-Pacific and North America.

 

Key Points

Systems that store energy in microgrids to integrate renewables, boost resilience, and optimize distributed power.

✅ Integrates solar PV and wind with stable, dispatchable output

✅ Reduces costs via new financing and service business models

✅ Expands reliable power for remote, grid-constrained regions

 

A new report from Navigant Research examines the global market for energy storage for microgrids (ESMG), providing an analysis of trends and market dynamics in the context of the evolving digital grid landscape, with forecasts for capacity and revenue that extend through 2026.

Interest in energy storage-enabled microgrids is growing alongside an increase in solar PV and wind deployments. Although not required for microgrids to operate, energy storage systems (ESSs) have emerged as an increasingly valuable component of distributed energy networks, including virtual power plants that coordinate distributed assets, because of their ability to effectively integrate renewable generation.

“There are several key drivers resulting in the growth of energy storage-enabled microgrids globally, including the desire to improve the resilience of power supply both for individual customers and the entire grid, the need to expand reliable electricity service to new areas, rising electricity prices, and innovations in business models and financing,” says Alex Eller, research analyst with Navigant Research. “Innovations in business models and financing will likely play a key role in the expansion of the ESMG market during the coming years.”

One example of microgrid deployment for resilience is the SDG&E microgrid in Ramona built to help communities prepare for peak wildfire season.

According to the report, the most successful companies in this industry will be those that can unlock the potential of new business models to reduce the risk and upfront costs to customers. This is particularly true in Asia Pacific and North America, which are projected to be the largest regional markets for new ESMG capacity by far, a trend underscored by California's push for grid-scale batteries to stabilize the grid.

The report, “Market Data: Energy Storage for Microgrids,” outlines the key market drivers and barriers within the global ESMG market. The study provides an analysis of specific trends, including evolving grid edge trends, and market dynamics for each major world region to illustrate how different markets are taking shape. Global ESMG forecasts for capacity and revenue, segmented by region, technology, and market segment, extend through 2026. The report also briefly examines the major technology issues related to ESSs for microgrids.

Google made energy storage news recently when its parent company Alphabet announced it is hoping to revolutionize renewable energy storage using vats of salt and antifreeze. Alphabet’s secretive research lab, simply named “X,” is developing a system for storing renewable energy that would otherwise be wasted. The project, named “Malta,” is hoping its energy storage systems “has the potential to last longer than lithium-ion batteries and compete on price with new hydroelectric plants and other existing clean energy storage methods, according to X executives and researchers,” reports Bloomberg.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified