Remembering the Great Ice Storm

By National Post


CSA Z462 Arc Flash Training - Electrical Safety Essentials

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
Beyond their love of hockey and beer and their reputation for being nice and polite, millions of Canadians have something else in common - 10 years ago they were freezing in the dark for hours and days on end.

This weekend marks the 10th anniversary of the Great Ice Storm of 1998, when much of Ontario, Quebec and Canada's east coast suffered from one of the most devastating weather events in the country's history.

From Jan.5 to Jan. 10, a number of weather patterns and conditions coincided and produced a freak storm, the likes of which had never been experienced in Canada.

"It still remains to be the granddaddy of them all," David Phillips, senior climatologist at Environment Canada, says of the legendary storm that caused an estimated $2- billion in damage.

Ottawa and Montreal, for example, normally get 45 to 65 hours of precipitation a year. During the six days of the ice storm, they received nearly double that annual total.

Freezing rain, ice pellets and wet snow fell on Eastern Canada, for hours at a time and day after day, coating the region in thick sheets of ice because of the sub-zero temperatures.

Major cities and the rural communities in between them were quite literally, frozen solid.

The weight of the ice caused the collapse of building roofs, snapped huge trees as if they were twigs, toppled more than 100 major power transmission towers and brought down 120,000 kilometres of power lines and telephone cables. Roads were blocked and people were stranded.

About four million Canadians were forced to live a pioneer life with no heat, electricity, or running water.

Catherine Alexander, a Brockville, Ont., resident was one of them. She and her family were trapped in their house for four days because downed power lines were strewn across the driveway. They used the home's fireplace to keep warm and waded past the ice in the freezing St. Lawrence River next to the house to fetch water. It was a week before they had power again.

Among her memories of the ice storm, Alexander recalls people phoning into the local radio station asking how to save their freezing goldfish. Her own family pet, a cockatoo named Chester, managed to survive the crisis.

While some could stay in their homes, an estimated 100,000 people sought refuge in shelters and others moved in with friends or relatives.

A state of emergency was declared in many communities when it became clear the storm was sticking around and that it was having dangerous and deadly effects.

Twenty-five people died as a result of the storm, many of them from hypothermia.

"It was this bizarre situation," recalls Jim Watson, Ottawa mayor at the time and now an MPP for the city. "On the one hand it was the most beautiful scene you could imagine, this glistening aura of trees and icicles but on the other hand, lives were lost, businesses were lost, people were hurt."

Gillian Baker, a volunteer with the Red Cross in 1998, recalls how the crisis brought out the best in people. She said phones at the Red Cross were ringing off the hook with people both looking for help and with those willing to provide it.

"We complain, and we honk our horns but when push comes to shove we'll help each other out," said Ms. Baker. Throughout the ice storm, the Red Cross mobilized more than 3,000 staff and volunteers in Ontario, Quebec and New Brunswick.

Ms. Baker recalls food and water being among the primary needs of the 334,000 people that the aid agency assisted.

She said the Red Cross learned valuable lessons from the ice storm experience and has recruited more volunteers, has better volunteer training and improved co-ordination with municipalities and other agencies, because of it.

The Canadian military was also called upon to help and Operation Recuperation involved the largest deployment of troops ever on Canadian soil in response to a natural disaster. More than 15,000 personnel helped evacuate people from their homes, clear roads, and provide back up for hydro crews and police forces.

The storm had enormous economic consequences and some businesses were so hard hit it took more than a decade to recover.

Quebec's maple syrup industry, for example, which produces 70% of the world's supply, was severely impacted because of the number of damaged trees. It was the same story for Ontario's producers and, according to the province's industry association, it could take 40 years before production returns to pre-1998 levels.

The Insurance Bureau of Canada reported 535,200 claims following the storm, totalling about $790-million in damage to homes, cars and other property. In fact, more individual insurance claims were made in Canada and the United States because of the ice storm than any other weather-related event in history, said Mr. Phillips.

Looking back on the storm 10 years later, Mr. Phillips draws two main conclusions: it could have been worse and it could happen again. That being said, when the Great Ice Storm's 50th anniversary arrives in 2048, Mr. Phillips predicts it will still be known as the biggest weather event in Canadian history.

"It's such a huge event that it's hard to imagine that we will have a duplication of that," he said.

Related News

Energize America: Invest in a smarter electricity infrastructure

Smart Grid Modernization unites distributed energy resources, energy storage, EV charging, advanced metering, and bidirectional power flows to upgrade transmission and distribution infrastructure for reliability, resilience, cybersecurity, and affordable, clean power.

 

Key Points

Upgrading grid hardware and software to integrate DERs, storage, and EVs for a reliable and affordable power system.

✅ Enables DER, storage, and EV integration with bidirectional flows

✅ Improves reliability, resilience, and grid cybersecurity

✅ Requires early investment in sensors, inverters, and analytics

 

Much has been written, predicted, and debated in recent years about the future of the electricity system. The discussion isn’t simply about fossil fuels versus renewables, as often dominates mainstream energy discourse. Rather, the discussion is focused on something much larger and more fundamental: the very design of how and where electricity should be generated, delivered, and consumed.

Central to this discussion are arguments in support of, or in opposition to, the traditional model versus that of the decentralized or “emerging” model. But this is a false choice. The only choice that needs making is how to best transition to a smarter grid, and do so in a reliable and affordable manner that reflects grid modernization affordability concerns for utilities today. And the most effective and immediate means to accomplish that is to encourage and facilitate early investment in grid-related infrastructure and technology.

The traditional, or centralized, model has evolved since the days of Thomas Edison, but the basic structure is relatively unchanged: generate electrons at a central power plant, transmit them over a unidirectional system of high-voltage transmission lines, and deliver them to consumers through local distribution networks. The decentralized, or emerging, model envisions a system that moves away from the central power station as the primary provider of electricity to a system in which distributed energy resources, energy storage, electric vehicles, peer-to-peer transactions, connected appliances and devices, and sophisticated energy usage, pricing, and load management software play a more prominent role.

Whether it’s a fully decentralized and distributed power system, or the more likely centralized-decentralized hybrid, it is apparent that the way in which electricity is produced, delivered, and consumed will differ from today’s traditional model. And yet, in many ways, the fundamental design and engineering that makes up today’s electric grid will serve as the foundation for achieving a more distributed future. Indeed, as the transition to a smarter grid ramps up, the grid’s basic structure will remain the underlying commonality, allowing the grid to serve as a facilitator to integrate emerging technologies, including EV charging stations, rooftop solar, demand-side management software, and other distributed energy resources, while maximizing their potential benefits and informing discussions about California’s grid reliability under ambitious transition goals.

A loose analogy here is the internet. In its infancy, the internet was used primarily for sending and receiving email, doing homework, and looking up directions. At the time, it was never fully understood that the internet would create a range of services and products that would impact nearly every aspect of everyday life from online shopping, booking travel, and watching television to enabling the sharing economy and the emerging “Internet of Things.”

Uber, Netflix, Amazon, and Nest would not be possible without the internet. But the rapid evolution of the internet did not occur without significant investment in internet-related infrastructure. From dial-up to broadband to Wi-Fi, companies have invested billions of dollars to update and upgrade the system, allowing the internet to maximize its offerings and give way to technological breakthroughs, innovative businesses, and ways to share and communicate like never before.  

The electric grid is similar; it is both the backbone and the facilitator upon which the future of electricity can be built. If the vision for a smarter grid is to deploy advanced energy technologies, create new business models, and transform the way electricity is produced, distributed, and consumed, then updating and modernizing existing infrastructure and building out new intelligent infrastructure need to be top priorities. But this requires money. To be sure, increased investment in grid-related infrastructure is the key component to transitioning to a smarter grid; a grid capable of supporting and integrating advanced energy technologies within a more digital grid architecture that will result in a cleaner, more modern and efficient, and reliable and secure electricity system.

The inherent challenges of deploying new technologies and resources — reliability, bidirectional flow, intermittency, visibility, and communication, to name a few, as well as emerging climate resilience concerns shaping planning today, are not insurmountable and demonstrate exactly why federal and state authorities and electricity sector stakeholders should be planning for and making appropriate investment decisions now. My organization, Alliance for Innovation and Infrastructure, will release a report Wednesday addressing these challenges facing our infrastructure, and the opportunities a distributed smart grid would provide. From upgrading traditional wires and poles and integrating smart power inverters and real-time sensors to deploying advanced communications platforms and energy analytics software, there are numerous technologies currently available and capable of being deployed that warrant investment consideration.

Making these and similar investments will help to identify and resolve reliability issues earlier, and address vulnerabilities identified in the latest power grid report card findings, which in turn will create a stronger, more flexible grid that can then support additional emerging technologies, resulting in a system better able to address integration challenges. Doing so will ease the electricity evolution in the long-term and best realize the full reliability, economic, and environmental benefits that a smarter grid can offer.  

 

Related News

View more

Miami Valley Expands EV Infrastructure with 24 New Chargers

Miami Valley EV Chargers Expansion strengthens Level 2 charging infrastructure across Dayton, with Ohio EPA funding and Volkswagen settlement support, easing range anxiety and promoting sustainable transportation at Austin Landing and high-traffic destinations.

 

Key Points

An Ohio initiative installing 24 Level 2 stations to boost EV adoption, reduce range anxiety, and expand access in Dayton.

✅ 24 new Level 2 chargers at high-traffic regional sites

✅ Ohio EPA and VW settlement funds support deployment

✅ Reduces range anxiety, advancing sustainable mobility

 

The Miami Valley region in Ohio is accelerating its transition to electric vehicles (EVs) with the installation of 24 new Level 2 EV chargers, funded through a $1.1 million project supported by the Ohio Environmental Protection Agency (EPA). This initiative aims to enhance EV accessibility and alleviate "range anxiety" among drivers as the broader U.S. EV boom tests grid readiness.

Strategic Locations Across the Region

The newly installed chargers are strategically located in high-traffic areas to maximize their utility as national charging networks compete to expand coverage across travel corridors. Notable sites include Austin Landing, the Dayton Art Institute, the Oregon District, Caesar Creek State Park, and the Rose Music Center. These locations were selected to ensure that EV drivers have convenient access to charging stations throughout the region, similar to how Ontario streamlines station build-outs to place chargers where drivers already travel.

Funding and Implementation

The project is part of Ohio's broader effort to expand EV infrastructure, reflecting the evolution of U.S. charging infrastructure while utilizing funds from the Volkswagen Clean Air Act settlement. The Ohio EPA awarded approximately $3.25 million statewide for the installation of Level 2 EV chargers, with the Miami Valley receiving a significant portion of this funding, while Michigan utility programs advance additional investments to scale regional infrastructure.

Impact on the Community

The expansion of EV charging infrastructure is expected to have several positive outcomes. It will provide greater convenience for current EV owners and encourage more residents to consider electric vehicles as a viable transportation option, including those in apartments and condos who benefit from expanded access. Additionally, the increased availability of charging stations supports the state's environmental goals by promoting the adoption of cleaner, more sustainable transportation.

Looking Ahead

As the adoption of electric vehicles continues to grow, the Miami Valley's investment in EV infrastructure positions the region as a leader in sustainable transportation as utilities pursue ambitious charging strategies to meet demand. The success of this project may serve as a model for other regions looking to expand their EV charging networks. This initiative reflects a significant step towards a more sustainable and accessible transportation future for the Miami Valley.

 

Related News

View more

94,000 lose electricity in LA area after fire at station

Los Angeles Power Station Fire prompts LADWP to shut a Northridge/Reseda substation, causing a San Fernando Valley outage amid a heatwave; high-voltage equipment and mineral oil burned as 94,000 customers lost power, elevator rescues reported.

 

Key Points

An LADWP substation fire in Northridge/Reseda caused a major outage; 94,000 customers affected as crews restore power.

✅ Fire started around 6:52 p.m.; fully extinguished by 9 p.m.

✅ High-voltage gear and mineral oil burned; no injuries reported.

✅ Outages hit Porter Ranch, Reseda, West Hills, Granada Hills.

 

About 94,000 customers were without electricity Saturday night after the Los Angeles Department of Water and Power shut down a power station in the northeast San Fernando Valley that caught fire, the agency said.

The fire at the station in the Northridge/Reseda area of Los Angeles started about 6:52 p.m. and involved equipment that carries high-voltage electricity and distributes it at lower voltages to customers in the surrounding area, the department said, even as other utilities sometimes deploy wildfire safety shut-offs to reduce risk during dangerous conditions.

The department shut off power to the station as a precautionary move, and it is restoring power now that the fire has been put out, similar to restoration after intentional shut-offs in other parts of California. Initially, 140,000 customers were without power. That number had been cut to 94,000 by 11 p.m.

The power outage comes as much of California baked in heat that broke records, and rolling blackout warnings were issued as the grid strained. A record that stood 131 years in Los Angeles was snapped when the temperature spiked at 98 degrees downtown.

People reported losing power in Porter Ranch, Winnetka, West Hills, Canoga Park, Woodland Hills, Granada Hills, North Hills, Reseda and Chatsworth, KABC TV reported, highlighting electricity inequality across communities.

Shortly after the blaze broke out, firefighters found a huge container of mineral oil that is used to cool electrical equipment on fire, Los Angeles Fire Department spokesman Brian Humphrey told the Los Angeles Times. The incident underscores infrastructure risks that in some regions have required a complete grid rebuild after severe storms.

Firefighters had the blaze under control by 8:30 p.m. and were able to put it out by 9 p.m., Humphrey said. "These were fierce flames, with smoke towering more than 300 feet into the sky," he told the newspaper.

No one was injured.

Firefighters rescued people who were stranded in elevators, Humphrey said.

 

Related News

View more

Heatwave Sparks Unprecedented Electricity Demand Across Eastern U.S

Eastern U.S. Heatwave Electricity Demand surges to record peak load, straining the power grid, lifting wholesale prices, and prompting demand response, conservation measures, and load shedding to protect grid reliability during extreme temperatures.

 

Key Points

It is the record peak load from extreme heat, straining grids, lifting wholesale prices, and prompting demand response.

✅ Peak electricity use stresses regional power grid.

✅ Prices surge; conservation and demand response urged.

✅ Utilities monitor load, avoid outages via load shedding.

 

As temperatures soar to unprecedented highs across the Eastern United States, a blistering heatwave has triggered record-breaking electricity demand. This article delves into the causes behind the surge in energy consumption, its impact on the power grid, and measures taken to manage the strain during this extraordinary weather event.

Intensifying Heatwave Conditions

The Eastern U.S. is currently experiencing one of its hottest summers on record, with temperatures climbing well above seasonal norms. This prolonged heatwave has prompted millions of residents to rely heavily on air conditioning and cooling systems to escape the sweltering heat, with electricity struggles worsening in several communities, driving up electricity usage to peak levels.

Strain on Power Grid Infrastructure

The surge in electricity demand during the heatwave has placed significant strain on the region's power grid infrastructure, with supply-chain constraints complicating maintenance and equipment availability during peak periods.

Record-breaking Energy Consumption

The combination of high temperatures and increased cooling demands has led to record-breaking energy consumption levels across the Eastern U.S. States like New York, Pennsylvania, and Maryland have reported peak electricity demand exceeding previous summer highs, with blackout risks drawing heightened attention from operators, highlighting the extraordinary nature of this heatwave event.

Impact on Energy Costs and Supply

The spike in electricity demand during the heatwave has also affected energy costs and supply dynamics. Wholesale electricity prices have surged in response to heightened demand, contributing to sky-high energy bills for many households, reflecting the market's response to supply constraints and increased operational costs for power generators and distributors.

Management Strategies and Response

Utility companies and grid operators have implemented various strategies to manage electricity demand and maintain grid reliability during the heatwave. These include voluntary conservation requests, load-shedding measures, and real-time monitoring of grid conditions to prevent power outages while avoiding potential blackouts or disruptions.

Community Outreach and Public Awareness

Amidst the heatwave, community outreach efforts play a crucial role in raising public awareness about energy conservation and safety measures. Residents are encouraged to conserve energy during peak hours, adjust thermostat settings, and utilize energy-efficient appliances to alleviate strain on the power grid and reduce overall energy costs.

Climate Change and Resilience

The intensity and frequency of heatwaves are exacerbated by climate change, underscoring the importance of building resilience in energy infrastructure and adopting sustainable practices. Investing in renewable energy sources, improving energy efficiency and demand response programs that can reduce peak demand, and implementing climate adaptation strategies are essential steps towards mitigating the impacts of extreme weather events like heatwaves.

Looking Ahead

As the Eastern U.S. navigates through this heatwave, stakeholders are focused on implementing lessons learned from California's grid response to enhance preparedness and resilience for future climate-related challenges. Collaborative efforts between government agencies, utility providers, and communities will be crucial in developing comprehensive strategies to manage energy demand, promote sustainability, and safeguard public health and well-being during extreme weather events.

Conclusion

The current heatwave in the Eastern United States has underscored the critical importance of reliable and resilient energy infrastructure in meeting the challenges posed by extreme weather conditions. By prioritizing energy efficiency, adopting sustainable energy practices, and fostering community resilience, stakeholders can work together to mitigate the impacts of heatwaves and ensure a sustainable energy future for generations to come.

 

Related News

View more

Electricity users in Newfoundland have started paying for Muskrat Falls

Muskrat Falls rate mitigation offsets Newfoundland Power's rate stabilization decrease as NL Hydro begins cost recovery; Public Utilities Board approval enables collections while Labrador-Island Link nears commissioning, stabilizing electricity rates despite megaproject delays, overruns.

 

Key Points

Muskrat Falls rate mitigation is NL Hydro's cost recovery via power rates to stabilize bills as commissioning nears.

✅ Offsets 6.4% decrease with a 6.1% rate increase

✅ About 6% now funds NL Hydro's rate mitigation

✅ Collections begin as Labrador-Island Link nears commissioning

 

With their July electricity bill, Newfoundland Power customers have begun paying for Muskrat Falls, though a lump-sum credit was also announced to offset costs and bills haven't significantly increased — yet.

In a July newsletter, Newfoundland Power said electricity bills were set to decrease by 6.4 per cent as part of the annual rate stabilization adjustment, which reflects the cost of electricity generation.

Instead, that decrease has been offset by a 6.1 increase in electricity rates so Newfoundland and Labrador Hydro can begin recovering the cost of Muskrat Falls, with a $5.2-billion federal package also underpinning the project, the $13-billion hydroelectric megaproject that is billions over budget and years behind schedule.

That means for residential customers, electricity rates will decrease to 12.346 cents per kilowatt, though the basic customer charge will go up slightly from $15.81 to $15.83. According to an N.L. Hydro spokesperson, about six per cent of electricity bills will now go toward what it calls a "rate mitigation fund." 

N.L. Hydro claims victory in Muskrat Falls arbitration dispute with Astaldi
Software troubles blamed for $260M Muskrat Falls cost increase, with N.L. power rates stable for now
The spokesperson said N.L. Hydro is expecting the rate increase to result in $43 million this year, according to a recent financial update from the energy corporation — a tiny fraction of the project's cost. 

N.L. Hydro asked the Public Utilities Board to approve the rate increase, a process similar to Nova Scotia's recent 14% approval by its regulator, in May. In a letter, Energy, Industry and Technology Minister Andrew Parsons supported the increase, though he asked N.L. Hydro to keep electricity rates "as close to current levels as possible. 

Province modifies order in council
Muskrat Falls is not yet fully online — largely due to software problems with the Labrador-Island Link transmission line — and an order in council dictated that ratepayers on the island of Newfoundland would not begin paying for the project until the project was fully commissioned. 

The provincial government modified that order in council so N.L. Hydro can begin collecting costs associated with Muskrat Falls once the project is "nearing" commissioning.

In June, N.L. Hydro said the project was expected to finally be completed by the end of the year.

In an interview with CBC News, Progressive Conservative interim leader David Brazil said the decision to begin recovering the cost of Muskrat Falls from consumers should have been delayed.

"There was an opportunity here for people to get some reprieve when it came to their electricity bills and this administration chose not to do that, not to help the people while they're struggling," he said.

In a statement, Parsons said reducing the rate was not an option, and would have resulted in increased borrowing costs for Muskrat Falls.

"Reducing the rate for one year to have it increase significantly the following year is not consistent with rate mitigation and also places an increased financial burden on taxpayers one year from now," Parsons said.

Decision 'reasonable': Consumer advocate
Brazil said his party didn't know the payments from Muskrat Falls would start in July, and criticized the government for not being more transparent.

A person wearing a blue shirt and black blazer stands outside on a lawn.
N.L. consumer advocate Dennis Browne says it makes sense to begin recouping the cost of Muskrat Falls. (Garrett Barry/CBC)
Newfoundland and Labrador consumer advocate Dennis Browne said the decision to begin collecting costs from consumers was "reasonable."

"We're into a financial hole due to Muskrat Falls, and what has happened is in order to stabilize rates, we have gone into rate stabilization efforts," he said.

In February, the provincial and federal governments signed a complex agreement to shield ratepayers aimed at softening the worst of the financial impact from Muskrat Falls. Browne noted even with the agreement, the provincial government will have to pay hundreds of millions in order to stabilize electricity rates.

"Muskrat Falls would cost us $0.23 a kilowatt, and that is out of the range of affordability for most people, and that's why we're into rate mitigation," he said. "This was part of a rate mitigation effort, and I accepted it as part of that."

 

Related News

View more

Enel kicks off 90MW Spanish wind build

Enel Green Power España Aragon wind farms advance Spain's renewable energy transition, with 90MW under construction in Teruel, Endesa investment of €88 million, 25-50MW turbines, and 2017 auction-backed capacity enhancing grid integration and clean power.

 

Key Points

They are three Teruel wind projects totaling 90MW, part of Endesa's 2017-awarded plan expanding Spain's clean energy.

✅ 90MW across Sierra Costera I, Allueva, and Sierra Pelarda

✅ €88m invested; 14+7+4 turbines; Endesa-led build in Teruel

✅ Part of 2017 tender: 540MW wind, 339MW solar, nationwide

 

Enel Green Power Espana, part of Enel's wind projects worldwide, has started constructing three wind farms in Aragon, north-east Spain, which are due online by the end of the year.

The projects, all situated in the Teruel province, are worth a total investment of €88 million.

The biggest of the facilities, Sierra Costera I, will have a 50MW and will feature 14 turbines.

The wind farm is spread across the municipalities of Mezquita de Jarque, Fuentes Calientes, Canada Vellida and Rillo.

The Allueva wind facility will feature seven turbines and will exceed 25MW.

Sierra Pelarda, in Fonfria, will have four turbines and a capacity of 15MW, as advances in offshore wind turbine technology continue to push scale elsewhere.

The projects bring the total number of wind farms that Enel Green Power Espana has started building in the Teruel province to six, equal to an overall capacity of 218MW.

Endesa chief executive Jose Bogas said: “These plants mark the acceleration on a new wave of growth in the renewable energy space that Endesa is committed to pursue in the next years, driving the energy transition in Spain.”

The six wind farms under construction in Teruel are part of the 540MW that Enel Green Power Espana was awarded in the Spanish government's renewable energy tender held in May 2017.

In Aragon, the company will invest around €434 million euros, reflecting broader European wind power investment trends in recent years, to build 13 wind farms with a total installed capacity of more than 380MW.

The remaining 160MW of wind capacity will be located in Andalusia, Castile-Leon, Castile La Mancha and Galicia, even as some Spanish turbine factories closed during pandemic restrictions.

Enel Green Power Espana was also awarded 339MW of solar capacity in the Spanish government's auction held in July 2017, while other Spanish developers advance CSP projects abroad in markets like Chile.

Once all wind and solar under the 2017 tender are complete they will boost the company’s capacity by around 52%.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.