Politicians, utilities line up to laud wind energy

By Vancouver Sun


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Wind energy is emerging as a central pillar in Canada's energy future.

Industry representatives were assured in Vancouver at the annual conference of the Canadian Wind Energy Association (CanWEA) that provincial governments and electricity utilities across the country endorse their proposal for a massive expansion of wind-power resources.

Earlier, CanWEA released a major policy paper calling on federal and provincial governments to ramp up their support for development of wind energy - including the bolstering and extension of a federal green-power subsidy program.

B.C.'s first commercial wind turbine erected on the Dokie Wind Project, which is located about 50 km northwest of the town of Chetwynd, and on the prime grid transmission lines coming south from the WAC Bennett Dam.

B.C. Energy Minister Richard Neufeld took the podium at a morning conference session to say he sees wind energy as "a very important part" of B.C.'s plan to become energy self-sufficient by 2016.

Neufeld noted B.C. already derives 90 per cent of its electricity from clean sources, but added that the province has several incentives, including a provincial sales tax exemption, resource royalty holidays and "favourable land lease opportunities."

B.C. has three wind projects totalling 270 megawatts in advanced development and expects to add several more at the conclusion of this year's clean-power call by BC Hydro.

"There are solid opportunities in British Columbia for anyone that wants to go through the system, to work with the Crown corporation BC Hydro to help us be energy self-sufficient by 2016," Neufeld told delegates.

"We want to actually have wind energy as a very important part of that."

New Brunswick Energy Minister Jack Keir said his province is looking to develop wind electricity resources in excess of provincial demand for power, and export the surplus across the border to the neighbouring New England states.

But Keir said wind power proponents will succeed only if they recognize that local communities expect some benefit from the development of wind farms.

"I feel that the wind-energy industry is at a critical point in its development in Canada and we will only succeed if we learn to cooperate and work together in moving our collective agendas forward," Keir said.

Alberta and Quebec electricity system representatives said there are no serious technical obstacles to balancing the flow of energy on their provincial electricity grids when wind, which provides intermittent power supply, is added to full-time power production from more established generation sources.

"We've currently got 545 megawatts on our system and we have no operating issues with it," said Warren Frost, vice-president of operations and reliability for the Alberta Electric System Operator.

"We see these integration issues as not technical. They are more policy-related, more cost-related. There are solutions to integrating wind."

BC Hydro president and CEO Bob Elton said his biggest concern is that the volatility of global stock and financial markets could make it challenging for projects to proceed at present.

But he said a weaker economy could reduce construction costs for new wind projects, and governments that maintain long-term objectives for electricity system development will come out winners in the long run.

Related News

Seven small UK energy suppliers must pay renewables fees or risk losing licence

Ofgem Renewables Obligations drive supplier payments for renewables fees, feed-in tariffs, and renewable generation, with non-payment risking supply licences amid the price cap and volatile wholesale prices across the UK energy market.

 

Key Points

Mandatory payments by suppliers funding renewables via feed-in tariffs; non-payment can trigger supply licence revoking.

✅ Covers Renewables Obligation and Feed-in Tariff scheme compliance.

✅ Non-payment can lead to Ofgem action and licence loss.

✅ Affected by price cap and wholesale price volatility.

 

Seven small British energy suppliers owe a total of 34 million pounds ($43.74 million) in renewables fees, amid a renewables backlog that has stalled projects, and could face losing their supply licences if they cannot pay, energy regulator Ofgem reports.

Under Britain’s energy market rules, suppliers of energy must meet so-called renewables obligations and feed-in tariffs, including households' ability to sell solar power back to energy firms, which are imposed on them by the government to help fund renewable power generation.

Several small energy companies have gone bust over the past two years, a trend echoed by findings from a global utility study on renewable priorities, as they struggled to pay the renewables fees and as their profits were affected by a price cap on the most commonly used tariffs and fluctuating wholesale prices, even as a 10 GW contract brings new renewable capacity onto the UK grid.

Ofgem has called on the companies to make necessary payments by Oct. 31, as moves to offer community-generated power to all UK customers progress.

“If they do not pay Ofgem could start the process of revoking their licences to supply energy,” it said in a statement, as offshore wind power continues to scale nationwide.

The seven suppliers are, amid debates over clean energy impacts, Co-Operative Energy Limited; Flow Energy Limited; MA Energy Limited; Nabuh Energy Limited; Robin Hood Energy Limited; Symbio Energy Limited and Tonik Energy Limited. ($1 = 0.7773 pounds)

 

Related News

View more

NEW Hydro One shares down after Ontario government says CEO, board out

Hydro One Leadership Shakeup unsettles investors as Ontario government ousts CEO and board, pressuring shares; analysts cite political and regulatory risk, stock volatility, trimmed price targets, and dividend stability at the regulated utility.

 

Key Points

An abrupt CEO exit and board overhaul at Hydro One, driving share declines and raising political and regulatory risk.

✅ Shares fall as CEO retires and board resigns under provincial pressure.

✅ Analysts cut price targets; warn of political, regulatory risks.

✅ New board to pick CEO; province consults on compensation.

 

Hydro One Ltd. shares slid Thursday with some analysts sounding warnings of greater uncertainty after the new Ontario government announced the retirement of the electrical utility's chief executive and the replacement of its board of directors.

 After sagging by almost eight per cent in early trading on the Toronto Stock Exchange, following news that Q2 profit plunged 23% amid weaker electricity revenue, shares of the company were later down four per cent, or 81 cents, at $19.36 as of 11:42 a.m. ET.

On Wednesday, after stock markets had closed for the day, Ontario Premier Doug Ford announced the immediate retirement of Hydro One CEO Mayo Schmidt. He leaves with a $400,000 payout in lieu of post-retirement benefits and allowances, Hydro One said.

Doug Ford's government forces out Hydro One '$6-million man'

During the recent provincial election campaign, Ford vowed to fire Schmidt, who earned $6.2 million last year and whose salary wouldn't be reduced despite calls to cut electricity costs.

Paul Dobson, Hydro One's chief financial officer, will serve as acting CEO until a new top executive is selected.

Ford also said the entire board of directors of the utility would resign. Hydro One said a new board — four members of which will be nominated by the province — will select the company's next CEO, and the province will be consulted on the next leader's compensation.

A new board is expected to be formed by mid-August.

The provincial government is the largest single investor in Hydro One, holding a 47 per cent stake. The company was partly privatized by the former Liberal government in 2015, while the NDP has proposed to make hydro public again in Ontario to change course.

 

Doug Ford promises to keep Pickering nuclear plant open until 2024

In response to the government's move to supplant the utility's board and CEO, some analysts cautioned investors about too many unknowns in the near-term outlook, citing raised political or regulatory risks.

Analyst Jeremy Rosenfield of iA Securities cut his rating on Hydro One shares to hold from buy, and reduced his 12-month price target for the stock to $24 from $26.

Rosenfield said the stock is still a defensive investment supported by stable earnings and cash flows, good earnings growth and healthy dividend.

However, he said in a research note that "the heightened potential for further political interference in the province's electricity market and regulated utility framework represent key risk factors that are likely to outweigh Hydro One's fundamentals over the near term."

 

Potential challenge to find new CEO

Laurentian Bank Securities analyst Mona Nazir said in a research note that the magnitude of change all at once was "surprising but not shocking."

She said the agreement that will see Hydro One consult with the provincial government on matters involving executive pay could have an impact on the hiring of a new CEO for the utility.

"Given the government's open and public criticism of the company and a potential ceiling on compensation, it may be challenging to attract top talent to the position," she wrote.

Laurentian cut its rating on the Hydro One to hold and reduced its price target to $21 from $24.

Analysts at CIBC World Markets said investors face an uncertain future, noting parallels with debates at Manitoba Hydro over political direction.

"In particular, we are are concerned about the government meddling in with [power] rates," wrote Robert Catellier and Archit Kshetrapal in a research note, adding they believe the new provincial government is aiming for a 12 per cent reduction in customers' power bills.

CIBC reduced its price target on Hydro One's shares to $20.50 from its previous target of $24.

 

Related News

View more

American Households Struggle with Sky-High Energy Bills During Extreme Summer Heat

US Summer Energy Bills Crisis is driven by record heatwaves, soaring electricity prices, AC cooling demand, energy poverty risks, and LIHEAP relief, straining low-income households, vulnerable seniors, and budgets amid volatile utilities and peak demand.

 

Key Points

Rising household energy costs from extreme heat, higher electricity prices, and AC demand, straining vulnerable families.

✅ Record heatwaves drive peak electricity and cooling loads

✅ Tiered rates and volatile markets inflate utility bills

✅ LIHEAP aid and cooling centers offer short-term relief

 

As the sweltering heat of summer continues to grip much of the United States, American households are grappling with a staggering rise in energy bills. The combination of record-breaking temperatures and rising electricity prices is placing an unprecedented financial strain on families, raising concerns about the long-term impact on household budgets and overall well-being.

Record Heat and Energy Consumption

This summer has witnessed some of the hottest temperatures on record across the country. With many regions experiencing prolonged heatwaves, the demand for air conditioning and cooling systems has surged amid unprecedented electricity demand across parts of the U.S. The increased use of these energy-intensive appliances has led to a sharp rise in electricity consumption, which, combined with elevated energy prices, has pushed household energy bills to new heights.

The situation is particularly dire for households that are already struggling financially. Many families are facing energy bills that are not only higher than usual but are reaching levels that are unsustainable, underscoring electricity struggles for thousands of families across the country. This has prompted concerns about the potential for energy poverty, where individuals are forced to make difficult choices between paying for essential services and covering other necessary expenses.

Impact on Low-Income and Vulnerable Households

Low-income households and vulnerable populations are disproportionately affected by these soaring energy costs. For many, the financial burden of high energy bills is compounded by energy insecurity during the pandemic and other economic pressures, such as rising food prices and stagnant wages. The strain of paying for electricity during extreme heat can lead to tough decisions, including cutting back on other essential needs like healthcare or education.

Moreover, the heat itself poses a serious health risk, particularly for the elderly, children, and individuals with pre-existing health conditions. High temperatures can exacerbate conditions such as cardiovascular and respiratory illnesses, making the need for reliable cooling even more critical. For those struggling to afford adequate cooling, the risk of heat-related illnesses and fatalities increases significantly.

Utilities and Energy Pricing

The sharp rise in energy bills can be attributed to several factors, including higher costs of electricity production and distribution. The ongoing transition to cleaner energy sources, while necessary for long-term environmental sustainability, has introduced short-term volatility in energy markets. Additionally, power-company supply chain crises and increased demand during peak summer months have contributed to higher prices.

Utilities are often criticized for their pricing structures, which can be complex and opaque. Some regions, including areas where California electricity bills soar under scrutiny, use tiered pricing models that charge higher rates as energy consumption increases. This can disproportionately impact households that need to use more energy during extreme heat, further exacerbating financial strain.

Government and Community Response

In response to the crisis, various government and community initiatives are being rolled out to provide relief. Federal and state programs aimed at assisting low-income households with energy costs are being expanded. These programs, such as the Low-Income Home Energy Assistance Program (LIHEAP), offer financial assistance to help with utility bills, but demand often outstrips available resources.

Local community organizations are also stepping in to offer support. Initiatives include distributing fans and portable air conditioners, providing temporary cooling centers, and offering financial assistance to help cover energy costs. These efforts are crucial in helping to mitigate the immediate impact of high energy bills on vulnerable households.

Long-Term Solutions and Sustainability

The current crisis highlights the need for long-term solutions to address both the causes and consequences of high energy costs. Investing in energy efficiency and renewable energy technologies can help reduce the overall demand for electricity and lower long-term costs. Improvements in building insulation, the adoption of energy-efficient appliances, and advancements in smart grid technologies to prevent summer power outages are all essential components of a sustainable energy future.

Furthermore, addressing income inequality and supporting economic stability are critical to ensuring that all households can manage their energy needs without facing financial hardship. Policymakers will need to consider a range of strategies, including financial support programs, regulatory reforms, and infrastructure investments, to create a more equitable and resilient energy system.

Conclusion

As American households endure the double burden of extreme summer heat and skyrocketing energy bills, the need for immediate relief and long-term solutions has never been clearer. The current crisis serves as a reminder of the broader challenges facing the nation’s energy system and the importance of addressing both short-term needs and long-term sustainability. By investing in efficient technologies, supporting vulnerable populations, and developing resilient infrastructure, the U.S. can work towards a future where energy costs are manageable, and everyone has access to the resources they need to stay safe and comfortable.

 

Related News

View more

The Power Sector’s Most Crucial COVID-19 Mitigation Strategies

ESCC COVID-19 Resource Guide outlines control center continuity, sequestration, social distancing, remote operations, testing priorities, mutual assistance, supply chain risk, and PPE protocols to sustain grid reliability and plant operations during the COVID-19 pandemic.

 

Key Points

An industry guide to COVID-19 mitigation for the power sector covering control centers, testing, PPE, and mutual aid.

✅ Control center continuity: segregation, remote ops, reserve shifts

✅ Sequestration triggers, testing priorities, and PPE protocols

✅ Mutual assistance, supply chain risk, and workforce planning

 

The latest version of the Electricity Subsector Coordinating Council’s (ESCC’s) resource guide to assess and mitigate COVID-19 suggests the U.S. power sector continues to grapple with key concerns involving control center continuity, power plant continuity, access to restricted and quarantined areas, mutual assistance, and supply chain challenges, alongside urban demand shifts seen in Ottawa’s electricity demand during closures.

In its fifth and sixth versions of the “ESCC Resource Guide—Assessing and Mitigating the Novel Coronavirus (COVID-19),” released on April 16 and April 20, respectively, the ESCC expanded its guidance as it relates to social distancing and sequestration within tight power sector environments like control centers, crucial mitigation strategies that are designed to avoid attrition of essential workers.

The CEO-led power sector group that serves as a liaison with the federal government during emergencies introduced the guide on March 23, and it provides periodic updates  sourced from “tiger teams,” which are made up of representatives from investor-owned electric companies, public power utilities, electric cooperatives, independent power producers (IPPs), and other stakeholders. Collating regulatory updates and emerging resources, it serves as a general shareable blueprint for generators,  transmission and distribution (T&D) facilities, reliability coordinators, and balancing authorities across the nation on issues the sector is facing as the COVID-19 pandemic endures.

Controlling Spread at Control Centers
While control centers are typically well-isolated, physically secure, and may be conducive to on-site sequestration, the guide is emphatic that staff at these facilities are typically limited and they need long lead times to be trained to properly use the information technology (IT) and operational technology (OT) tools to keep control centers functioning and maintain grid visibility. Control room operators generally include: reliability engineers, dispatchers, area controllers, and their shift supervisors. Staff that directly support these function, also considered critical, consist of employees who maintain and secure the functionality of the IT and OT tools used by the control room operators.

In its latest update, the ESCC notes that many entities took “proactive steps to isolate their control center facilities from external visitors and non-essential employees early in the pandemic, leveraging the presence of back-up control centers, self-quarantining of employees, and multiple shifts to maximize social distancing.” To ensure all levels of logistical and operational challenges posed by the pandemic are addressed, it envisions several scenarios ranging from mild contagion—where a single operator is affected at one of two control center sites to the compromise of both sites.

Previous versions of the guide have set out universal mitigation strategies—such as clear symptom reporting, cleaning, and travel guidance. To ensure continuity even in the most dire of circumstances, for example, it recommends segregating shifts, and even sequestering a “complete healthy shift” as a “reserve” for times when minimum staffing levels cannot be met. It also encourages companies to develop a backup staff of retirees, supervisors, managers, and engineers that could backfill staffing needs.

Meanwhile, though social distancing has always been a universal mitigation strategy, the ESCC last week detailed what social distancing at a control room could look like. It says, for example, that entities should consider if personnel can do their jobs in spaces adjacent to the existing control room; moving workstations to allow at least six feet of space between employees; or designating workstations for individual operators. The guide also suggests remote operations outside of a single control room as an option, and some markets are exploring virtual power plant models in the UK to support flexibility, though it underscores that not all control center operations can be performed remotely, and remote operations increase the potential for security vulnerabilities. “The NERC [North American Electric Reliability Corp.] Reliability Standards address requirements for BES [bulk electric system] control centers and security controls for remote access of systems, applications, or data,” the resource guide notes.

Sequestration—Highly Effective but Difficult
Significantly, the new update also clarifies circumstances that could “trigger” sequestration—or keeping mission-essential workers at facilities. Sequestration, it notes, “is likely to be the most effective means of reducing risk to critical control center employees during a pandemic, but it is also the most resource- and cost-intensive option to implement.”

It is unclear exactly how many power sector workers are currently being sequestered at facilities. According to the  American Public Power Association (APPA), as of last week, the New York Power Authority was sequestering 82 power plant control room and transmission control operator, amid New York City’s shifting electric rhythms during COVID-19; the Sacramento Municipal Utility District (SMUD) in California had begun sequestering critical employees; and the Electric & Gas Utility at the City of Tallahassee had 44 workers being rotated in and out of sequestration. Another 37 workers from the New York ISO were already being sequestered or housed onsite as of April 9. PJM began sequestering a team of operators on April 11, and National Grid was sequestering 200 employees as of April 12. 

Decisions to trigger sequestration at T&D and other grid monitoring facilities are typically driven by entities’ risk assessment, ESCC noted. Considerations may involve: 

The number of people showing symptoms or testing positive as a percentage of the population in a county or municipality where the control center is sited. One organization, for example, is considering a lower threshold of 10% community infection as a trigger of “officer-level decision” to determine whether to sequester. A higher threshold of 20% “mandates a move to sequestration,” ESCC said.
The number of essential workers showing symptoms or having tested positive. “Acceptable risk should be based on the minimum staffing requirements of the control center and should include the availability of a reserve shift for critical position backfills. For example, shift supervisors are commonly certified in all positions in the control center, and the unavailability of more than one-third of a single organization’s shift supervisors could compromise operations,” it said.
The rate of infection spread across a geographic region. In the April 20 version, the guide removes specific mention that cases are doubling “every 3–5 days or more frequently in some areas.” It now says:  “Considering the rapid spread of COVID-19, special care should be taken to identify the point at which control center personnel are more likely than not to come into contact with an infected individual during their off-shift hours.”
Generator Sequestration Measures Vary
Generators, meanwhile, have taken different approaches to sequester generation operators. Some have reacted to statewide outbreaks, others to low reserves, and others still, as with one IPP, to control exposure to smaller staffs, which cannot afford attrition. The IPP, for example, decided sequestration was necessary because it “did not want to wait for confirmed cases in the workforce.” That company sequestered all its control room operators, outside operators, and instrumentation and control technicians.

The ESCC resource guide says workers are being sequestered in several ways. On-site, these could range from housing workers in two separate areas, for example, or in trailers brought in. Off-site, workers may be housed in hotel rooms, which the guide notes, “are plentiful.”

Location makes a difference, it said: “Onsite requires more logistical co-ordination for accommodations, food, room sanitization, linens, and entertainment.”  To accommodate sequestered workers, generators have to consider off-site food and laundry services (left at gates for pick-up)—and even extending Wi-Fi for personal use. Generators are learning from each other about all aspects of sequestration—including how to pay sequestered workers. It suggests sequestered workers should receive pay for all hours inside the plant, including straight time for regularly scheduled hours and time-and-a-half for all other hours. To maintain non-sequestered employees, who are following stay-at-home protocols, pay should remain regularly scheduled, it says.

Testing Remains a Formidable Hurdle
Though decisions to sequester differ among different power entities, they appear commonly complicated by one prominent issue: a dearth of testing.

At the center of a scuffle between the federal and state governments of late, the number of tests has not kept pace with the severity of the pandemic, and while President Trump has for some weeks claimed that “Testing is a local thing,” state officials, business leaders—including from the power sector—and public health experts say that it is far short of the several hundred thousands or perhaps even millions of daily tests it might take to safely restart the economy, even as calls to keep electricity options open grow among policymakers, a three-phase approach for which the Trump administration rolled out this week. While the White House said the approach is “based on the advice of public health experts, the suggestions do not indicate a specific timeframe. Some hard-hit states have committed to keeping current restrictions in place. New York on April 16 said it would maintain a shutdown order through May 15, while California published its own guidelines and states in the Northeast, Midwest, and West Coast entered regional pacts that may involve interstate coordination on COVID-19–related policy going forward.

On Sunday, responding to a call by governors across the political spectrum that insisted the federal government should step up efforts to help states obtain vital supplies for tests, Trump said the federal government will be “using” and “preparing to use” the Defense Production Act to increase swab production.

For the power entities that are part of the ESCC, widespread testing underlies many mitigation strategies. The group’s generation owners and operating companies, which include members from the full power spectrum, have said testing is central to “successful mitigation of risk to control center continuity.”

In the updated guide, the entities recommend requesting that governmental authorities—it is unclear whether the focus should be on the federal or state governments—“direct medical facilities to prioritize testing for asymptomatic generation control room operators, operator technicians, instrument and control technicians, and the operations supervisor (treat comparable to first responders) in advance of sequestered, extended-duration shifts; and obtain state regulatory approval for corporate health services organizations to administer testing for coronavirus to essential employees, if applicable.”

The second priority, as crucial, involves asking the government to direct medical facilities to prioritize testing for control room operators before they are sequestered or go into extended-duration shifts.

Generators also want local, regional, state, and federal governments to ensure operators of generating facilities are allowed to move freely if “populace-wide quarantine/curfew or other travel restrictions” are enacted. Meanwhile,  they have also asked federal agencies and state permitting agencies to allow for non-compliance operations of generating facilities in case enough workers are not available.

Lower on its list, but still “medium priority,” is that the government should obtain authority for priority supply of sanitizing supplies and personal protective equipment (PPE) for generating facilities. They are also asking states to allow power plant employees (as opposed to crucially redirected medical personnel) to administer health questionnaires and temperature checks without Americans with Disabilities Act or other legal constraints. Newly highlighted in the update, meanwhile, is an emphasis on enough fire retardant (FR) vests and hoods and PPE, including masks and face coverings, so technicians don’t have to share them.

The worst-case scenario envisioned for generators involves a 40% workforce attrition, a nine-month pandemic, and no mutual assistance. As the update suggests, along with universal mitigation strategies, some power companies are eliminating non-essential work that would require close contact, altering assignments so work tasks are done by paired teams that do not rotate, and ensuring workers wear masks. The resource guide includes case studies and lessons learned so far, and all suggest pandemic planning was crucial to response. 

Gearing Up for Mutual Assistance—Even for Generation—During COVID-19
Meanwhile, though the guide recognizes that protecting employees is a key priority for many entities, it also lauds the crucial role mutual assistance plays in the sector’s collective response to the pandemic, even as coal and nuclear plant closures test just transition planning across regions. Mutual assistance is a long-standing power sector practice in the U.S. Last week, for example, as severe weather impacted the southern and eastern portions of the U.S., causing power outages for 1.3 million customers at the peak, the sector demonstrated the “versatility of mutual assistance processes,” bringing in additional workers and equipment from nearby utilities and contractors to assist with assessment and repair. “Crews utilized PPE and social distancing per the CDC [Centers for Disease Control and Prevention] and OSHA [Occupational Safety and Health Administration] guidelines to perform their restoration duties,” the Energy Department told POWER.

But as the ESCC’s guide points out, mutual assistance has traditionally been deployed to help restore electric service to customers, typically focused on T&D infrastructure. The COVID-19 pandemic, uniquely, “has motivated generation entities to consider the use of mutual assistance for generation plant operation” it notes. As with the model it proposes to ensure continuity of control centers, mutual aid poses key challenges, such as for task variance, knowledge of operational practice, system customization, and legal indemnification.

Among guidelines ESCC proposes for generators are to use existing employee work stoppage plans as a resource in planning for the use of personnel not currently assigned to plant operation. It urges, for example, that generators keep a list of workers with skills who can be called from corporate/tech support (such as former operators or plant engineers/managers), or retirees and other individuals who could be called upon to help operate the control room first. ESCC also recommends considering the use of third-party contractor operations to supplement plant operations.

Key to these efforts is to “Create a thorough list of experience and qualifications needed to operate a particular unit. Important details include fuel type, OEM [original equipment manufacturer] technology, DCS [distributed control system] type, environmental controls, certifications, etc,” it says. “Consider proactively sharing this information internally within your company first and then with neighboring companies”—and that includes sufficient detail from manufacturers (such as Emerson Ovation, GE Mark VI, ABB, Honeywell)—“without exposing proprietary information.” One way to control this information is to develop a mutual assistance agreement with “strategic” companies within the region or system, it says.

Of specific interest is that the ESCC also recommends that generators consider “leaving units in extended or planned maintenance outage in that state as long as possible.” That’s because, “Operators at these offline sites could be considered available for a site responding to pandemic challenges,” it says.

However, these guidelines differ by resource. Nuclear generators, for example, already have robust emergency plans that include minimum staffing requirements, and owing to regulations, mutual aid is managed by each license holder, it says. However, to provide possible relief for attrition at operating nuclear plants, the Nuclear Regulatory Commission (NRC) on March 28 outlined a streamlined process that could allow nuclear operators to obtain exemptions from work hour rules, while organizations also point to IAEA low-carbon electricity lessons for future planning.

Uncertainty of Supply Chain Endurance
As the guide stresses, operational continuity during the pandemic will require that all power entities maintain supply of inputs and physical equipment. To help entities plan ahead—by determining volumes needed and geographic location of suppliers—it lists the most important materials needed for power delivery and bulk chemicals. “Clearly, the extent and duration of this emergency will influence the importance of one supply chain component compared to another,” it says.

As Massachusetts Institute of Technology supply chain expert David Simchi-Levi noted on April 13, global supply chains have been heavily taxed by the pandemic, and manufacturing activities in the European Union and North America are still going offline. China is showing signs of slow recovery. Even in the best-case scenario, however—even if North America and Europe manage to control and reduce the pandemic—the supply chain will likely experience significant logistical capacity shortages, from transportation to warehousing. Owing to variability in timing, he suggested that companies plan to reconfigure supply chains and reposition inventory in case suppliers go out of business or face quarantine, while some industry groups urge investing in hydropower as part of resilient recovery strategies.

Also in short supply, according to ESCC, is industry-critical PPE. “While our sector recognizes that the priority is to ensure that PPE is available for workers in the healthcare sector and first responders, a reliable energy supply is required for healthcare and other sectors to deliver their critical services,” its resource guide notes. “The sector is not looking for PPE for the entire workforce. Rather, we are working to prioritize supplies for mission-essential workers – a subset of highly skilled energy workers who are unable to work remotely and who are mission-essential during this extraordinary time.”

Among critical industry PPE needs are nitrile gloves, shoe covers, Tyvek suits, goggles/glasses, hand sanitizer, dust masks, N95 respirators, antibacterial soap, and trashbags. While it provides a list of non-governmental PPE vendors and suppliers, the guide also provides several “creative” solutions. These include, for example, formulations for effective hand sanitizer; 3D printer face shield files; methods for decontaminating face piece respirators and other PPE; and instructions for homemade masks with pockets for high-efficiency particulate air (HEPA) filter inserts.

 

Related News

View more

$1.6 Billion Battery Plant Charges Niagara Region for Electric Vehicle Future

Ontario EV Battery Separator Plant anchors Canada's EV supply chain, with Asahi Kasei producing lithium-ion battery separators in Niagara Region to support Honda's Alliston assembly, clean transportation growth, and sustainable manufacturing jobs.

 

Key Points

Asahi Kasei's Niagara Region plant makes lithium-ion battery separators supplying Honda's EV factory in Ontario.

✅ Starts up by 2027 to align with Honda EV output timeline.

✅ Backed by clean tech tax credits and public investment.

✅ Boosts local jobs, R&D, and clean transportation leadership.

 

The automotive industry is undergoing a seismic shift, and Canada is firmly planting its flag in the electric vehicle (EV) revolution, propelled by recent EV assembly deals across the country. A new $1.6 billion battery component plant in Ontario's Niagara Region signifies a significant step towards a cleaner, more sustainable transportation future. This Asahi Kasei facility, a key player in Honda's $15 billion electric vehicle supply chain investment, promises to create jobs, boost the local economy, and solidify Ontario's position as a leader in clean transportation technology.

Honda's ambitious project forms part of Honda's Ontario EV investment that involves constructing a dedicated battery plant adjacent to their existing Alliston, Ontario assembly facility. This new plant will focus on producing fully electric vehicles, requiring a robust supply chain for critical components. Asahi Kasei's Niagara Region plant enters the picture here, specializing in the production of battery separators – a thin film crucial for separating the positive and negative electrodes within a lithium-ion battery. These separators play a vital role in ensuring the battery functions safely and efficiently.

The Niagara Region plant is expected to be operational by 2 027, perfectly aligning with Honda's EV production timeline. This strategic partnership benefits both companies: Honda secures a reliable source for a vital component, while Asahi Kasei capitalizes on the burgeoning demand for EV parts. The project is a catalyst for economic growth in Ontario, creating jobs in construction and manufacturing, supporting an EV jobs boom province-wide, and potentially future research and development sectors. Additionally, it positions the province as a hub for clean transportation technology, attracting further investment and fostering innovation.

This announcement isn't an isolated event. News of Volkswagen constructing a separate EV battery plant in St. Thomas, Ontario, and the continuation of a major EV battery project near Montreal further underscore Canada's commitment to electric vehicles. These developments signify a clear shift in the country's automotive landscape, with a focus on sustainable solutions.

Government support has undoubtedly played a crucial role in attracting these investments. The Honda deal involves up to $5 billion in public funds. Asahi Kasei's Niagara Region plant is also expected to benefit from federal and provincial clean technology tax credits. This demonstrates a collaborative effort between government and industry, including investments by Canada and Quebec in battery assembly, to foster a thriving EV ecosystem in Canada.

The economic and environmental benefits of this project are undeniable. Battery production is expected to create thousands of jobs, while the shift towards electric vehicles will lead to reduced emissions and a cleaner environment. Ontario stands to gain significantly from this transition, becoming a leader in clean energy technology and attracting skilled workers and businesses catering to the EV sector, especially as the U.S. auto pivot to EVs accelerates across the border.

However, challenges remain. Concerns about the environmental impact of battery production, particularly the sourcing of raw materials and the potential for hazardous waste, need to be addressed. Additionally, ensuring a skilled workforce capable of handling the complexities of EV technology is paramount.

Despite these challenges, the future of electric vehicles in Canada appears bright. Major automakers are making significant investments, government support is growing, and consumer interest in EVs is on the rise. The Niagara Region plant serves as a tangible symbol of Canada's commitment to a cleaner and more sustainable transportation future. With careful planning and continued Canada-U.S. collaboration across the sector, this project has the potential to revolutionize the Canadian automotive industry and pave the way for a greener tomorrow.

 

Related News

View more

Frustration Mounts as Houston's Power Outage Extends

Houston Power Outage Heatwave intensifies a prolonged blackout, straining the grid and infrastructure resilience; emergency response, cooling centers, and power restoration efforts race to protect vulnerable residents amid extreme temperatures and climate risks.

 

Key Points

A multi-day blackout and heatwave straining Houston's grid, limiting cooling, and prompting emergency response.

✅ Fourth day without power amid dangerous heat

✅ Grid failures expose infrastructure vulnerabilities

✅ Cooling centers, aid groups support vulnerable residents

 

Houston is enduring significant frustration and hardship as a power outage stretches into its fourth day amid a sweltering heatwave. The extended blackout has exacerbated the challenges faced by residents in one of the nation’s largest and most dynamic cities, underscoring the critical need for reliable infrastructure and effective emergency response systems.

The power outage began early in the week, coinciding with a severe heatwave that has driven temperatures to dangerous levels. With the city experiencing some of the highest temperatures of the year, the lack of electricity has left residents without essential cooling, contributing to widespread discomfort and health risks. The heatwave has placed an added strain on Houston's already overburdened power grid, which has struggled to cope with the soaring demand for air conditioning and cooling.

The prolonged outage has led to escalating frustration among residents. Many households are grappling with sweltering indoor temperatures, leading to uncomfortable living conditions and concerns about the impact on vulnerable populations, including the elderly, young children, and individuals with pre-existing health conditions. The lack of power has also disrupted daily routines, as morning routine disruptions in London demonstrate, including access to refrigeration for food, which has led to spoilage and further complications.

Emergency services and utility companies have been working around the clock to restore power, but progress has been slow, echoing how Texas utilities struggled to restore power during Hurricane Harvey, as crews contended with access constraints. The complexity of the situation, combined with the high demand for repairs and the challenging weather conditions, has made it difficult to address the widespread outages efficiently. As the days pass, the situation has become increasingly dire, with residents growing more impatient and anxious about when they might see a resolution.

Local officials and utility providers have been actively communicating with the public, providing updates on the status of repairs and efforts to restore power. However, the communication has not always been timely or clear, leading to further frustration among those affected. The sense of uncertainty and lack of reliable information has compounded the difficulties faced by residents, who are left to manage the impacts of the outage with limited guidance.

The situation has also raised questions about the resilience of Houston’s power infrastructure. The outage has highlighted vulnerabilities in the city's energy grid, similar to how a recent windstorm caused significant outages elsewhere, which has faced previous challenges but has not experienced an extended failure of this magnitude in recent years. The inability of the grid to withstand the extreme heat and maintain service during a critical time underscores the need for infrastructure improvements and upgrades to better handle similar situations in the future.

In response to the crisis, community organizations and local businesses have stepped up to provide support to those in need, much like Toronto's cleanup after severe flooding mobilized volunteers and services, in order to aid affected residents. Cooling centers have been established to offer relief from the heat, providing a respite for individuals who are struggling to stay cool at home. Additionally, local food banks and charitable organizations are distributing essential supplies to those affected by food spoilage and other challenges caused by the power outage.

The power outage and heatwave have also sparked broader discussions about climate resilience and preparedness. Extreme weather events and prolonged heatwaves are becoming increasingly common due to climate change, as strong winds knocked out power across the Miami Valley recently, raising concerns about how cities and infrastructure systems can adapt to these new realities. The current situation in Houston serves as a stark reminder of the importance of investing in resilient infrastructure and developing comprehensive emergency response plans to mitigate the impacts of such events.

As the outage continues, there is a growing call for improved strategies to manage power grid failures, with examples like the North Seattle outage affecting 13,000 underscoring the need, and better support for residents during crises. Advocates are urging for a reevaluation of emergency response protocols, increased investment in infrastructure upgrades, and enhanced communication systems to ensure that the public receives timely and accurate information during emergencies.

In summary, Houston's power outage, now extending into its fourth day amid extreme heat, has caused significant frustration and hardship for residents. The prolonged disruption has underscored the need for more resilient energy infrastructure, as seen when power outages persisted for hundreds in Toronto, and effective emergency response measures. With temperatures soaring and the situation continuing to unfold, the city faces a critical challenge in restoring power, managing the impacts on its residents, and preparing for future emergencies. The crisis highlights broader issues related to infrastructure resilience and climate adaptation, emphasizing the need for comprehensive strategies to address and mitigate the effects of extreme weather events.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified