All-electric cars no magic bullet: scientist

By Reuters


Protective Relay Training - Basic

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
A future of all-electric cars coasting along streets and highways may be illusory, given that their range may be cut in half by aggressive drivers speeding along with the air conditioning blasting, U.S. scientists said.

That may not be a bad thing, as it will persuade consumers to choose the best blend of electric- and gas-powered hybrid vehicle to suit the type of driving they do.

"Ideally, everybody wants an electric vehicle. Realistically, from a cost point of view, what is the solution that allows you to go mass market? How can the customers save money?" said Aymeric Rousseau, who analyses such problems at Argonne National Laboratory, a government-funded research center hosting a conference on lithium battery technology.

Rousseau is working with the U.S. Environmental Protection Agency to offer realistic appraisals of the likely range of the next generation of plug-in electric vehicles like General Motors' Volt.

Rousseau previously helped the agency lop 10 percent or more off of promised miles-per-gallon estimates on existing gas-powered vehicles, which were posted on 2008 models.

The goal is to promise drivers of a lithium-ion battery equipped electric hybrid vehicle a 40-mile range on one charge, but that may be a gross exaggeration, he said.

Aggressive driving - faster acceleration and driving at faster speeds - may cut that range to between 28 and 32 miles. Using the air conditioning may reduce the vehicle's range to around 15 to 20 miles, he said.

In response, the vehicle's gas-powered engine will kick in two or three times during an excursion, which actually is a cost-effective response and will help extend the life of the battery, Rousseau explained.

People who drive on city streets and need travel only a few miles can use battery-only power. Those who have a longer commute at high speeds - or who drive aggressively with the air conditioning on - may want a smaller battery to improve the vehicle's overall efficiency, Rousseau said.

For different types of trips, renting a different type of hybrid vehicle may be most efficient, he said.

Another Argonne researcher told the conference a highly efficient diesel engine was much more cost-effective for highway driving than a hybrid vehicle with a lithium battery, based on the current cost of fuel and electricity. But the hybrid would beat the diesel vehicle in city driving.

Another variable to consider is the cost of making batteries.

With nickel hydride batteries now in vogue in such hybrids as Toyota's Prius, nickel prices have risen sharply. That has made lithium-ion batteries, which are a more promising technology because they can hold more power in a more compact space and have other advantages, more enticing as an alternative. Of course, lithium is likely to rise in price if it is used for vehicle batteries as well as laptop batteries, Rousseau said.

"There is no single silver bullet," he said on the sidelines of the conference. "There is not one technology that will be best for everybody. Our goal is to understand how people drive, and depending on how they drive, what is the impact of one technology or another, from a fuel efficiency point of view, and a cost point of view."

Related News

A Texas-Sized Gas-for-Electricity Swap

Texas Heat Pump Electrification replaces natural gas furnaces with electric heating across ERCOT, cutting carbon emissions, lowering utility bills, shifting summer peaks to winter, and aligning higher loads with strong seasonal wind power generation.

 

Key Points

Statewide shift from gas furnaces to heat pumps in Texas, reducing emissions and bills while moving grid peak to winter.

✅ Up to $452 annual utility savings per household

✅ CO2 cuts up to 13.8 million metric tons in scenarios

✅ Winter peak rises, summer peak falls; wind aligns with load

 

What would happen if you converted all the single-family homes in Texas from natural gas to electric heating?

According to a paper from Pecan Street, an Austin-based energy research organization, the transition would reduce climate-warming pollution, save Texas households up to $452 annually on their utility bills, and flip the state from a summer-peaking to a winter-peaking system. And that winter peak would be “nothing the grid couldn’t evolve to handle,” according to co-author Joshua Rhodes, a view echoed by analyses outlining Texas grid reliability improvements statewide today.

The report stems from the reality that buildings must be part of any comprehensive climate action plan.

“If we do want to decarbonize, eventually we do have to move into that space. It may not be the lowest-hanging fruit, but eventually we will have to get there,” said Rhodes.

Rhodes is a founding partner of the consultancy IdeaSmiths and an analyst at Vibrant Clean Energy. Pecan Street commissioned the study, which is distilled from a larger original analysis by IdeaSmiths, at the request of the nonprofit Environmental Defense Fund.

In an interview, Rhodes said, “The goal and motivation were to put bounding on some of the claims that have been made about electrification: that if we electrify a lot of different end uses or sectors of the economy...power demand of the grid would double.”

Rhodes and co-author Philip R. White used an analysis tool from the National Renewable Energy Laboratory called ResStock to determine the impact of replacing natural-gas furnaces with electric heat pumps in homes across the ERCOT service territory, which encompasses 90 percent of Texas’ electricity load.

Rhodes and White ran 80,000 simulations in order to determine how heat pumps would perform in Texas homes and how the pumps would impact the ERCOT grid.

The researchers modeled the use of “standard efficiency” (ducted, SEER 14, 8.2 HSPF air-source heat pump) and “superior efficiency” (ductless, SEER 29.3, 14 HSPF mini-split heat pump) heat pump models against two weather data sets — a typical meteorological year, and 2011, which had extreme weather in both the winter and summer and highlighted blackout risks during severe heat for many regions.

Emissions were calculated using Texas’ power sector data from 2017. For energy cost calculations, IdeaSmiths used 10.93 cents per kilowatt-hour for electricity and 8.4 cents per therm for natural gas.

Nothing the grid can't handle
Rhodes and White modeled six scenarios. All the scenarios resulted in annual household utility bill savings — including the two in which annual electricity demand increased — ranging from $57.82 for the standard efficiency heat pump and typical meteorological year to $451.90 for the high-efficiency heat pump and 2011 extreme weather year.

“For the average home, it was cheaper to switch. It made economic sense today to switch to a relatively high-efficiency heat pump,” said Rhodes. “Electricity bills would go up, but gas bills can go down.”

All the scenarios found carbon savings too, with CO2 reductions ranging from 2.6 million metric tons with a standard efficiency heat pump and typical meteorological year to 13.8 million metric tons with the high-efficiency heat pump in 2011-year weather.

Peak electricity demand in Texas would shift from summer to winter. Because heat pumps provide both high-efficiency space heating and cooling, in the scenario with “superior efficiency” heat pumps, the summer peak drops by nearly 24 percent to 54 gigawatts compared to ERCOT’s 71-gigawatt 2016 summer peak, even as recurring strains on the Texas power grid during extreme conditions persist.

The winter peak would increase compared to ERCOT’s 66-gigawatt 2018 winter peak, up by 22.73 percent to 81 gigawatts with standard efficiency heat pumps and up by 10.6 percent to 73 gigawatts with high-efficiency heat pumps.

“The grid could evolve to handle this. This is not a wholesale rethinking of how the grid would have to operate,” said Rhodes.

He added, “There would be some operational changes if we went to a winter-peaking grid. There would be implications for when power plants and transmission lines schedule their downtime for maintenance. But this is not beyond the realm of reality.”

And because Texas’ wind power generation is higher in winter, a winter peak would better match the expected higher load from all-electric heating to the availability of zero-carbon electricity.

 

A conservative estimate
The study presented what are likely conservative estimates of the potential for heat pumps to reduce carbon pollution and lower peak electricity demand, especially when paired with efficiency and demand response strategies that can flatten demand.

Electric heat pumps will become cleaner as more zero-carbon wind and solar power are added to the ERCOT grid, as utilities such as Tucson Electric Power phase out coal. By the end of 2018, 30 percent of the energy used on the ERCOT grid was from carbon-free sources.

According to the U.S. Energy Information Administration, three in five Texas households already use electricity as their primary source of heat, much of it electric-resistance heating. Rhodes and White did not model the energy use and peak demand impacts of replacing that electric-resistance heating with much more energy efficient heat pumps.

“Most of the electric-resistance heating in Texas is located in the very far south, where they don’t have much heating at all,” Rhodes said. “You would see savings in terms of the bills there because these heat pumps definitely operate more efficiently than electric-resistance heating for most of the time.”

Rhodes and White also highlighted areas for future research. For one, their study did not factor in the upfront cost to homeowners of installing heat pumps.

“More study is needed,” they write in the Pecan Street paper, “to determine the feasibility of various ‘replacement’ scenarios and how and to what degree the upgrade costs would be shared by others.”

Research from the Rocky Mountain Institute has found that electrification of both space and water heating is cheaper for homeowners over the life of the appliances in most new construction, when transitioning from propane or heating oil, when a gas furnace and air conditioner are replaced at the same time, and when rooftop solar is coupled with electrification, aligning with broader utility trends toward electrification.

More work is also needed to assess the best way to jump-start the market for high-efficiency all-electric heating. Rhodes believes getting installers on board is key.

“Whenever a homeowner’s making a decision, if their system goes out, they lean heavily on what the HVAC company suggests or tells them because the average homeowner doesn’t know much about their systems,” he said.

More work is also needed to assess the best way to jump-start the market for high-efficiency all-electric heating, and how utility strategies such as smart home network programs affect adoption too. Rhodes believes getting installers on board is key.

 

Related News

View more

FPL Proposes Significant Rate Hikes Over Four Years

FPL Rate Increase Proposal 2026-2029 outlines $9B base-rate hikes as Florida grows, citing residential demand, grid infrastructure investments, energy mix diversification, and Florida PSC review impacting customer bills, reliability, and fuel price volatility mitigation.

 

Key Points

A $9B base-rate plan FPL filed with the Florida PSC to fund growth, grid upgrades, and energy diversification through 2029.

✅ Adds 275k since 2021; +335k customers projected by 2029.

✅ Monthly bills rise to about $157 by 2029, up ~22% total.

✅ Investments in poles, wires, transformers, substations, renewables.

 

Florida Power & Light (FPL), the state's largest utility provider, has submitted a proposal to the Florida Public Service Commission (PSC) seeking a substantial increase in customer base rates over the next four years, amid ongoing scrutiny, including a recent hurricane surcharge controversy that heightened public attention.

Rationale Behind the Rate Increase

FPL's request is primarily influenced by Florida's robust population growth. Since 2021, the utility has added about 275,000 customers and projects an additional 335,000 by the end of 2029. This surge necessitates significant investments in transmission and distribution infrastructure, including poles, wires, transformers, and substations, to maintain reliable service. Moreover, FPL aims to diversify its energy mix to shield customers from fuel price volatility, even as the state declined federal solar incentives that could influence renewable adoption, ensuring a stable and sustainable power supply.

Impact on Customer Bills

If approved, the proposed rate increases would affect residential customers as follows:

  • 2026: An estimated increase of $11.52 per month, raising the typical bill to $145.66.

  • 2027: An additional $6.05 per month, bringing the bill to $151.71.

  • 2028: A further increase of $3.64 per month, totaling $155.35.

  • 2029: An extra $2.06 per month, resulting in a final bill of $157.41.

These adjustments represent a cumulative increase of approximately 22% over the four-year period, while in other regions some customers face sharper spikes, such as Pennsylvania's winter price increases this season.

Comparison with Previous Rate Hikes

This proposal follows a series of rate increases approved in recent years, as California electricity bills have soared and prompted calls for action in that state. For instance, Tampa Electric Co. (TECO) received approval for rate hikes totaling $287.9 million in 2025, with additional increases planned for 2026 and 2027. Consumer groups have expressed intentions to challenge these rate hikes, indicating a trend of growing scrutiny over utility rate adjustments.

Regulatory Review Process

The PSC is scheduled to review FPL's rate increase proposal in the coming months. A staff recommendation is expected by March 14, 2025, with a final decision anticipated at a commission conference on March 20, 2025. This process allows for public input and thorough evaluation of the proposed rate changes, while elsewhere some utilities anticipate stabilization, such as PG&E's 2025 outlook in California.

Customer and Consumer Advocacy Responses

The proposed rate hikes have elicited concerns from consumer advocacy groups. Organizations like Food & Water Watch have criticized the scale of the increase, labeling it as the largest rate hike request in U.S. history, amid mixed signals such as Gulf Power's one-time 40% bill decrease earlier this year. They argue that such substantial increases could place undue financial strain on households, especially those with fixed incomes.

Additionally, the Florida Public Service Commission has faced challenges in approving rate hikes for other utilities, such as TECO, and a recent Florida court decision on electricity monopolies that may influence the policy landscape, with consumer groups planning to appeal these decisions. This backdrop of heightened scrutiny suggests that FPL's proposal will undergo rigorous examination.

As Florida continues to experience rapid growth, balancing the need for infrastructure development and reliable energy services with the financial impact on consumers remains a critical challenge. The PSC's forthcoming decisions will play a pivotal role in shaping the state's energy landscape, influencing both the economy and the daily lives of Floridians.

 

Related News

View more

Electricity and water do mix: How electric ships are clearing the air on the B.C. coast

Hybrid Electric Ships leverage marine batteries, LNG engines, and clean propulsion to cut emissions in shipping. From ferries to cargo vessels, electrification and sustainability meet IMO regulations, Corvus Energy systems, and dockside fast charging.

 

Key Points

Hybrid electric ships use batteries with diesel or LNG engines to cut fuel and emissions and meet stricter IMO rules.

✅ LNG or diesel gensets recharge marine battery packs.

✅ Cuts CO2, NOx, and particulate emissions in port and at sea.

✅ Complies with IMO standards; enables quiet, efficient operations.

 

The river is running strong and currents are swirling as the 150-metre-long Seaspan Reliant slides gently into place against its steel loading ramp on the shores of B.C.'s silty Fraser River.

The crew hustles to tie up the ship, and then begins offloading dozens of transport trucks that have been brought over from Vancouver Island.

While it looks like many vessels working the B.C. coast, below decks, the ship is very different. The Reliant is a hybrid, partly powered by electricity, and joins BC Ferries' hybrid ships in the region, the seagoing equivalent of a Toyota Prius.

Down below decks, Sean Puchalski walks past a whirring internal combustion motor that can run on either diesel or natural gas. He opens the door to a gleaming white room full of electrical cables and equipment racks along the walls.

"As with many modes of transportation, we're seeing electrification, from electric planes to ferries," said Puchalski, who works with Corvus Energy, a Richmond, B.C. company that builds large battery systems for the marine industry.

In this case, the batteries are recharged by large engines burning natural gas.

"It's definitely the way of the future," said Puchalski.

The 10-year-old company's battery system is now in use on 200 vessels around the world. Business has spiked recently, driven by the need to reduce emissions, and by landmark projects such as battery-electric high-speed ferries taking shape in the U.S.

"When you're building a new vessel, you want it to last for, say, 30 years. You don't want to adopt a technology that's on the margins in terms of obsolescence," said Puchalski. "You want to build it to be future-proof."

 

Dirty ships

For years, the shipping industry has been criticized for being slow to clean up its act. Most ships use heavy fuel oil, a cheap, viscous form of petroleum that produces immense exhaust. According to the European Commission, shipping currently pumps out about 940 million tonnes of CO2 each year, nearly three per cent of the global total.

That share is expected to climb even higher as other sectors reduce emissions.

When it comes to electric ships, Scandinavia is leading the world. Several of the region's car and passenger ferries are completely battery powered — recharged at the dock by relatively clean hydro power, and projects such as Kootenay Lake's electric-ready ferry show similar progress in Canada.

 

Tougher regulations and retailer pressure

The push for cleaner alternatives is being partly driven by worldwide regulations, with international shipping regulators bringing in tougher emission standards after a decade of talk and study, while financing initiatives are helping B.C. electric ferries scale up.

At the same time, pressure is building from customers, such as Mountain Equipment Co-op, which closely tracks its environmental footprint. Kevin Lee, who heads MEC's supply chain, said large companies are realizing they are accountable for their contributions to climate change, from the factory to the retail floor.

"You're hearing more companies build it into their DNA in terms of how they do business, and that's cool to see," said Lee. "It's not just MEC anymore trying to do this, there's a lot more partners out there."

In the global race to cut emissions, all kinds of options are on the table for ships, including giant kites being tested to harvest wind power at sea, and ports piloting hydrogen-powered cranes to cut dockside emissions.

Modern versions of sailing ships are also being examined to haul cargo with minimal fuel consumption.

But in practical terms, hybrids and, in the future, pure electrics are likely to play a larger role in keeping the propellers turning along Canada's coast, with neighboring fleets like Washington State Ferries' upgrade underscoring the shift.

 

Related News

View more

Longer, more frequent outages afflict the U.S. power grid as states fail to prepare for climate change

Power Grid Climate Resilience demands storm hardening, underground power lines, microgrids, batteries, and renewable energy as regulators and utilities confront climate change, sea level rise, and extreme weather to reduce outages and protect vulnerable communities.

 

Key Points

It is the grid capacity to resist and recover from climate hazards using buried lines, microgrids, and batteries.

✅ Underground lines reduce wind outages and wildfire ignition risk.

✅ Microgrids with solar and batteries sustain critical services.

✅ Regulators balance cost, resilience, equity, and reliability.

 

Every time a storm lashes the Carolina coast, the power lines on Tonye Gray’s street go down, cutting her lights and air conditioning. After Hurricane Florence in 2018, Gray went three days with no way to refrigerate medicine for her multiple sclerosis or pump the floodwater out of her basement.

What you need to know about the U.N. climate summit — and why it matters
“Florence was hell,” said Gray, 61, a marketing account manager and Wilmington native who finds herself increasingly frustrated by the city’s vulnerability.

“We’ve had storms long enough in Wilmington and this particular area that all power lines should have been underground by now. We know we’re going to get hit.”

Across the nation, severe weather fueled by climate change is pushing aging electrical systems past their limits, often with deadly results. Last year, amid increasing nationwide blackouts, the average American home endured more than eight hours without power, according to the U.S. Energy Information Administration — more than double the outage time five years ago.

This year alone, a wave of abnormally severe winter storms caused a disastrous power failure in Texas, leaving millions of homes in the dark, sometimes for days, and at least 200 dead. Power outages caused by Hurricane Ida contributed to at least 14 deaths in Louisiana, as some of the poorest parts of the state suffered through weeks of 90-degree heat without air conditioning.

As storms grow fiercer and more frequent, environmental groups are pushing states to completely reimagine the electrical grid, incorporating more grid-scale batteries, renewable energy sources and localized systems known as “microgrids,” which they say could reduce the incidence of wide-scale outages. Utility companies have proposed their own storm-proofing measures, including burying power lines underground.

But state regulators largely have rejected these ideas, citing pressure to keep energy rates affordable. Of $15.7 billion in grid improvements under consideration last year, regulators approved only $3.4 billion, according to a national survey by the NC Clean Energy Technology Center — about one-fifth, highlighting persistent vulnerabilities in the grid nationwide.

After a weather disaster, “everybody’s standing around saying, ‘Why didn’t you spend more to keep the lights on?’ ” Ted Thomas, chairman of the Arkansas Public Service Commission, said in an interview with The Washington Post. “But when you try to spend more when the system is working, it’s a tough sell.”

A major impediment is the failure by state regulators and the utility industry to consider the consequences of a more volatile climate — and to come up with better tools to prepare for it. For example, a Berkeley Lab study last year of outages caused by major weather events in six states found that neither state officials nor utility executives attempted to calculate the social and economic costs of longer and more frequent outages, such as food spoilage, business closures, supply chain disruptions and medical problems.

“There is no question that climatic changes are happening that directly affect the operation of the power grid,” said Justin Gundlach, a senior attorney at the Institute for Policy Integrity, a think tank at New York University Law School. “What you still haven’t seen … is a [state] commission saying: 'Isn’t climate the through line in all of this? Let’s examine it in an open-ended way. Let’s figure out where the information takes us and make some decisions.’ ”

In interviews, several state commissioners acknowledged that failure.

“Our electric grid was not built to handle the storms that are coming this next century,” said Tremaine L. Phillips, a commissioner on the Michigan Public Service Commission, which in August held an emergency meeting to discuss the problem of power outages. “We need to come up with a broader set of metrics in order to better understand the success of future improvements.”

Five disasters in four years
The need is especially urgent in North Carolina, where experts warn Atlantic grids and coastlines need a rethink as the state has declared a federal disaster from a hurricane or tropical storm five times in the past four years. Among them was Hurricane Florence, which brought torrential rain, catastrophic flooding and the state’s worst outage in over a decade in September 2018.

More than 1 million residents were left disconnected from refrigerators, air conditioners, ventilators and other essential machines, some for up to two weeks. Elderly residents dependent on oxygen were evacuated from nursing homes. Relief teams flew medical supplies to hospitals cut off by flooded roads. Desperate people facing closed stores and rotting food looted a Wilmington Family Dollar.

“I have PTSD from Hurricane Florence, not because of the actual storm but the aftermath,” said Evelyn Bryant, a community organizer who took part in the Wilmington response.

The storm reignited debate over a $13 billion proposal by Duke Energy, one of the largest power companies in the nation, to reinforce the state’s power grid. A few months earlier, the state had rejected Duke’s request for full repayment of those costs, determining that protecting the grid against weather is a normal part of doing business and not eligible for the type of reimbursement the company had sought.

After Florence, Duke offered a smaller, $2.5 billion plan, along with the argument that severe weather events are one of seven “megatrends” (including cyberthreats and population growth) that require greater investment, according to a PowerPoint presentation included in testimony to the state. The company owns the two largest utilities in North Carolina, Duke Energy Carolinas and Duke Energy Progress.

Vote Solar, a nonprofit climate advocacy group, objected to Duke’s plan, saying the utility had failed to study the risks of climate impacts. Duke’s flood maps, for example, had not been updated to reflect the latest projections for sea level rise, they said. In testimony, Vote Solar claimed Duke was using environmental trends to justify investments “it had already decided to pursue.”

The United States is one of the few countries where regulated utilities are usually guaranteed a rate of return on capital investments, even as studies show the U.S. experiences more blackouts than much of the developed world. That business model incentivizes spending regardless of how well it solves problems for customers and inspires skepticism. Ric O’Connell, executive director of GridLab, a nonprofit group that assists state and regional policymakers on electrical grid issues, said utilities in many states “are waving their hands and saying hurricanes” to justify spending that would do little to improve climate resilience.

In North Carolina, hurricanes convinced Republicans that climate change is real

Duke Energy spokesman Jeff Brooks acknowledged that the company had not conducted a climate risk study but pointed out that this type of analysis is still relatively new for the industry. He said Duke’s grid improvement plan “inherently was designed to think about future needs,” including reinforced substations with walls that rise several feet above the previous high watermark for flooding, and partly relied on federal flood maps to determine which stations are at most risk.

Brooks said Duke is not using weather events to justify routine projects, noting that the company had spent more than a year meeting with community stakeholders and using their feedback to make significant changes to its grid improvement plan.

This year, the North Carolina Utilities Commission finally approved a set of grid improvements that will cost customers $1.2 billion. But the commission reserved the right to deny Duke reimbursement of those costs if it cannot prove they are prudent and reasonable. The commission’s general counsel, Sam Watson, declined to discuss the decision, saying the commission can comment on specific cases only in public orders.

The utility is now burying power lines in “several neighborhoods across the state” that are most vulnerable to wide-scale outages, Brooks said. It is also fitting aboveground power lines with “self-healing” technology, a network of sensors that diverts electricity away from equipment failures to minimize the number of customers affected by an outage.

As part of a settlement with Vote Solar, Duke Energy last year agreed to work with state officials and local leaders to further evaluate the potential impacts of climate change, a process that Brooks said is expected to take two to three years.

High costs create hurdles
The debate in North Carolina is being echoed in states across the nation, where burying power lines has emerged as one of the most common proposals for insulating the grid from high winds, fires and flooding. But opponents have balked at the cost, which can run in the millions of dollars per mile.

In California, for example, Pacific Gas & Electric wants to bury 10,000 miles of power lines, both to make the grid more resilient and to reduce the risk of sparking wildfires. Its power equipment has contributed to multiple deadly wildfires in the past decade, including the 2018 Camp Fire that killed at least 85 people.

PG&E’s proposal has drawn scorn from critics, including San Jose Mayor Sam Liccardo, who say it would be too slow and expensive. But Patricia Poppe, the company’s CEO, told reporters that doing nothing would cost California even more in lost lives and property while struggling to keep the lights on during wildfires. The plan has yet to be submitted to the state, but Terrie Prosper, a spokeswoman for the California Public Utilities Commission, said the commission has supported underground lines as a wildfire mitigation strategy.

Another oft-floated solution is microgrids, small electrical systems that provide power to a single neighborhood, university or medical center. Most of the time, they are connected to a larger utility system. But in the event of an outage, microgrids can operate on their own, with the aid of solar energy stored in batteries.

In Florida, regulators recently approved a four-year microgrid pilot project, but the technology remains expensive and unproven. In Maryland, regulators in 2016 rejected a plan to spend about $16 million for two microgrids in Baltimore, in part because the local utility made no attempt to quantify “the tangible benefits to its customer base.”

Amid shut-off woes, a beacon of energy

In Texas, where officials have largely abandoned state regulation in favor of the free market, the results have been no more encouraging. Without requirements, as exist elsewhere, for building extra capacity for times of high demand or stress, the state was ill-equipped to handle an abnormal deep freeze in February that knocked out power to 4 million customers for days.

Since then, Berkshire Hathaway Energy and Starwood Energy Group each proposed spending $8 billion to build new power plants to provide backup capacity, with guaranteed returns on the investment of 9 percent, but the Texas legislature has not acted on either plan.

New York is one of the few states where regulators have assessed the risks of climate change and pushed utilities to invest in solutions. After 800,000 New Yorkers lost power for 10 days in 2012 in the wake of Hurricane Sandy, state regulators ordered utility giant Con Edison to evaluate the state’s vulnerability to weather events.

The resulting report, which estimated climate risks could cost the company as much as $5.2 billion by 2050, gave ConEd data to inform its investments in storm hardening measures, including new storm walls and submersible equipment in areas at risk of flooding.

Meanwhile, the New York Public Service Commission has aggressively enforced requirements that utility companies keep the lights on during big storms, fining utility providers nearly $190 million for violations including inadequate staffing during Tropical Storm Isaias in 2020.

“At the end of the day, we do not want New Yorkers to be at the mercy of outdated infrastructure,” said Rory M. Christian, who last month was appointed chair of the New York commission.

The price of inaction
In North Carolina, as Duke Energy slowly works to harden the grid, some are pursuing other means of fostering climate-resilient communities.

Beth Schrader, the recovery and resilience director for New Hanover County, which includes Wilmington, said some of the people who went the longest without power after Florence had no vehicles, no access to nearby grocery stores and no means of getting to relief centers set up around the city.

For example, Quanesha Mullins, a 37-year-old mother of three, went eight days without power in her housing project on Wilmington’s east side. Her family got by on food from the Red Cross and walked a mile to charge their phones at McDonald’s. With no air conditioning, they slept with the windows open in a neighborhood with a history of violent crime.

Schrader is working with researchers at the University of North Carolina in Charlotte to estimate the cost of helping people like Mullins. The researchers estimate that it would have cost about $572,000 to provide shelter, meals and emergency food stamp benefits to 100 families for two weeks, said Robert Cox, an engineering professor who researches power systems at UNC-Charlotte.

Such calculations could help spur local governments to do more to help vulnerable communities, for example by providing “resilience outposts” with backup power generators, heating or cooling rooms, Internet access and other resources, Schrader said. But they also are intended to show the costs of failing to shore up the grid.

“The regulators need to be moved along,” Cox said.

In the meantime, Tonye Gray finds herself worrying about what happens when the next storm hits. While Duke Energy says it is burying power lines in the most outage-prone areas, she has yet to see its yellow-vested crews turn up in her neighborhood.

“We feel,” she said, “that we’re at the end of the line.”

 

Related News

View more

Ontario Providing Support for Industrial and Commercial Electricity Consumers During COVID-19

Ontario Global Adjustment Deferral provides COVID-19 relief to industrial and commercial electricity consumers, holding GA charges at pre-COVID levels, aligning Class A and Class B rates, and deferring non-RPP costs from April to June 2020.

 

Key Points

An emergency measure that defers a portion of GA charges to stabilize electricity bills for non-RPP Class A/B consumers.

✅ Holds GA near pre-COVID levels at $115/MWh for Class B.

✅ Applies equal percentage relief to Class A customers.

✅ Deferred costs recovered over 12 months from Jan 2021.

 

Through an emergency order passed today, the Ontario government is taking steps to defer a portion of Global Adjustment (GA) charges for industrial and commercial electricity consumers that do not participate in the Regulated Price Plan for the period starting from April 2020, at a time when Toronto's growing electricity needs require careful planning. This initiative is intended to provide companies with temporary immediate relief on their monthly electricity bills, as utilities use AI to adapt to shifting electricity demands in April, May and June 2020. The government intends to keep this emergency order in place until May 31, 2020, and subsequent regulatory amendments would, if approved, provide for the deferral of these charges for June 2020 as well.

This relief will prevent a marked increase in Global Adjustment charges due to the low electricity demand caused by the COVID-19 outbreak. Without this emergency order, a small industrial or commercial consumer (i.e., Class B) could have seen bills increase by 15 per cent or more. This emergency order will hold GA rates in line with pre-COVID-19 levels, even as clean energy initiatives in British Columbia accelerate across the sector.

"Ontario's industrial and commercial electricity consumers are being impacted by COVID-19. They employ thousands of hardworking Ontarians, and we know this is a challenging time for them," said Greg Rickford, Minister of Energy, Northern Development and Mines. "This would provide immediate financial support for more than 50,000 companies when they need it most: as they do their part to stop the spread of COVID-19 and as they prepare to help get our economy moving again with Toronto preparing for a surge in electricity demand in the years ahead."

Quick Facts

  • The GA rate for smaller industrial and commercial consumers (i.e., Class B) has been set at $115 per megawatt-hour, which is roughly in line with the March 2020 value, alongside efforts to develop IoT security standards for electricity sector devices today. Large industrial and commercial consumers (i.e., Class A) will receive the same percentage reduction in GA charges as Class B consumers.
  • Subject to the approval of subsequent amendments, deferred costs would be recovered over a 12-month period beginning in January 2021, amid increasing exposure to harsh weather across Canadian grids.

 

Related News

View more

As California enters a brave new energy world, can it keep the lights on?

California Grid Transition drives decarbonization with renewable energy, EV charging, microgrids, and energy storage, while tackling wildfire risk, aging infrastructure, and cybersecurity threats to build grid resilience and reliability across a rapidly electrifying economy.

 

Key Points

California Grid Transition is the statewide shift to renewables, storage, EVs, and resilient, secure infrastructure.

✅ Integrates solar, wind, storage, and demand response at scale

✅ Expands microgrids and DERs to enhance reliability and resilience

✅ Addresses wildfire, aging assets, and cybersecurity risks

 

Gretchen Bakke thinks a lot about power—the kind that sizzles through a complex grid of electrical stations, poles, lines and transformers, keeping the lights on for tens of millions of Californians who mostly take it for granted.

They shouldn’t, says Bakke, who grew up in a rural California town regularly darkened by outages. A cultural anthropologist who studies the consequences of institutional failures, she says it’s unclear whether the state’s aging electricity network and its managers can handle what’s about to hit it, as U.S. blackout risks continue to mount.

California is casting off fossil fuels to become something that doesn’t yet exist: a fully electrified state of 40 million people. Policies are in place requiring a rush of energy from renewable sources such as the sun and wind and calling for millions of electric cars that will need charging—changes that will tax a system already fragile, unstable and increasingly vulnerable to outside forces.

“There is so much happening, so fast—the grid and nearly everything about energy is in real transition, and there’s so much at stake,” said Bakke, who explores these issues in a book titled simply, “The Grid.”

The state’s task grew more complicated with this week’s announcement that Pacific Gas and Electric, which provides electricity for more than 5 million customer accounts, intends to file for bankruptcy in the face of potentially crippling liabilities from wildfires. But the reshaping of California’s energy future goes far beyond the woes of a single company.

The 19th-century model of one-way power delivery from utility companies to customers is being reimagined. Major utilities—and the grid itself—are being disrupted by rooftops paved with solar panels and the rise of self-sufficient neighborhood mini-grids. Whole cities and counties are abandoning big utilities and buying power from wholesalers and others of their choosing.

With California at the forefront of a new energy landscape, officials are racing to design a future that will not just reshape power production and delivery but also dictate how we get around and how our goods are made. They’re debating how to manage grid defectors, weighing the feasibility of an energy network that would expand to connect and serve much of the West and pondering how to appropriately regulate small power producers.

“We are in the depths of the conversation,” said Michael Picker, president of the state Public Utilities Commission, who cautions that even as the system is being rebooted, like repairing a car while driving in practice, there’s no real plan for making it all work.

Such transformation is exceedingly risky and potentially costly. California still bears the scars of having dropped its regulatory reins some 20 years ago, leaving power companies to bilk the state of billions of dollars it has yet to completely recover. And utility companies will undoubtedly pass on to their customers the costs of grid upgrades to defend against natural and man-made threats.

Some weaknesses are well known—rodents and tree limbs, for example, are common culprits in power outages, even as longer, more frequent outages afflict other parts of the U.S. A gnawing squirrel squeezed into a transformer on Thanksgiving Day three years ago, shutting off power to parts of Los Angeles International Airport. The airport plans to spend $120 million to upgrade its power plant.

But the harsh effects of climate change expose new vulnerabilities. Rising seas imperil coastal power plants. Electricity infrastructure is both threatened by and implicated in wildfires. Picker estimates that utility operations are related to one in 10 wildland fires in California, which can be sparked by aging equipment and winds that send tree branches crashing into power lines, showering flammable landscapes with sparks.

California utilities have been ordered to make their lines and equipment more fire-resistant as they’re increasingly held accountable for blazes they cause. Pacific Gas and Electric reported problems with some of its equipment at a starting point of California’s deadliest wildfire, which killed at least 86 people in November in the town of Paradise. The cause of the fire is under investigation.

New and complex cyber threats are more difficult to anticipate and even more dangerous. Computer hackers, operating a world away, can—and have—shut down electricity systems, toggling power on and off at will, and even hijacked the computers of special teams dispatched to restore control.

Thomas Fanning, CEO of Southern Co., one of the country’s largest utilities, recently disclosed that his teams have fended off multiple attempts to hack a nuclear power plant the firm operates. He called grid hacking “the most important under-reported war in American history.”

However, if you’ve got what seems like an insoluble problem requiring a to-the-studs teardown and innovative rebuild, California is a good place to start. After all, the first electricity grid was built in San Francisco in 1879, three years before Thomas Edison’s power station in New York City. (Edison’s plant burned to the ground a decade later.)

California’s energy-efficiency regulations have helped reduce statewide energy use, which peaked a decade ago and is on the decline, somewhat easing pressure on the grid. The major utilities are ahead of schedule in meeting their obligation to obtain power from renewable sources.

California’s universities are teaming with national research labs to develop cutting-edge solutions for storing energy produced by clean sources. California is fortunate in the diversity of its energy choices: hydroelectric dams in the north, large-scale solar operations in the Mojave Desert to the east, sprawling windmill farms in mountain passes and heat bubbling in the Geysers, the world’s largest geothermal field north of San Francisco. A single nuclear-power plant clings to the coast near San Luis Obispo, but it will be shuttered in 2025.

But more renewable energy, accessible at the whims of weather, can throw the grid off balance. Renewables lack the characteristic that power planners most prize: dispatchability, ready when called on and turned off when not immediately needed. Wind and sun don’t behave that way; their power is often available in great hunks—or not at all, as when clouds cover solar panels or winds drop.

In the case of solar power, it is plentiful in the middle of the day, at a time of low demand. There’s so much in California that most days the state pays its neighbors to siphon some off,  lest the excess impede the grid’s constant need for balance—for a supply that consistently equals demand.

So getting to California’s new goals of operating on 100 percent clean energy by 2045 and having 5 million electric vehicles within 12 years will require a shift in how power is acquired and managed. Consumers will rely more heavily on battery storage, whose efficiency must improve to meet that demand.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.