Biomass: the next hot commodity?

By Biomass Magazine


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
Biomass is used around the world to generate heat, steam and electricity. However, coal is preferred over biomass for energy production because it generates between 7,000 and 12,500 British thermal units (Btus) per pound while woody biomass produces between 5,300 and 6,400 Btus per pound.

But coal prices are rising.

Meanwhile, climate change initiatives around the world are calling for greenhouse gas (GHG) reductions. Demand for clean-burning biomass for heat and power generation is increasing.

Government programs in the United States and Europe are funding projects to develop a more streamlined, far-reaching system of trade for biomass. Could biomass become a commodity that is bought and sold on a trading floor?

Global coal markets are tightening and the United States is exporting more coal. The average price of exported coal in the second quarter of 2008 was $97.24 per short ton, its highest value in history and an increase of more than 50 percent year-over-year, according to the Energy Information Administration, a service of the U.S. DOE.

Meanwhile, the European Union and its member states, which more than six years ago ratified the Kyoto Protocol to the United Nations Framework Convention on Climate Change, have committed to reducing their collective GHG emissions by at least 8 percent by 2012. The EUÂ’s Biomass Action Plan includes a directive to promote renewable electricity generation by increasing production in member states from 14 percent in 1997 up to 21 percent by 2010. In the United States, 28 states have individually established renewable portfolio standards, specifying that electric utilities must generate a certain amount of electricity from renewable resources by specific dates, according to the Pew Center on Global Climate Change.

This market environment has led electric utilities in the United States and around the world to use woody biomass from timber harvesting and sawmill operations, as well as waste wood destined for landfills, for power generation.

For example in the United States, Xcel Energy plans to spend $55 million to $70 million to convert the last remaining coal-fired unit at its Bay Front Power Plant in Ashland, Wis., to a biomass gasification system. The plant has been burning waste wood to generate electricity since 1979 and currently uses just over 200,000 tons of waste wood each year. When the project is complete, the plant will use an additional 185,000 to 250,000 tons per year.

In Europe, Prenergy Power Ltd. of Switzerland is building a $788 million wood-burning power station capable of generating 350 megawatts of electricity in deep-water Port Talbot on the western side of Wales. Approximately 3 million tons of wood chips will be imported by cargo ship for the plant annually. In addition, Drax Group Plc in the U.K. is planning to build three 300-megawatt biomass-fed plants at the deep water ports of Immingham and Kingston upon Hull; the third location is to be determined.

During the past five years, global trade of woody biomass has almost doubled, especially trade for wood pellets for energy generation, according to Håkan Ekström of Wood Resources International LLC.

Global trade of woody biomass was just over 11 million tons in 2007, up from 5.6 million tons in 2003, Ekström says, and a record of more than 3 million tons of wood pellets was traded globally in 2007. Most of the trade has been between European countries or exports from Canada to Europe. Germany exported 1.4 million tons of biomass to neighboring countries in 2007. Canada exported 1.3 million tons of biomass last year, including an estimated 600,000 tons of wood pellets for the European market.

In response to increased demand for wood pellets, Mitsubishi Corp., JapanÂ’s largest general trading company with offices in 80 countries, has acquired a 45 percent stake in Vis Nova Trading GmbH, a manufacturer in Bremen, Germany, that produces wood pellets from waste wood. Mitsubishi invested $8.2 million in VNT, which supplies 180,000 metric tons of wood pellets per year to electric power companies in the EU. VNT plans to build additional factories and achieve 500,000 metric tons in wood pellet sales by 2010.

As global trade in woody biomass increases, is it possible that woody biomass will someday be traded as a commodity?

The U.S. Forest Service Technology Marketing Unit, located at the Forest Products Laboratory in Madison, Wis., has awarded a $75,000 grant to CleanTech Partners Inc. of Middleton, Wis., to develop a plan for implementing a commodity exchange program for biomass in the United States, specifically to increase the efficiency of the existing woody biomass fuel supply chain and to support emerging biorefineries through the future trade of energy crops, such as switchgrass.

Coordinated by Heartland Business Consultants, the Biomass Commodity Exchange (BCEX) should be operational by late 2009, according to Stephen Dinehart, a principal for the consultancy. Dinehart says his experience working for the U.S. Commodity Futures Trading Commission, as well as the Chicago Board of Trade — where he looked at developing nontraditional markets — and his experience in investment banking have been helpful in developing the plan for the exchange.

The project began in November 2007, Dinehart says, and the first step was to survey the marketplace to understand what large biomass users are currently doing in terms of contracting and pricing. He says the biomass industry is changing dramatically with the implementation of portfolio standards for electric utilities, continued growth in the wood pellet industry, renewable fuels standard volume requirements, and an increased push to develop cellulosic ethanol. Demand for biomass, as well as the number of market players, will increase dramatically in the near future, therefore, “rather than just doing a study, what we determined to do is actually put together a business plan for an exchange that will address the woody biomass market,” he says. “But more broadly, it will incorporate nonwoody products, such as corn stover, switchgrass, wheat straw and so on. The bottom line is to encompass the biomass market on an exchange platform.”

Dinehart says the need for an exchange grew out of concerns expressed by companies that are looking at using biomass for power generation. Because there is no way to confidently report what the cost of woody biomass feedstock will be, it is difficult for those projects to obtain financing, he says. “A very important element (of the exchange) is that we will provide publicly available prices,” Dinehart says. “A major part of the problem right now is that most people don’t know what the value of biomass is. The lack of pricing means that we’re not eliciting as much supply as we can from the marketplace. If people don’t know what the value is of what they have, they’re not going to sell it.”

Initially, the exchange will provide indicative pricing on a monthly basis with plans for weekly and, ultimately, daily price reports, depending on the volume of trades, Dinehart says. Price reports will begin with prices for large categories of biomass across large geographic areas and will become more specific as the exchange matures, he says.

To be market-traded as a commodity, a product must typically be qualitatively uniform across the market. It might be suggested that the inherent diversity of woody biomass is the main barrier preventing it from becoming a commodity. The limbs, branches and twigs derived from timber harvesting and the woodchips and sawdust derived from sawmills are as diverse as the trees they come from. While wood pellets are more uniform in size and shape, they too are made from diverse materials, including switchgrass, nut hulls, and so on. An argument can be made that before biomass can be market-traded, the various categories of biomass must be standardized and there must be broad consensus concerning which biomass is acceptable for one purpose or another.

However, Dinehart says the BCEX will not pre-impose standards on the exchange. He says the BCEX will be an Internet-based electronic listing platform that will be a focal point for biomass buyers and sellers to come together and that standards will grow organically through active trading. “We are not prescribing what people can trade,” he says. “They can trade whatever they want. If they want to solicit delivery of rice hulls to Savannah, Ga., they can do so.”

Initially, how biomass will be identified on the exchange will be up to the buyers and sellers, Dinehart says. The BCEX might supply a lexicon of suggested terminology, he says, or might also list the CEN/TC 335 Solid Biofuels standards that have been described by the European Committee for Standardization under the European Commission, which he said are being proposed as an International Organization for Standardization standard.

Dinehart initially expects the largest volumes of trade on the exchange will be for forest residuals, followed by pulpwood, round wood, urban waste wood, industrial waste wood and bark. The lowest-volume trading will be for cellulosic ethanol biomass feedstocks, such as switchgrass. Whether wood pellets will be traded on the exchange is an open question, he says, because typically, wood pellet manufacturers are branding their pellets and might not be interested in commoditization.

In order to become a mature exchange with futures contracts, the BCEX will need to identify actively traded spot markets. Dinehart says because there currently are no spot markets for biomass in the United States, the spot markets, too, will have to grow organically from the exchange through active trading. He says there are areas of high wood consumption in the United States and it is logical to expect that spot markets will emerge in those areas. Currently, because of the relatively low value of biomass, the productÂ’s price is extremely transportation sensitive, which means there are relatively small markets, with most markets only 200 miles in diameter. In order for biomass markets to grow in size geographically, the base value of biomass will need to increase to push relative transportation costs down, Dinehart says.

“Right now we don’t think a futures market is viable,” Dinehart says, “but what we do think is viable is an exchange that facilitates cash market trading.” He notes that the BCEX would begin life as an exempt commercial exchange and would be free from CFTC regulation. Only if the BCEX can grow to support futures contracts will CFTC regulation be necessary, he says. “Once you allow pure speculators to go and trade on an exchange, or once it is marketed to the public, then it comes under the auspices of the CFTC as a regulated exchange,” he says. “I don’t see that occurring for a very, very long time.”

In traditional commodity exchanges, CFTC regulation protects market participants against fraud, manipulation, and abusive trading practices and ensures the financial integrity of the clearing process. Dinehart says the BCEX platform will offer trade confirmation and verification and could provide delivery notices and settlement services, as needed, as well as an audit trail. He says a beta version of the BCEX electronic listing platform will be tested in early 2009. The business plan for the exchange will be completed next year, when a decision will be made whether to move forward with BCEX.

Ultimately, if BCEX is successful, the price of biomass as a commodity will be determined by the market as a whole. Futures contracts might ultimately be possible and market participants might be able to hedge themselves against price fluctuations.

Related News

Hitachi freezes British nuclear project, books $2.8bn hit

Hitachi UK Nuclear Project Freeze reflects Horizon Nuclear Power's suspended Anglesey plant amid Brexit uncertainty, investor funding gaps, rising safety regulation costs, and a 300 billion yen write-down, impacting Britain's low-carbon electricity plans.

 

Key Points

Hitachi halted Horizon's Anglesey nuclear plant over funding and Brexit risks, recording a 300 billion yen write-down.

✅ 3 trillion yen UK nuclear project funding stalled

✅ 300 billion yen impairment wipes Horizon asset value

✅ Brexit, safety rules raised costs and investor risk

 

Japan’s Hitachi Ltd said on Thursday it has decided to freeze a 3 trillion yen ($28 billion) British nuclear power project and will consequently book a write down of 300 billion yen.

The suspension comes as Hitachi’s Horizon Nuclear Power failed to find private investors for its plans to build a plant in Anglesey, Wales, where local economic concerns have been raised, which promised to provide about 6 percent of Britain’s electricity.

“We’ve made the decision to freeze the project from the economic standpoint as a private company,” Hitachi said in a statement.

Hitachi had called on the British government to boost financial support for the project to appease investor anxiety, but turmoil over the country’s impending exit from the European Union limited the government’s capacity to compile plans, people close to the matter previously said.

Hitachi had called on the British government to boost financial support for the project to appease investor anxiety, but turmoil over the country’s impending exit from the European Union and setbacks at Hinkley Point C limited the government’s capacity to compile plans, people close to the matter previously said.

Hitachi had banked on a group of Japanese investors and the British government each taking a one-third stake in the equity portion of the project, the people said. The project would be financed one-third by equity and rest by debt.

The nuclear writedown wipes off the Horizon unit’s asset value, which stood at 296 billion yen as of September-end.

Hitachi stopped short of scrapping the northern Wales project. The company will continue to discuss with the British government on nuclear power, it said.

However, industry sources said hurdles to proceed with the project are high considering tighter safety regulations since a meltdown at Japan’s Fukushima nuclear power plant in 2011 drove up costs, even as Europe’s nuclear decline strains energy planning.

Analysts and investors viewed the suspension as an effective withdrawal and saw the decision as a positive step that has removed uncertainties for the Japanese conglomerate.

Hitachi bought Horizon in 2012 for 696 million pounds ($1.12 billion), fromE.ON and RWE as the German utilities decided to sell their joint venture following Germany’s nuclear exit after the Fukushima accident.

Hitachi’s latest decision further dims Japan’s export prospects, even as some peers pursue UK offshore wind investments to diversify.

Toshiba Corp last year scrapped its British NuGen project after its US reactor unit Westinghouse went bankrupt, while Westinghouse in China reported no major impact, and it failed to sell NuGen to South Korea’s KEPCO.

Mitsubishi Heavy Industries Ltd has effectively abandoned its Sinop nuclear project in Turkey, a person involved in the project previously told Reuters, as cost estimates had nearly doubled to around 5 trillion yen.

 

Related News

View more

Japan opens part of last town off-limits since nuclear leaks

Futaba Partial Reopening marks limited access to the Fukushima exclusion zone, highlighting radiation decontamination progress, the train station restart, and regional recovery ahead of the Tokyo Olympics after the 2011 nuclear disaster and evacuation.

 

Key Points

A lift of entry bans in Futaba, signaling Fukushima recovery, decontamination progress, and a train station restart.

✅ Unrestricted access to 2.4 km² around Futaba Station

✅ Symbolic step ahead of Tokyo Olympics torch relay

✅ Decommissioning and decontamination to span decades

 

Japan's government on Wednesday opened part of the last town that had been off-limits due to radiation since the Fukushima nuclear disaster nine years ago, in a symbolic move to show the region's recovery ahead of the Tokyo Olympics, even as grid blackout risks have drawn scrutiny nationwide.

The entire population of 7,000 was forced to evacuate Futaba after three reactors melted down due to damage at the town's nuclear plant caused by a magnitude 9. 0 quake and tsunami March 11, 2011.

The partial lifting of the entry ban comes weeks before the Olympic torch starts from another town in Fukushima, as new energy projects like a large hydrogen system move forward in the prefecture. The torch could also arrive in Futaba, about 4 kilometres (2.4 miles) from the wrecked nuclear plant.

Unrestricted access, however, is only being allowed to a 2.4 square-kilometre (less than 1 square-mile) area near the main Futaba train station, which will reopen later this month to reconnect it with the rest of the region for the first time since the accident. The vast majority of Futaba is restricted to those who get permission for a day visit.

The three reactor meltdowns at the town's Fukushima Dai-ichi nuclear power plant spewed massive amounts of radiation that contaminated the surrounding area and at its peak, forced more than 160,000 people to flee, even as regulators later granted TEPCO restart approval for a separate Niigata plant elsewhere in Japan.

The gate at a checkpoint was opened at midnight Tuesday, and Futaba officials placed a signboard at their new town office, at a time when the shutdown of Germany's last reactors has reshaped energy debates abroad.

“I'm overwhelmed with emotion as we finally bring part of our town operations back to our home town," said Futaba Mayor Shiro Izawa. “I pledge to steadily push forward our recovery and reconstruction."

Town officials say they hope to see Futaba’s former residents return, but prospects are grim because of lingering concern about radiation, and as Germany's nuclear exit underscores shifting policies abroad. Many residents also found new jobs and ties to communities after evacuating, and only about 10% say they plan to return.

Futaba's registered residents already has decreased by 1,000 from its pre-disaster population of 7,000. Many evacuees ended up in Kazo City, north of Tokyo, after long bus trips, various stopovers and stays in shelters at an athletic arena and an abandoned high school. The town's government reopened in a makeshift office in another Fukushima town of Iwaki, while abroad projects like the Bruce reactor refurbishment illustrate long-term nuclear maintenance efforts.

Even after radiation levels declined to safe levels, the region's farming and fishing are hurt by lingering concerns among consumers and retailers. The nuclear plant is being decommission in a process that will take decades, with spent fuel removal delays extending timelines, and it is building temporary storage for massive amounts of debris and soil from ongoing decontamination efforts.

 

Related News

View more

Power grab: 5 arrested after Hydro-Québec busts electricity theft ring

Hydro-Qubec Electricity Theft Ring exposed after a utility investigation into identity theft, rental property fraud, and conspiracies using stolen customer data; arrests, charges, and a tip line highlight ongoing enforcement.

 

Key Points

A five-year identity-theft scheme defrauding Hydro-Qubec through utility accounts leading to arrests and fraud charges.

✅ Five arrests; 25 counts: fraud, conspiracy, identity theft

✅ Losses up to $300,000 in electricity, 2014-2019

✅ Tip line: 1-877-816-1212 for suspected Hydro-Qubec fraud

 

Five people have been arrested in connection with an electricity theft ring alleged to have operated for five years, a pattern seen in India electricity theft arrests as well.

The thefts were allegedly committed by the owners of rental properties who used stolen personal information to create accounts with Hydro-Québec, which also recently dealt with a manhole fire outage affecting thousands.

The utility alleges that between 2014 and 2019, Mario Brousseau, Simon Brousseau-Ouellette and their accomplices defrauded Hydro-Québec of up to $300,000 worth of electricity, highlighting concerns about consumption trends as residential electricity use rose during the pandemic. It was impossible for Hydro-Québec’s customer service section to detect the fraud because the information on the accounts, while stolen, was also genuine, even as the utility reported pandemic-related losses later on.

The suspects are expected to face 25 counts of fraud, conspiracy and identity theft, issues that Ontario utilities warn about regularly.

Hydro-Québec noted the thefts were detected through an investigation by the utility into 10 fraud cases, a process that can lead to retroactive charges for affected accounts.

Anyone concerned that a fraud is being committed against Hydro-Québec, or wary of scammers threatening shutoffs, is urged to call 1-877-816-1212.

 

Related News

View more

Hot Houston summer and cold winter set new electricity records

US Electricity Demand 2018-2050 projects slower growth as energy consumption, power generation, air conditioning, and electric heating shift with efficiency standards, commercial floor space, industrial load, and household growth across the forecast horizon.

 

Key Points

A forecast of US power use across homes, commercial space, industrial load, and efficiency trends from 2018 to 2050.

✅ 2018 generation hit record; residential sales up 6%.

✅ Efficiency curbs demand; growth lags population and floor space.

✅ Commercial sales up 2%; industrial demand fell 3% in 2018.

 

Last year's Houston cold winter and hot summer drove power use to record levels, especially among households that rely on electricity for air conditioning during extreme weather conditions.

Electricity generation increased 4 per cent nationwide in 2018 and produced 4,178 million megawatt hours, driven in part by record natural gas generation across the U.S., surpassing the previous peak of 4,157 megawatt hours set in 2007, the Energy Department reported.

U.S. households bought 6 percent more electricity in 2018 than they did the previous year, despite longer-term declines in national consumption, reflecting the fact 87 percent of households cool their homes with air conditioning and 35 percent use electricity for heating.

Electricity sales to the commercial sector increased 2 percent in 2018 compared to the previous year while the industrial sector bought 3 percent less last year.

Going forward, the Energy Department forecasts that electricity consumption will grow at a slower pace than in recent decades, aligning with falling sales projections as technology improves and energy efficiency standards moderate consumption.

The economy and population growth are primary drivers of demand and the government predicts the number of households will grow at 0.7 percent per year from now until 2050 but electricity demand will grow only by 0.4 percent annually.

Likewise, commercial floor space is expected to increase 1 percent per year from now until 2050 but electricity sales will increase only by half that amount.

Globally, surging electricity demand is putting power systems under strain, providing context for these domestic trends.

 

Related News

View more

New EPA power plant rules will put carbon capture to the test

CCUS in the U.S. Power Sector drives investments as DOE grants, 45Q tax credits, and EPA carbon rules spur carbon capture, geologic storage, and utilization, while debates persist over costs, transparency, reliability, and emissions safeguards.

 

Key Points

CCUS captures CO2 from power plants for storage or use, backed by 45Q tax credits, DOE funding, and EPA carbon rules.

✅ DOE grants and 45Q credits aim to de-risk project economics.

✅ EPA rules may require capture rates to meet emissions limits.

✅ Transparency and MRV guard against tax credit abuse.

 

New public and private funding, including DOE $110M for CCUS announced recently, and expected strong federal power plant emissions reduction standards have accelerated electricity sector investments in carbon capture, utilization and storage,’ or CCUS, projects but some worry it is good money thrown after bad.

CCUS separates carbon from a fossil fuel-burning power plant’s exhaust through carbon capture methods for geologic storage or use in industrial and other applications, according to the Department of Energy. Fossil fuel industry giants like Calpine and Chevron are looking to take advantage of new federal tax credits and grant funding for CCUS to manage potentially high costs in meeting power plant performance requirements, amid growing investor pressure for climate reporting, including new rules, expected from EPA soon, on reducing greenhouse gas emissions from existing power plants.

Power companies have “ambitious plans” to add CCUS to power plants, estimated to cause 25% of U.S. CO2 emissions. As a result, the power sector “needs CCUS in its toolkit,” said DOE Office of Fossil Energy and Carbon Management Assistant Secretary Brad Crabtree. Successful pilots and demonstrations “will add to investor confidence and lead to more deployment” to provide dispatchable clean energy, including emerging CO2-to-electricity approaches for power system reliability after 2030,| he added.

But environmentalists and others insist potentially cost-prohibitive CCUS infrastructure, including CO2 storage hub initiatives, must still prove itself effective under rigorous and transparent federal oversight.

“The vast majority of long-term U.S. power sector needs can be met without fossil generation, and better options are being deployed and in development,” Sierra Club Senior Advisor, Strategic Research and Development, Jeremy Fisher, said, pointing to carbon-free electricity investments gaining momentum in the market. CCUS “may be needed, but without better guardrails, power sector abuses of federal funding could lead to increased emissions and stranded fossil assets,” he added.

New DOE CCUS project grants, an increased $85 per metric ton, or tonne, federal 45Q tax credit, and the forthcoming EPA power plant carbon rules and the federal coal plan will do for CCUS what similar policies did for renewables, advocates and opponents agreed. But controversial past CCUS performance and tax credit abuses must be avoided with transparent reporting requirements for CO2 capture, opponents added.

 

Related News

View more

US nuclear innovation act becomes law

NEIMA advances NRC regulatory modernization, creating a licensing framework for advanced reactors, improving uranium permitting, capping reactor fees, and mandating DOE planning for excess uranium, boosting transparency, accountability, and innovation across the US nuclear sector.

 

Key Points

NEIMA is a US law modernizing NRC rules and enabling advanced reactor licensing while reforming fees.

✅ Modernizes NRC licensing for advanced reactors

✅ Caps annual reactor fees and boosts transparency

✅ Streamlines uranium permitting; directs DOE plans

 

Bipartisan legislation modernising US nuclear regulation and supporting the establishment of a licensing framework for next-generation advanced reactors has been signed by US President Donald Trump, whose order boosting U.S. uranium and nuclear energy underscored the administration's focus on the sector.

The Nuclear Energy Innovation and Modernisation Act (NEIMA) became law on 14 January.

As well as directing the Nuclear Regulatory Commission (NRC) to modify the licensing process for commercial advanced nuclear reactor facilities, the bill establishes new transparency and accountability measures to the regulator's budget and fee programmes, and caps fees for existing reactors. It also directs the NRC to look at ways of improving the efficiency of uranium licensing, including investigating the safety and feasibility of extending uranium recovery licences from ten to 20 years' duration, and directs the Department of Energy, which oversees nuclear cleanup and related projects, to issue at least every ten years a long-term plan detailing the management of its excess uranium inventories.

Maria Korsnick, president and CEO of the US Nuclear Energy Institute, described NEIMA as a "significant, positive step" toward the reform of the NRC's fee collection process. "This legislation establishes a more equitable and transparent funding structure which will benefit all operating reactors and future licensees," she said. "The bill also reaffirms Congress’s support for nuclear innovation by working to establish an efficient and stable regulatory structure that is prepared to license the advanced reactors of the future."

Marilyn Kray, president-elect of the American Nuclear Society, said the passage of the legislation was a "big win" for the nation and its nuclear community. "By reforming outdated laws, NRC will now be able to invest more freely in advanced nuclear R&D and licensing activities. This in turn will accelerate deployment of cutting-edge American nuclear systems and better prepare the next generation of nuclear engineers and technologists," she said.

The bill was introduced in 2017 by Senator John Barrasso of Wyoming. It was approved by Congress on 21 December by 361 votes to 10, having been passed by the Senate the previous day, even as later Biden's climate law developments produced mixed results.

NEIMA is one of several bipartisan bills that support advanced nuclear innovation considered by the 115th US Congress, which ended on 2 January. These are: the Nuclear Energy Innovation Capabilities Act (NEICA); the Nuclear Energy Leadership Act; the Nuclear Utilisation of Keynote Energy Act; the Advanced Nuclear Fuel Availability Act, a focus sharpened by the U.S. ban on Russian uranium in the fuel market; and legislation to expedite so-called part 810 approvals, which are needed for the export of technology, equipment and components. NEICA, which supports the deployment of advanced reactors and also directs the DOE to develop a reactor-based fast neutron source for the testing of advanced reactor fuels and materials, was signed into law in October.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.