ESRI asks: Is your GIS smart grid ready?

By Business Wire


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
The U.S. electric system, "the supreme engineering achievement of the 20th century," is aging, inefficient, congested, and incapable of meeting future energy needs, according to a recent U.S. Department of Energy (DOE) report.

As electric utilities work to overcome challenges laid out in the DOE report, they can find guidance in a new benchmark study that focuses on a smart grid and geographic information system (GIS) technology. The study, conducted by GIS technology leader ESRI, provides participants with customized reports comparing their smart grid readiness to that of peer groups.

Believed to be the solution to modernize utilities around the world, a smart grid adds communication and computer technology to electric networks, ensuring cleaner, more reliable, and more affordable energy. GIS is the sturdy platform on which utilities rely for crucial smart grid components such as data management, analysis, planning, mobile applications, visualization, and awareness.

"We want to help utilities assess their own systems and, at the same time, gain insight into what services and products we should provide to meet the industry's changing needs," said Bill Meehan, ESRI's director of utility solutions and author of the study's base survey. "GIS is widely recognized for its strong role in managing traditional electric transmission and distribution, as well as telecommunications networks. With smart grid's sophisticated communication network superimposed on the electric network, data management with GIS becomes utterly critical."

Participation in the study via online survey is open to all utilities. The names of participants and utilities will remain confidential. Utilities may participate from September 1 through October 31, 2009, at www.esri.com/smartgridsurvey.

Related News

New Power Grid “Report Card” Reveal Dangerous Vulnerabilities

U.S. Power Grid D+ Rating underscores aging infrastructure, rising outages, cyber threats, EMP and solar flare risks, strained transmission lines, vulnerable transformers, and slow permitting, amplifying reliability concerns and resilience needs across national energy systems.

 

Key Points

ASCE's D+ grade flags aging infrastructure, rising outages, and cyber, EMP, and weather risks needing investment.

✅ Major outages rising; weather remains top disruption driver.

✅ Aging transformers, transmission lines, limited maintenance.

✅ Cybersecurity gaps via smart grid, EV charging, SCADA.

 

The U.S. power grid just received its “grade card” from the American Society of Civil Engineers (ASCE) and it barely passed.

The overall rating of our antiquated electrical system was a D+. Major power outages in the United States, including widespread blackouts, have grown from 76 in 2007 to 307 in 2011, according to the latest available statistics. The major outage figures do not take into account all of the smaller outages which routinely occur due to seasonal storms.

The American Society of Civil Engineers power grid grade card rating means the energy infrastructure is in “poor to fair condition and mostly below standard, with many elements approaching the end of their service life.” It further means a “large portion of the system exhibits significant deterioration” with a “strong risk of failure.”

Such a designation is not reassuring and validates those who purchased solar generators over the past several years.

#google#

The vulnerable state of the power grid gets very little play by mainstream media outlets. Concerns about a solar flare or an electromagnetic pulse (EMP) attack instantly sending us back to an 1800s existence are legitimate, but it may not take such an extreme act to render the power grid a useless tangle of wires. The majority of the United States’ infrastructure and public systems evaluated by the ASCE earned a “D” rating. A “C” ranking (public parks, rail and bridges) was the highest grade earned. It would take a total of $3.6 trillion in investments by 2020 to fix everything, the report card stated. To put that number in perspective, the federal government’s budget for all of 2012 was slightly more, $3.7 trillion.

“America relies on an aging electrical grid and pipeline distribution systems, some of which originated in the 1880s,” the report read. “Investment in power transmission has increased since 2005, but ongoing permitting issues, weather events, including summer blackouts that strain local systems, and limited maintenance have contributed to an increasing number of failures and power interruptions. While demand for electricity has remained level, the availability of energy in the form of electricity, natural gas, and oil will become a greater challenge after 2020 as the population increases. Although about 17,000 miles of additional high-voltage transmission lines and significant oil and gas pipelines are planned over the next five years, permitting and siting issues threaten their completion. The electric grid in the United States consists of a system of interconnected power generation, transmission facilities, and distribution facilities.”

 

Harness the power of the sun when the power goes out…

There are approximately 400,000 miles of electrical transmission lines throughout the United States, and thousands of power generating plants dot the landscape. The ASCE report card also stated that new gas-fired and renewable generation issues increase the need to add new transmission lines. Antiquated power grid equipment has reportedly prompted even more “intermittent” power outages in recent years.

The American Society of Civil Engineers accurately notes that the power grid is more vulnerable to cyber attacks than ever before, including Russian intrusions documented in recent years, and it cites the aging electrical system as the primary culprit. Although the decades-old transformers and other equipment necessary to keep power flowing around America are a major factor in the enhanced vulnerability of the power grid, moving towards a “smart grid” system is not the answer. As previously reported by Off The Grid News, smart grid systems and even electric car charging stations make the power grid more accessible to cyber hackers. During the Hack in the Box Conference in Amsterdam, HP ArcSight Product Manager Ofer Sheaf stated that electric car charging stations are in essence a computer on the street. The roadway fueling stations are linked to the power grid electrical system. If cyber hackers garner access to the power grid via the charging stations, they could stop the flow of power to a specific area or alter energy distribution levels and overload the system.

While a relatively small number of electric car charging stations exist in America now, that soon will change. Ongoing efforts by both federal and state governments to reduce our reliance on fossil fuels have resulted in grants and privately funded vehicle charging station projects. New York Governor Andrew Cuomo in April announced plans to build 360 such electrical stations in his state. A total of 3,000 car charging stations are in the works statewide and are slated for completion over the next five years.

SHIELD ActWeather-related events were the primary cause of power outages from 2007 to 2012, according to the infrastructure report card. Power grid reliability issues are emerging as the greatest threat to the electrical system, with rising attacks on substations compounding the risks. The ASCE grade card also notes that retiring and rotating in “new energy sources” is a “complex” process. Like most items we routinely purchase in our daily lives, many of the components needed to make the power grid functional are not manufactured in the United States.

The SHIELD Act is the first real piece of federal legislation in years drafted to address power grid vulnerabilities. While the single bill will not fix all of the electrical system issues, it is a big step in the right direction – if it ever makes it out of committee. Replacing aging transformers, encasing them in a high-tech version of a Faraday cage, and stockpiling extra units so instant repairs are possible would help preserve one of the nation’s most critical and life-saving pieces of infrastructure after a weather-related incident or man-made disaster.

“Geomagnetic storm environments can develop instantaneously over large geographic footprints,” solar geomagnetic researcher John Kappenman said about the fragile state of the power grid. He was quoted in an Oak Ridge National Laboratory report. “They have the ability to essentially blanket the continent with an intense threat environment and … produce significant collateral damage to critical infrastructures. In contrast to well-conceived design standards that have been successfully applied for more conventional threats, no comprehensive design criteria have ever been considered to check the impact of the geomagnetic storm environments. The design actions that have occurred over many decades have greatly escalated the dangers posed by these storm threats for this critical infrastructure.”

The power grid has morphed in size tenfold during the past 50 years. While solar flares, cyber attacks, and an EMP are perhaps the most extensive and frightening threats to the electrical system, the infrastructure could just as easily fail in large portions due to weather-related events exacerbated by climate change across regions. The power grid is basically a ticking time bomb which will spawn civil unrest, lack of food, clean water, and a multitude of fires if it does go down.

 

Related News

View more

OEB issues decision on Hydro One's first combined T&D rates application

OEB Hydro One Rate Decision 2023-2027 sets approved transmission and distribution rates in Ontario, with a settlement reducing revenue requirement, modest bill impacts, higher productivity factors, inflation certainty, DVA credits, and First Nations participation measures.

 

Key Points

OEB-approved Hydro One 2023-2027 transmission and distribution rates settlement, lowering costs and limiting bill impacts.

✅ $482.7M revenue reductions vs. original proposal

✅ Avg bill impact: +$0.69 trans., +$2.43 distr. per month

✅ Faster DVA refunds; productivity and efficiency incentives

 

The Ontario Energy Board (OEB) issued its Decision and Order on an application filed by Hydro One Networks Inc. (Hydro One) on August 5, 2021 seeking approval for changes to the rates it charges for electricity transmission and distribution, beginning January 1, 2023 and for each subsequent year through to December 31, 2027. 

The proceeding resulted in the filing of a settlement proposal that the OEB has now approved after concluding that it is in the public interest. 

The negotiated reductions in Hydro One's transmission and distribution revenue requirements over the 2023 to 2027 period total $482.7 million compared to the requests made by Hydro One in its application.

The OEB found that the reductions in Hydro One's proposed capital expenditure and operating, maintenance and administration costs were reasonable, and should not compromise the safety and reliability of Hydro One's transmission and distribution systems. It also concluded that the estimated bill impacts for both transmission and distribution customers are reasonable, and that the January 1, 2023 implementation and effective date of the new rates is appropriate.

In the broader Canadian context, pressures on utility finances at other companies, such as Manitoba Hydro's debt provide additional background for stakeholders.

 

Bill Impacts

This proceeding related to both transmission and distribution operations.

 

Transmission

The new transmission revenue requirement will affect Ontario electricity consumers across the province because it will be incorporated into updated transmission rates, which are paid by electricity distributors and other large consumers connected directly to the transmission system, and distributors then pass this cost on to their customers.

As a result of the settlement approved on the transmission portion of the application, it is estimated that for a typical Hydro One residential customer with a monthly consumption of 750 kWh, the total bill impact averaged over the 2023-2027 period will be an increase of $0.69 per month or 0.5%, which follows the 2021 electricity rate reductions that affected many businesses.

 

Distribution

The new OEB-approved distribution rates will affect Hydro One's distribution customers, including areas served through acquisitions such as the Peterborough Distribution sale which expanded its customer base.

As a result of the settlement reached on the distribution portion of the application, it is estimated that for a typical residential distribution customer of Hydro One with a monthly consumption of 750 kWh, the total bill impact averaged over the 2023-2027 period will be an increase of $2.43 per month or 1.5%.
This proceeding included 24 approved intervenors representing a wide variety of customer classes and other interests. Representatives of 18 of those intervenors participated in the settlement conference. Having this diversity of perspective enriches the already thorough examination of evidence and argument that the OEB routinely undertakes when considering an application.

Other features of the settlement proposal include:

  • A commitment by Hydro One to include, in future operational and capital investment plans, a discussion of how the proposed spending will directly support the achievement of Hydro One's climate change policy.
  • Eliminating further updates to reflect changes to inflation in 2022 and 2023 as originally proposed, to provide Hydro One's customers with greater certainty as to the potential impacts of inflation on their bills.
  • Increases in the productivity factors and supplemental stretch factors for both the distribution and transmission business segments which will provide Hydro One with additional incentives to achieve greater efficiencies during the 2023 to 2027 period.
  • Undertaking certain measures to seek economic participation or equity investment opportunities from First Nations.
  • Disposition of net credit balances in deferral and variance accounts (DVAs) owed to customers will be returned over a shorter period of time:
  • Transmission DVA – $22.5M over a one-year period in 2023 (versus five years)
  • Distribution DVA – $85.9M over a three-year period – 2023-2025 (versus five years)
  • Undertaking certain measures to continue examining cost-effective transmission and distribution line losses
  • In the decision, the OEB acknowledged the efforts involved by parties to participate in this entire proceeding, including the settlement conference, considering the number of participants, the complexity of the issues, and the challenging logistics of a "virtual" proceeding. The OEB commended the parties and OEB staff for achieving a comprehensive settlement on all issues.

 

Related News

View more

Shopping for electricity is getting cheaper in Texas

Texas Electricity Prices are shifting as deregulation matures, with competitive market shopping lowering residential rates, narrowing gaps with regulated areas, and EIA data showing long term declines versus national averages across most Texans.

 

Key Points

Texas Electricity Prices are average residential rates in deregulated and regulated markets across the state.

✅ Deregulated areas saw 17.4% residential price declines since 2006

✅ Regulated zones experienced a 5.5% increase over the same period

✅ Competitive shopping narrowed the gap; Texas averaged below US

 

Shopping for electricity is becoming cheaper for most Texans, according to a new study from the Texas Coalition for Affordable Power. But for those who live in an area with only one electricity provider, prices have increased in a recent 10-year period, the study says.

About 85 percent of Texans can purchase electricity from a number of providers in a deregulated marketplace, while the remaining 15 percent must buy power from a single provider, often an electric cooperative, in their area.

The report from the Texas Coalition for Affordable Power, which advocates for cities and local governments and negotiates their power contracts, pulls information from the U.S. Energy Information Administration to compare prices for Texans in the two models. Most Texans could begin choosing their electricity provider in 2002.

Buying power tends to be more expensive for Texans who live in a part of the state with a deregulated electricity market. But that gap is continuing to shrink as Texans become more willing to shop for power, even as electricity complaints have periodically risen. In 2015, the gap “was the smallest since the beginning of deregulation,” according to the report.

Between 2006 and 2015, the last year for which data is available, average residential electric prices for Texans in a competitive market decreased by 17.4 percent, while average prices increased by 5.5 percent in the regulated areas, even as the Texas power grid has periodically faced stress.

“These residential price declines are promising, and show the retail electric market is maturing,” Jay Doegey, executive director for the Texas Coalition for Affordable Power, said in a statement. “We’re encouraged by the price declines, but more progress is needed.”

The study attributes the decline to the prevalence of “low-priced individual deals” in the competitive areas, while policymakers consider market reforms to bolster reliability.

Overall, the average price of electricity in Texas (which produces and consumes the most electricity in the U.S.) — including the price in the deregulated marketplace, for the third time in four years — was below the national average in 2015.

 

Related News

View more

Lack of energy: Ottawa’s electricity consumption drops 10 per cent during pandemic

Ottawa Electricity Consumption Drop reflects COVID-19 impacts, with Hydro Ottawa and IESO reporting 10-12% lower demand, delayed morning peaks, and shifted weekend peak to 4 p.m., alongside provincial time-of-use rate relief.

 

Key Points

A 10-12% decline in Ottawa's electricity demand during COVID-19, with later morning peaks and weekend peak at 4 p.m.

✅ Weekday demand down 11%; weekends down 10% vs April 2019.

✅ Morning peak delayed about 4 hours; 6 a.m. usage down 17%.

✅ Weekend peak moved from 7 p.m. to 4 p.m.; rate relief ongoing.

 

Ottawa residents may be spending more time at home, with residential electricity use up even as the city’s overall energy use has dropped during the COVID-19 pandemic.

Hydro Ottawa says there was a 10-to-11 per cent drop in electricity consumption in April, with the biggest decline in electricity usage happening early in the morning, a pattern echoed by BC Hydro findings in its province.

Statistics provided to CTV News Ottawa show average hourly energy consumption in the City of Ottawa dropped 11 per cent during weekdays, mirroring Manitoba Hydro trends reported during the pandemic, and a 10 per cent decline in electricity consumption on weekends.

The drop in energy consumption came as many businesses in Ottawa closed their doors due to the COVID-19 measures and physical distancing guidelines.

“Based on our internal analysis, when comparing April 2020 to April 2019, Hydro Ottawa observed a lower, flatter rise in energy use in the morning, with peak demand delayed by approximately four hours.” Hydro Ottawa said in a statement to CTV News Ottawa.

“Morning routines appear to have the largest difference in energy consumption, most likely as a result of a collective slower pace to start the day as people are staying home.”

Hydro Ottawa says overall, there was an 11 per cent average hourly reduction in energy use on weekdays in April 2020, compared to April 2019. The biggest difference was the 6 a.m. hour, with a 17 per cent decrease.

On weekends, the average electricity usage dropped 10 per cent in April, compared to April 2019. The biggest difference was between 7 a.m. and 8 a.m., with a 13 per cent drop in hydro usage.

Hydro Ottawa says weekday peak continues to be at 4 p.m., while on weekends the peak has shifted from 7 p.m. before the pandemic to 4 p.m. now, though Hydro One has not cut peak rates for self-isolating customers.

The Independent Electricity System Operator says across Ontario, there has been a 10 to 12 per cent drop in energy consumption during the pandemic, a trend reflected in province-wide demand data that is the equivalent to half the demand of Toronto.

The Ontario Government has provided emergency electricity rate relief during the COVID-19 pandemic. Residential and small business consumers on time-of-use pricing, and later ultra-low overnight options, will continue to pay one price no matter what time of day the electricity is consumed until the end of May.

 

Related News

View more

The Cool Way Scientists Turned Falling Raindrops Into Electricity

Raindrop Triboelectric Energy Harvesting converts falling water into electricity using Teflon (PTFE) on indium tin oxide and an aluminum electrode, forming a transient water bridge; a low frequency nanogenerator for renewable, static electricity harvesting.

 

Key Points

A method using PTFE, ITO, and an aluminum electrode to turn raindrop impacts into low frequency electrical power.

✅ PTFE on ITO boosts charge transfer efficiency.

✅ Water bridge links electrodes for rapid discharge.

✅ Low frequency output suits continuous energy harvesting.

 

Scientists at the City University of Hong Kong have used a Teflon-coated surface and a phenomenon called triboelectricity to generate a charge from raindrops. “Here we develop a device to harvest energy from impinging water droplets by using an architecture that comprises a polytetrafluoroethylene [Teflon] film on an indium tin oxide substrate plus an aluminium electrode,” they explain in their new paper in Nature as a step toward cheap, abundant electricity in the long term.

Triboelectricity itself is an old concept. The word means “friction electricity”—from the Greek tribo, to rub or wear down, which is why a diatribe tires you out—and dates back a long, long time. Static electricity is the most famous kind of triboelectric, and related work has shown electricity from the night sky can be harvested as well in niche setups. In most naturally occurring kinds, scientists have studied triboelectric in order to avoid its effects, like explosions inside of grain silos or hospital workers touching off pure oxygen. (Blowing sand causes an electric field, and NASA even worries about static when astronauts eventually land on Mars.)

One of the most studied forms of intentional and useful triboelectric is in systems such as ocean wave generators where the natural friction of waves meets nanogenerators of triboelectric energy. These even already use Teflon, which has natural conductivity that makes it ideal for this job. But triboelectricity is chaotic, and harnessing it generally involves a bunch of complicated, intersecting variables that can vary with the hourly weather. Promises of static electricity charging devices have often been, well, so much hot, sandy wind.

The scientists at City University of Hong Kong used triboelectric ideas to turn falling raindrops into energy. They say previous versions of the same idea were not very efficient, with materials that didn’t allow for high-fidelity transfer of electrical charge. (Many sources of renewable energy aren’t yet as efficient to turn into power, both because of developing technology and because their renewability means even less efficient use could be better than, for example, fossil fuels, and advances in renewable energy storage could help.)

“[A]chieving a high density of electrical power generation is challenging,” the team explains in its paper. “Traditional hydraulic power generation mainly uses electromagnetic generators that are heavy, bulky, and become inefficient with low water supply.” Diversifying how power is generated by water sources such as oceans and rivers is good for the existing infrastructure as well as new installations.

The research team found that as simulated raindrops fell on their device, the way the water accumulated and spread created a link between their two electrodes, one Teflon-coated and the other aluminum. This watery de facto wire link closes the loop and allows accumulated energy to move through the system. Because it’s a mechanical setup, it’s not limited to salty seawater, and because the medium is already water, its potential isn’t affected by ambient humidity either.

Raindrop energy is very low frequency, which means this tech joins many other existing pushes to harvest continuously available, low frequency natural energy, including underwater 'kites' that exploit steady currents. To make an interface that increases “instantaneous power density by several orders of magnitude over equivalent devices,” as the researchers say they’ve done here, could represent a major step toward feasibility in triboelectric generation.

 

Related News

View more

There's a Russia-Sized Mystery in China's Electricity Sector

China Power Demand-Emissions Gap highlights surging grid demand outpacing renewables, with coal filling shortages despite record solar, wind, EV charging, and hydrogen growth, threatening decarbonization targets and net-zero pathways through 2030.

 

Key Points

China's power demand outpaces renewables, keeping coal dominant and raising emissions risk through the 2020s.

✅ Record solar and wind still lag fast grid demand growth

✅ Coal fills gaps as EV charging and hydrogen loads rise

✅ Forecasts diverge: CEC bullish vs IEA, BNEF conservative

 

Here’s a new obstacle that could prevent the world finally turning the corner on climate change: Imagine that over the coming decade a whole new economy the size of Russia were to pop up out of nowhere. With the world’s fourth-largest electricity sector and largest burden of power plant emissions after China, the U.S. and India, this new economy on its own would be enough to throw out efforts to halt global warming — especially if it keeps on growing through the 2030s.

That’s the risk inherent in China’s seemingly insatiable appetite for grid power, as surging electricity demand is putting systems under strain worldwide.

From the cracking pace of renewable build-out last year, you might think the country had broken the back of its carbon addiction. A record 55 gigawatts of solar power and 48 gigawatts of wind were connected — comparable to installing the generation capacity of Mexico in less than 12 months. This year will see an even faster pace, with 93 GW of solar and 50 GW of wind added, according to a report last week from the China Electricity Council, an industry association.

That progress could in theory see the country’s power sector emissions peak within months, rather than the late-2020s date the government has hinted at. Combined with a smaller quantity of hydro and nuclear, low-emissions sources will probably add about 310 terawatt-hours to zero-carbon generation this year. That 3.8% increase would be sufficient to power the U.K.

Countries that have reached China’s levels of per-capita electricity consumption (already on a par with most of Europe) typically see growth rates at less than half that level, even as global power demand has surged past pre-pandemic levels in recent years. Grid supply could grow at a faster pace than Brazil, Iran, South Korea or Thailand managed over the past decade without adding a ton of additional carbon to the atmosphere.

There’s a problem with that picture, however. If electricity demand grows at an even more headlong pace, there simply won’t be enough renewables to supply the grid. Fossil fuels, overwhelmingly coal, will fill the gap, a reminder of the iron law of climate dynamics in energy transitions.

Such an outcome looks distinctly possible. Electricity consumption in 2021 grew at an extraordinary rate of 10%, and will increase again by between 5% and 6% this year, according to the CEC. That suggests the country is on pace to match the CEC’s forecasts of bullish grid demand over the coming decade, with generation hitting 11,300 terawatt-hours in 2030. External analysts, such as the International Energy Agency and BloombergNEF, envisage a more modest growth to around 10,000 TWh. 

The difference between those two outlooks is vast — equivalent to all the electricity produced by Russia or Japan. If the CEC is right and the IEA and BloombergNEF are wrong, even the furious rate of renewable installations we’re seeing now won’t be enough to rein in China’s power-sector emissions.

Who’s correct? On one hand, it’s fair to say that power planners usually err on the side of overestimation. If your forecast for electricity demand is too high, state-owned generators will be less profitable than they otherwise would have been — but if it’s too low, you’ll see power cuts and shutdowns like China witnessed last autumn, with resulting power woes affecting supply chains beyond its borders.

On the other hand, the decarbonization of China’s economy itself should drive electricity demand well above what we’ve seen in the past, with some projections such as electricity meeting 60% of energy use by 2060 pointing to a profound shift. Some 3.3 million electric vehicles were sold in 2021 and BloombergNEF estimates a further 5.7 million will be bought in 2022. Every million EVs will likely add in the region of 2 TWh of load to the grid. Those sums quickly mounts up in a country where electric drivetrains are taking over a market that shifts more than 25 million new cars a year.

Decarbonizing industry, a key element on China’s road to zero emissions, could also change the picture. The IEA sees the country building 25 GW of electolysers to produce hydrogen by 2030, enough to consume some 200 TWh on their own if run close to full-time.

That’s still not enough to justify the scale of demand being forecast, though. China is already one of the least efficient countries in the world when it comes to translating energy into economic growth, and despite official pressure on the most wasteful, so called “dual-high” industries such as steel, oil refining, glass and cement, its targets for more thrifty energy usage remain pedestrian.

The countries that have decarbonized fastest are those, such as Germany, the U.K and the U.S., where Americans are using less electricity, that have seen power demand plateau or even decline, giving new renewable power a chance to swap out fossil-fired generators without chasing an ever-increasing burden on the grid. China’s inability to do this as its population peaks and energy consumption hits developed-country levels isn’t a sign of strength.

Instead, it’s a sign of a country that’s chronically unable to make the transition away from polluting heavy industry and toward the common prosperity and ecological civilization that its president keeps promising. Until China reins in that credit-fueled development model, the risks to its economy and the global climate will only increase.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Download the 2025 Electrical Training Catalog

Explore 50+ live, expert-led electrical training courses –

  • Interactive
  • Flexible
  • CEU-cerified