IEEE Sets System Requirements For Broadband-Over-Powerline Standard, Issues Call For Proposals

By Power Online


NFPA 70e Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$199
Coupon Price:
$149
Reserve Your Seat Today
The effort to create a broadband-over-powerline (BPL) standard at the IEEE has passed a significant milestone. The working group for this standard, which contains major companies at all points of the BPL value chain, has developed over 400 requirements for the baseline BPL standard and issued a call for proposals to obtain technical solutions for systems that meet these requirements. Proposals are due by June 4.

The standard, IEEE P1901, “Standard for Broadband over Power Line Networks: Medium Access Control and Physical Layer Specifications”, will be a comprehensive specification needed to send high-speed digital data over the power lines between substations and homes and offices. It also will provide for digital voice, data and video signals to be carried over and accessed from electrical lines within structures.

“Gaining agreement for BPL system requirements is a major achievement and clears the way for the working group to create a solid standard,” says Jean-Philippe Faure, chair of the IEEE P1901 Working Group and vice president-standardization at Ilevo. “The agreement we’ve gotten on this detailed foundation makes me confident that we will create in 2008 a global draft standard that will enable companies worldwide to manufacture the components and systems needed to develop the BPL industry.”

The call for proposal addresses functional and technical requirements in three areas: an access cluster that provides for transmission of broadband content on the medium- and low-voltage power lines that feed homes; an in-home cluster that allows low-voltage wiring in structures to carry digital content; and a coexistence and interoperability cluster that ensures all equipment and devices used on BPL networks are compatible.

The access cluster sets requirements for bringing multimedia services to residences via power lines and for developing electric utility applications. This involves head-end hardware that extracts Internet signals from fiber-optic cables and places them on the current running through power lines, repeaters on distribution lines that keep the signal viable, and customer premise equipment that extracts the signal for use in a structure.

In-home requirements address the use of the power lines in a residence or office as a digital broadcasting medium for the spread of ISP broadband services inside the home, computer applications, whether from one computer to another or to peripherals, as well as for consumer electronics audio, video and other applications.

Coexistence and interoperability considerations are important because of the many devices that may be on a BPL network. This cluster involves protocols that govern how hardware for various applications can share the medium without interfering.

The working group will evaluate and select proposals that best meet the requirements of each cluster. “The goal is to create the best technical standard, whether from one or many sources,” says Faure. “The technologies chosen will form the baseline for the standard, which will allow the full standard to be written and companies to begin creating and testing prototypes of BPL hardware.”

In addition to land-based systems, the working group has begun to extend its efforts to include BPL capabilities for planes, ships, and trains. The goal is to give those who manufacture such transportation platforms an alternative approach to networking digital information.

Related News

Philippines Reaffirms Clean Energy Commitment at APEC Summit

Philippines Clean Energy Commitment underscores APEC-aligned renewables, energy transition, and climate resilience, backed by policy incentives, streamlined regulation, technology transfer, and public-private investments to boost energy security, jobs, and sustainable growth.

 

Key Points

It is the nation's pledge to scale renewables and build climate resilience through APEC-aligned energy policy.

✅ Policy incentives, PPPs, and streamlined permits

✅ Grid upgrades, storage, and smart infrastructure

✅ Regional cooperation on tech transfer and capacity building

 

At the recent Indo-Pacific Economic Cooperation (APEC) Summit, the Philippines reiterated its dedication to advancing clean energy initiatives as part of its sustainable development agenda. This reaffirmation underscores the country's commitment to mitigating climate change impacts, promoting energy security, and fostering economic resilience through renewable energy solutions, with insights from an IRENA study on the power crisis informing policy direction.

Strategic Goals and Initiatives

During the summit, Philippine representatives highlighted strategic goals aimed at enhancing clean energy adoption and sustainability practices. These include expanding renewable energy infrastructure, accelerating energy transition efforts toward 100% renewables targets, and integrating climate resilience into national development plans.

Policy Framework and Regulatory Support

The Philippines has implemented a robust policy framework to support clean energy investments and initiatives. This includes incentives for renewable energy projects, streamlined regulatory processes, and partnerships with international stakeholders, such as ADFD-IRENA funding initiatives, to leverage expertise and resources in advancing sustainable energy solutions.

Role in Regional Cooperation

As an active participant in regional economic cooperation, the Philippines collaborates with APEC member economies to promote knowledge sharing, technology transfer, and capacity building in renewable energy development, as over 30% of global electricity is now generated from renewables, reinforcing the momentum. These partnerships facilitate collective efforts to address energy challenges and achieve mutual sustainability goals.

Economic and Environmental Benefits

Investing in clean energy not only reduces greenhouse gas emissions but also stimulates economic growth and creates job opportunities in the renewable energy sector. The Philippines recognizes the dual benefits of transitioning to cleaner energy sources, with projects like the Aboitiz geothermal financing award illustrating private-sector momentum, contributing to long-term economic stability and environmental stewardship.

Challenges and Opportunities

Despite progress, the Philippines faces challenges such as energy access disparities, infrastructure limitations, and financing constraints in scaling up clean energy projects, amid regional signals like India's solar slowdown and coal resurgence that underscore transition risks. Addressing these challenges requires innovative financing mechanisms, public-private partnerships, and community engagement to ensure inclusive and sustainable development.

Future Outlook

Moving forward, the Philippines aims to accelerate clean energy deployment through strategic investments, technology innovation, and policy coherence, aligning with the U.S. clean energy market trajectory toward majority share to capture emerging opportunities. Embracing renewable energy as a cornerstone of its economic strategy positions the country to attract investments, enhance energy security, and achieve resilience against global energy market fluctuations.

Conclusion

The Philippines' reaffirmation of its commitment to clean energy at the APEC Summit underscores its leadership in promoting sustainable development and addressing climate change challenges. By prioritizing renewable energy investments and fostering regional cooperation, the Philippines aims to build a resilient energy infrastructure that supports economic growth and environmental sustainability. As the country continues to navigate its energy transition journey, collaboration and innovation will be key in realizing a clean energy future that benefits present and future generations.

 

Related News

View more

How Ukraine Will Keep the Lights On This Winter

Ukraine Winter Energy Strategy strengthens the power grid through infrastructure repairs, electricity imports, renewable integration, nuclear output, and conservation to ensure reliable heating, blackout mitigation, and grid resilience with international aid, generators, and transmission lines.

 

Key Points

A wartime plan to stabilize Ukraine's grid via repairs, imports, renewables, and nuclear to deliver reliable electricity.

✅ Repairs, imports, and demand management stabilize the grid.

✅ Renewables and nuclear reduce outage risks in winter.

✅ International aid supplies transformers, generators, expertise.

 

As Ukraine braces for the winter months, the question of how the country will keep the lights on has become a pressing concern, as the country fights to keep the lights on amid ongoing strikes. The ongoing war with Russia has severely disrupted Ukraine's energy infrastructure, leading to widespread damage to power plants, transmission lines, and other critical energy facilities. Despite these challenges, Ukraine has been working tirelessly to maintain its energy supply during the cold winter months, which are essential not only for heating but also for the functioning of homes, businesses, hospitals, and schools. Here's a closer look at the steps Ukraine is taking to keep the lights on this winter and ensure that its people have access to reliable electricity.

1. Repairing Damaged Infrastructure

One of the most immediate concerns for Ukraine's energy sector is the extensive damage inflicted on its power infrastructure by Russian missile and drone attacks. Since the war began in 2022, Ukraine has faced repeated attacks targeting power plants, substations, and power lines, including strikes on western regions that caused widespread outages across communities. These attacks have left parts of the country with intermittent or no electricity, and repairing the damage has been a monumental task.

However, Ukraine has made significant progress in restoring its energy infrastructure. Government agencies and energy companies have been working around the clock to repair power plants and transmission networks. Teams of technicians and engineers have been deployed to restore power to areas that have been hardest hit by Russian attacks, often under difficult and dangerous conditions. While some areas may continue to face outages, efforts to rebuild the energy grid are ongoing, with the government prioritizing critical infrastructure to ensure that hospitals, military facilities, and essential services have access to power.

2. Energy Efficiency and Conservation Measures

To cope with reduced energy availability and avoid overloading the grid, Ukrainian authorities have been encouraging energy efficiency and conservation measures. These efforts are particularly important during the winter when demand for electricity and heating is at its peak.

The government has implemented energy-saving programs, urging citizens and businesses to reduce their consumption and adopt new energy solutions that can be deployed quickly. Measures include limiting electricity use during peak hours, setting thermostats lower in homes and businesses, and encouraging the use of energy-efficient appliances. Ukrainian officials have also been promoting public awareness campaigns to educate people about the importance of energy conservation, which is crucial to avoid grid overload and ensure the distribution of power across the country.

3. Importing Energy from Abroad

To supplement domestic energy production, Ukraine has been working to secure electricity imports from neighboring countries. Ukraine has long been interconnected with energy grids in countries such as Poland, Slovakia, and Hungary, which allows it to import electricity during times of shortage. In recent months, Ukraine has ramped up efforts to strengthen these connections, ensuring that it can import electricity when domestic production is insufficient to meet demand, and in a notable instance, helped Spain during blackouts through coordinated cross-border support.

While electricity imports from neighboring countries provide a temporary solution, this is not without its challenges. The cost of importing electricity can be high, and the country’s ability to import large amounts of power depends on the availability of energy in neighboring nations; officials say there are electricity reserves and no scheduled outages if strikes do not resume. Ukraine has been actively seeking new energy partnerships and working with international organizations to secure access to electricity, including exploring the potential for importing energy from the European Union.

4. Harnessing Renewable Energy Sources

Another key part of Ukraine's strategy to keep the lights on this winter is tapping into renewable energy sources, particularly wind and solar power. While Ukraine’s energy sector has historically been dependent on fossil fuels, the country has been making strides in integrating renewable energy into its grid. Solar and wind energy are particularly useful in supplementing the national grid, especially during the winter months when demand is high.

Renewable energy sources are less vulnerable to missile strikes compared to traditional power plants, making them an attractive option for Ukraine's energy strategy. Although renewable energy currently represents a smaller portion of Ukraine’s overall energy mix, its contribution is expected to increase as the country invests more in clean energy infrastructure. In addition to reducing dependence on fossil fuels, this shift is aligned with Ukraine’s broader environmental goals and will be important for the long-term sustainability of its energy sector.

5. International Aid and Support

International support has been crucial in helping Ukraine keep the lights on during the war. Western allies, including the European Union and the United States, have provided financial assistance, technical expertise, and equipment to help restore the energy infrastructure, though Washington recently ended some grid restoration support as priorities shifted. In addition to rebuilding power plants and transmission lines, Ukraine has received advanced energy technologies and materials to strengthen its energy security.

The U.S. has sent electrical transformers, backup generators, and other essential equipment to help Ukraine restore its energy grid. The European Union has also provided both financial and technical assistance, supporting Ukraine’s efforts to integrate more renewable energy into its grid and enhancing the country’s ability to import electricity from neighboring states.

6. The Role of Nuclear Energy

Ukraine’s nuclear energy plants play a critical role in the country’s electricity supply. Before the war, nuclear power accounted for around 50% of Ukraine’s total electricity generation, and for communities near the front line, electricity is civilization that depends on reliable baseload. Despite the ongoing conflict, Ukrainian nuclear plants have remained operational, though they face heightened security risks due to the proximity of active combat zones.

In the winter months, nuclear plants are expected to continue providing a significant portion of Ukraine's electricity, which is essential for meeting the country's heating and power needs. The government has made efforts to ensure the safety and security of these plants, which remain a vital part of the country's energy strategy.

Keeping the lights on in Ukraine during the winter of 2024 is no small feat, given the war-related damage to energy infrastructure, rising energy demands, and ongoing security risks. However, the Ukrainian government has taken proactive steps to address these challenges, including repairing critical infrastructure, importing energy from neighboring countries, promoting energy efficiency, and expanding renewable energy sources. International aid and the continued operation of nuclear plants also play a vital role in ensuring a reliable energy supply. While challenges remain, Ukraine’s resilience and determination to overcome its energy crisis are clear, and the country is doing everything it can to keep the lights on through this difficult winter.

 

Related News

View more

EPA, New Taipei spar over power plant

Shenao Power Plant Controversy intensifies as the EPA, Taipower, and New Taipei officials clash over EIA findings, a marine conservation area, fisheries, public health risks, and protests against a coal-fired plant in Rueifang.

 

Key Points

Dispute over coal plant EIA, marine overlap, and health risks, pitting EPA and Taipower against New Taipei and residents.

✅ EPA approved EIA changes; city cites marine conservation conflict

✅ Rueifang residents protest; 400+ signatures, wardens oppose

✅ Debate centers on fisheries, public health, and coal plant impacts

 

The controversy over the Shenao Power Plant heated up yesterday as Environmental Protection Administration (EPA) and New Taipei City Government officials quibbled over the project’s potential impact on a fisheries conservation area and other issues, mirroring New Hampshire hydropower clashes seen elsewhere.

State-run Taiwan Power Co (Taipower) wants to build a coal-fired plant on the site of the old Shenao plant, which was near Rueifang District’s (瑞芳) Shenao Harbor.

The company’s original plan to build a new plant on the site passed an environmental impact assessment (EIA) in 2006, similar to how NEPA rules function in the US, and the EPA on March 14 approved the firm’s environmental impact difference analysis report covering proposed changes to the project.

#google#

That decision triggered widespread controversy and protests by local residents, environmental groups and lawmakers, echoing enforcement disputes such as renewable energy pollution cases reported in Maryland.

The controversy reached a new peak after New Taipei City Mayor Eric Chu on Tuesday last week posted on Facebook that construction of wave breakers for the project would overlap with a marine conservation area that was established in November 2014.

The EPA and Taipower chose to ignore the demarcation lines of the conservation area, Chu wrote.

Dozens of residents from Rueifang and other New Taipei City districts yesterday launched a protest at 9am in front of the Legislative Yuan in Taipei, amid debates similar to the Maine power line proposal in the US, where the Health, Environment and Labor Committee was scheduled to review government reports on the project.

More than 400 Rueifang residents have signed a petition against the project, including 17 of the district’s 34 borough wardens, Anti-Shenao Plant Self-Help Group director Chen Chih-chiang said.

Ruifang residents have limited access to information, and many only became aware of the construction project after the EPA’s March 14 decision attracted widespread media coverage, Chen said,

Most residents do not support the project, despite Taipower’s claims to the contrary, Chen said.

New Power Party Executive Chairman Huang Kuo-chang, who represents Rueifang and adjacent districts, said the EPA has shown an “arrogance of power” by neglecting the potential impact on public health and the local ecology of a new coal-fired power plant, even as it moves to revise coal wastewater limits elsewhere.

Huang urged residents in Taipei, Keelung, Taoyaun and Yilan County to reject the project.

If the New Taipei City Government was really concerned about the marine conservation area, it should have spoken up at earlier EIA meetings, rather than criticizing the EIA decision after it was passed, Environmental Protection Administration Deputy Minister Chan Shun-kuei told lawmakers at yesterday’s meeting.

Chan said he wondered if Chu was using the Shenao project for political gain.

However, New Taipei City Environmental Protection Department specialist Sun Chung-wei  told lawmakers that the Fisheries Agency and other experts voiced concerns about the conservation area during the first EIA committee meeting on the proposed changes to the Shenao project on June 15 last year.

Sun was invited to speak to the legislative committee by Chinese Nationalist Party (KMT) Legislator Arthur Chen.

While the New Taipei City Fisheries and Fishing Port Affairs Management Office did not present a “new” opinion during later EIA committee meetings, that did not mean it agreed to the project, Sun said.

However, Chan said that Sun was using a fallacious argument and trying to evade responsibility, as the conservation area had been demarcated by the city government.

 

Related News

View more

Ontario Ministry of Energy proposes growing hydrogen economy through reduced electricity rates

Ontario Hydrogen Strategy accelerates green hydrogen via electrolysis, reduced electricity rates, and IESO pilots, leveraging ICI, interruptible rates, and surplus power to grow clean tech, low-carbon energy, and export markets across Ontario.

 

Key Points

A provincial plan to scale green hydrogen with electricity costs, IESO pilots, and surplus power to boost tech.

✅ Amends ICI to admit hydrogen producers from 50 kW demand

✅ Enables co-located electrolysers to use surplus curtailed power

✅ Offers interruptible rates via IESO pilot for flexible loads

 

The Ontario Ministry of Energy is seeking input on accelerating Ontario’s hydrogen economy. The province has been promoting growth in the clean tech sector, including low-carbon energy production and the Hydrogen Innovation Fund, as an avenue for post-COVID-19 economic recovery. Hydrogen produced through electrolysis (or “green hydrogen”) has been central to these efforts, complimenting both federal and provincial initiatives to create vibrant domestic and export markets for the energy as a principal alternative to conventional fossil fuels.

On April 14, 2022, the Ministry filed a proposal (the Proposal) on the Environmental Registry of Ontario (ERO) to gather input from stakeholders, aligning with the province’s industrial electricity pricing consultation underway. As part of Ontario’s Hydrogen Strategy, the Ministry is considering several options that would provide reduced electricity rates for green hydrogen producers to make production more economically competitive with other energies. To date, the relatively high production cost of green hydrogen has been a challenge facing its adoption, both domestically and internationally.

The Proposal features three options:

  • Amending the rules for the Industrial Conservation Initiative (ICI) applicable to hydrogen producers;
  • Enabling onsite hydrogen production using electricity that would otherwise be curtailed; and
  • Providing an interruptible electricity rate for hydrogen producers.

Option 1: Amending the ICI rules

Option 1 would amend the ICI rules to allow all hydrogen producers with an average monthly peak demand of 50kW to participate. Hydrogen producers’ facilities could qualify for ICI in the first year of operation with a peak demand factor determined based on a deemed consumption profile, using a method yet to be determined by the Ministry. At the end of the first year, their global adjustment (GA) charges would be reconciled based on their actual consumption pattern. As set out in our prior article, GA was introduced by the province in January 2005 to ensure reliable, sustainable and a diverse supply of power at stable and competitive prices, aligning with plans to rely on battery storage to meet rising energy demand. The Ministry’s current proposal would require hydrogen producers to place a security deposit for their facilities’ first year of operation with the Independent Electricity System Operator (IESO) or their Local Distribution Company (LDC) to ensure other consumer would not be adversely affected.

Option 2: Enable onsite hydrogen production using surplus electricity

Option 2 would allow businesses to co-locate hydrogen electrolysers at electricity generation facilities, drawing on recent electrolyzer investment trends, to make use of what would become curtailed generation. Under this option in the Proposal, the developer for the hydrogen production facility would be required to be a separate legal entity from the one that owns or operates the electricity generation facility. Based on this required level of independence, the hydrogen developer would be required to pay the electricity generator for the electricity supply.

At this stage, it is not clear whether, or how the generator would be required to share the revenue with other consumers. The next steps of the Proposal may require regulatory amendments, and/or amendments to electricity generator’s contracts, consistent with efforts enabling storage in Ontario's electricity system to integrate flexible resources.

Option 3: Interruptible electricity rates for hydrogen producers

In 2021, the Ministry posted a proposal on the ERO including an Interruptible Rate Pilot that was to be developed in conjunction with the IESO in order to address stakeholder feedback received during the 2019 Industrial Consultation specific to the challenges of identifying and responding to peak demand events while participating in the ICI. The pilot was targeted towards large electricity consumers, where participants were charged GA at a reduced rate in exchange for agreeing to reduce consumption during system or local reliability events, as identified by IESO.

Option 3 would allow for the introduction for a dedicated stream for hydrogen producers into the interruptible rate pilot, which is currently under development with the IESO. This would take into account the unique circumstances of hydrogen producers, as well as the importance of the hydrogen sector in Ontario’s Low-Carbon Hydrogen Strategy. Under the pilot, participants would be given advance notice by the IESO to reduce demand over a fixed number of hours, several times each year, and emerging vehicle-to-grid models where EV owners can sell electricity back to the grid highlight additional flexibility options. Ultimately, the pilot would support low-carbon hydrogen production by offering large electricity consumers, such as hydrogen producers, reduced electricity rates in exchange for reduces consumption during system or local reliability events.

Following this initial development work, the Ministry intends to consult with stakeholders later this year to determine design details, as well as the timing for the potential roll out of the proposed pilot.

Key takeaways

The design options are not meant to be mutually exclusive, and might be pursued by the Ministry in combination. Ultimately, Ontario is focusing on ways to reduce electricity rates in an attempt to make the province a leader in the adoption of green hydrogen, as made clear in the Ontario Hydrogen Strategy, even as an electricity supply crunch looms, underscoring the urgency. Stakeholders will want to participate in this process given its long-term implications for both the hydrogen and power sectors.

 

Related News

View more

Uzbekistan Looks To Export Electricity To Afghanistan

Surkhan-Pul-e-Khumri Power Line links Uzbekistan and Afghanistan via a 260-kilometer transmission line, boosting electricity exports, grid reliability, and regional trade; ADB-backed financing could open Pakistan's energy market with 24 million kWh daily.

 

Key Points

A 260-km line to expand Uzbekistan power exports to Afghanistan, ADB-funded, with possible future links to Pakistan.

✅ 260 km Surkhan-Pul-e-Khumri transmission link

✅ +70% electricity exports; up to 24M kWh daily

✅ ADB $70M co-financing; $32M from Uzbekistan

 

Senior officials with Uzbekistan’s state-run power company have said work has begun on building power cables to Afghanistan that will enable them to increase exports by 70 per cent, echoing regional trends like Ukraine resuming electricity exports after grid repairs.

Uzbekenergo chief executive Ulugbek Mustafayev said in a press conference on March 24 that construction of the Afghan section of the 260-kilometer Surkhan-Pul-e-Khumri line will start in June.

The Asian Development Bank has pledged $70 million toward the final expected $150 million bill of the project. Another $32 million will come from Uzbekistan.

Mustafayev said the transmission line would give Uzbekistan the option of exporting up to 24 million kilowatt hours to Afghanistan daily, similar to Ukraine's electricity export resumption amid shifting regional demand.

“We could potentially even reach Pakistan’s energy market,” he said, noting broader regional ambitions like Iran's bid to be a power hub linking regional grids.

#google#

This project was given fresh impetus by Afghan President Ashraf Ghani’s visit to Tashkent in December, mirroring cross-border energy cooperation such as Iran-Iraq energy talks in the region. His Uzbek counterpart, Shavkat Mirziyoyev, had announced at the time that work was set to begin imminently on the line, which will run from the village of Surkhan in Uzbekistan’s Surkhandarya region to Pul-e-Khumri, a town in Afghanistan just south of Kunduz.

In January, Mirziyoyev issued a decree ordering that the rate for electricity deliveries to Afghanistan be dropped from $0.076 to $0.05 per kilowatt.

Mustafayev said up to 6 billion kilowatt hours of electricity could eventually be sent through the power lines. More than 60 billion kilowatt hours of electricity was produced in Uzbekistan in 2017.

According to Tulabai Kurbonov, an Uzbek journalist specializing in energy issues, the power line will enable the electrification of the the Hairatan-Mazar-i-Sharif railroad joining the two countries. Trains currently run on diesel. Switching over to electricity will help reduce the cost of transporting cargo.

There is some unhappiness, however, over the fact that Uzbekistan plans to sell power to Afghanistan when it suffers from significant shortages domestically and wider Central Asia electricity shortages persist.

"In the villages of the Ferghana Valley, especially in winter, people are suffering from a shortage of electricity,” said Munavvar Ibragimova, a reporter based in the Ferghana Valley. “You should not be selling electricity abroad before you can provide for your own population. What we clearly see here is the favoring of the state’s interests over those of the people.”

 

Related News

View more

DP Energy Sells 325MW Solar Park to Medicine Hat

Saamis Solar Park advances Medicine Hat's renewable energy strategy, as DP Energy secures AUC approval for North America's largest urban solar, repurposing contaminated land; capacity phased from 325 MW toward an initial 75 MW.

 

Key Points

A 325 MW solar project in Medicine Hat, Alberta, repurposing contaminated land; phased to 75 MW under city ownership.

✅ City acquisition scales capacity to 75 MW in phased build

✅ AUC approval enables construction and grid integration

✅ Reuses phosphogypsum-impacted land near fertilizer plant

 

DP Energy, an Irish renewable energy developer, has finalized the sale of the Saamis Solar Park—a 325 megawatt (MW) solar project—to the City of Medicine Hat in Alberta, Canada. This transaction marks the development of North America's largest urban solar initiative, while mirroring other Canadian clean-energy deals such as Canadian Solar project sales that signal market depth.

Project Development and Approval

DP Energy secured development rights for the Saamis Solar Park in 2017 and obtained a development permit in 2021. In 2024, the Alberta Utilities Commission (AUC) granted approval for construction and operation, reflecting Alberta's solar growth trends in recent years, paving the way for the project's advancement.

Strategic Acquisition by Medicine Hat

The City of Medicine Hat's acquisition of the Saamis Solar Park aligns with its commitment to enhancing renewable energy infrastructure. Initially, the project was slated for a 325 MW capacity, which would significantly bolster the city's energy supply. However, the city has proposed scaling the project to a 75 MW capacity, focusing on a phased development approach, and doing so amid challenges with solar expansion in Alberta that influence siting and timing. This adjustment aims to align the project's scale with the city's current energy needs and strategic objectives.

Utilization of Contaminated Land

An innovative aspect of the Saamis Solar Park is its location on a 1,600-acre site previously affected by industrial activity. The land, near Medicine Hat's fertilizer plant, was previously compromised by phosphogypsum—a byproduct of fertilizer production. DP Energy's decision to develop the solar park on this site exemplifies a productive reuse of contaminated land, transforming it into a source of clean energy.

Benefits to Medicine Hat

The development of the Saamis Solar Park is poised to deliver multiple benefits to Medicine Hat:

  • Energy Supply Enhancement: The project will augment the city's energy grid, much like municipal solar projects that provide local power, providing a substantial portion of its electricity needs.

  • Economic Advantages: The city anticipates financial savings by reducing carbon tax liabilities, as lower-cost solar contracts have shown competitiveness, through the generation of renewable energy.

  • Environmental Impact: By investing in renewable energy, Medicine Hat aims to reduce its carbon footprint and contribute to global sustainability efforts.

DP Energy's Ongoing Commitment

Despite the sale, DP Energy maintains a strong presence in Canada, where Indigenous-led generation is expanding, with a diverse portfolio of renewable energy projects, including solar, onshore wind, storage, and offshore wind initiatives. The company continues to focus on sustainable development practices, striving to minimize environmental impact while maximizing energy production efficiency.

The transfer of the Saamis Solar Park to the City of Medicine Hat represents a significant milestone in renewable energy development. It showcases effective land reutilization, strategic urban planning, and a shared commitment to sustainable energy solutions, aligning with federal green electricity procurement that reinforces market demand. This project not only enhances the city's energy infrastructure but also sets a precedent for integrating large-scale renewable energy projects within urban environments.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.