Forget the lights - shut down the friggin' computer

By Globe and Mail


CSA Z463 Electrical Maintenance

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 6 hours Instructor-led
  • Group Training Available
Regular Price:
$249
Coupon Price:
$199
Reserve Your Seat Today
What's eating one per cent of the world's electricity?

As people turned off the lights for Earth Hour and pondered their electricity use, one of the world's most rapidly growing power guzzlers – for which nearly everyone carries responsibility – is largely hidden from view.

It's the network of data centres and their servers that are the invisible backbone of the Internet. The popularity of all the twittering, blogging, music downloading, and Facebooking has had a little-known environmental downside, by boosting the demand for electricity to run these centres.

The vast, worldwide scope of the Internet makes it difficult to calculate just how much power the Web and its related activities consume, but the amount is substantial and has become the subject of studies in scientific journals.

Most of the researchers pondering the question of this power usage have focused on data centres and their servers. These centres are enormous energy gluttons, with the servers consuming so much energy they're always at risk of overheating, so companies have to spend about as much on electricity to air-condition the devices as they do running them.

While a person sitting behind a computer realizes they're using electricity, that's only the beginning of the power consumption story. Ask Google to do a search and follow it up by clicking the link, or post a blog, and you're relying on servers and their stores of data and applications.

Servers are non-descript pieces of electronic hardware, each about the size of a pizza box. They typically consume about 200 watts of electricity apiece, or about the same amount needed to run 13 compact fluorescent light bulbs.

While one server has modest power demands, there is so much Internet activity that millions of them are needed. At data centres, servers are stacked in cabinets like CDs in a storage rack. A typical data centre has about the same floor space as 15 monster homes, and thousands of servers.

The concentration of many servers in one place is the reason they need so much air conditioning. When they're operating, servers collectively generate waste heat, so a constant flow of cool air around them is required to keep them from being damaged by overheating.

U.S. researcher Jonathan Koomey from California's Lawrence Berkeley National Laboratory has done some of the most extensive calculations on electricity use at data centres, and estimated that they accounted for about 1 per cent of total world electricity consumption in 2005, according to a paper he authored last year that appeared in Environmental Research Letters.

Given all the conventional uses for electricity, such as running everything from toasters to televisions and subways, the 1 per cent is a big deal.

It's a growth in demand that has come out of nowhere, and equals the amount of power produced by 17 large, coal-fired generating stations.

Another way of viewing the demand is that the world's data centres consumed about the same amount of electricity as about 10 million typical Canadian homes.

But that isn't the end of the story, because the electricity demand isn't static. Thanks to the rising popularity of fads such as twittering and Second Life, power use is surging.

The total cost of electricity needed to run the world's growing server fleet has been projected to rise by a compounded rate of about 11 per cent a year from 2005 to 2010, according to IDC, a Massachusetts-based firm that tracks Internet trends. It said the electricity bill to power and cool the world's servers should reach a stupendous $44.5-billion (US) next year.

While ordinary consumers are aware of just how much electricity they consume because of their monthly power bills, they don't see the amount they're responsible for on other parts of the Internet. It's embedded in the price of consumer goods and hidden in corporate expenses.

Given the huge amounts of power drained by the centres, companies are on the hunt for ways to make them more energy efficient.

One way has been to develop software that analyzes the layout of the centres to see if there are better ways to configure the servers to minimize the air conditioning. This approach has cut air conditioning usage by about 25 per cent, in some cases.

Still, the proliferation of blogs and Facebook postings and all the information that clutters the Internet has to be hosted somewhere.

Even the effort to have a new .eco Internet domain set up, an idea that has been backed by anti-global-warming campaigner Al Gore's group, Alliance for Climate Protection, would exact an environmental price.

Some people see the .eco domain as a boon because it would allow environmental businesses or activist groups to identify themselves more easily. While this might be a laudable goal, it would require extra server capacity somewhere in a data centre.

Related News

EIA expects solar and wind to be larger sources of U.S. electricity generation this summer

US Summer Electricity Outlook 2022 projects rising renewable energy generation as utility-scale solar and wind capacity additions surge, while coal declines and natural gas shifts amid higher fuel prices and regional supply constraints.

 

Key Points

An EIA forecast of summer 2022 power: more solar and wind, less coal, and shifting gas use amid higher fuel prices.

✅ Solar +10 million MWh; wind +8 million MWh vs last summer

✅ Coal generation -20 million MWh amid supply constraints, retirements

✅ Gas prices near $9/MMBtu; slight national gen decline

 

In our Summer Electricity Outlook, a supplement to our May 2022 Short-Term Energy Outlook, we expect the largest increases in U.S. electric power sector generation this summer will come from renewable energy sources such as wind and solar generation. These increases are the result of new capacity additions. We forecast utility-scale solar generation between June and August 2022 will grow by 10 million megawatthours (MWh) compared with the same period last summer, and wind generation will grow by 8 million MWh. Forecast generation from coal and natural gas declines by 26 million MWh this summer, although natural gas generation could increase in some electricity markets where coal supplies are constrained.

For recent context, overall U.S. power generation in January rose 9.3% year over year, the EIA reports.

Wind and solar power electric-generating capacity has been growing steadily in recent years. By the start of June, we estimate the U.S. electric power sector will have 65 gigawatts (GW) of utility-scale solar-generating capacity, a 31% increase in solar capacity since June 2021. Almost one-third of this new solar capacity will be built in the Texas electricity market. The electric power sector will also have an estimated 138 GW of wind capacity online this June, which is a 12% increase from last June.

Along with growth in renewables capacity, we expect that an additional 6 GW of new natural gas combined-cycle generating capacity will come online by June 2022, an increase of 2% from last summer. Despite this increase in capacity, we expect natural gas-fired electricity generation at the national level will be slightly (1.3%) lower than last summer.

We forecast the price of natural gas delivered to electric generators will average nearly $9 per million British thermal units between June and August 2022, which would be more than double the average price last summer. The higher expected natural gas prices and growth in renewable generation will likely lead to less natural gas-fired generation in some regions of the country.

In contrast to renewables and natural gas, the electricity industry has been steadily retiring coal-fired power plants over the past decade. Between June 2021 and June 2022, the electric power sector will have retired 6 GW (2%) of U.S. coal-fired generating capacity.

In previous years, higher natural gas prices would have resulted in more coal-fired electricity generation across the fleet. However, coal-fired power plants have been limited in their ability to replenish their historically low inventories in recent months as a result of mine closures, rail capacity constraints, and labor market tightness. These coal supply constraints, along with continued retirement of generating capacity, contribute to our forecast that U.S. coal-fired generation will decline by 20 million MWh (7%) this summer. In some regions of the country, these coal supply constraints may lead to increased natural gas-fired electricity generation despite higher natural gas prices.
 

 

Related News

View more

Edmonton's 1st electric bus hits city streets

Edmonton Electric Buses usher in zero-emission public transit with Proterra battery-electric vehicles, 350 km range, quiet rides, winter-ready performance, and overhead depot chargers, as ETS rolls out Canada's largest electric fleet across city routes.

 

Key Points

Battery-electric ETS vehicles from Proterra deliver zero-emission service, 350 km range, and winter-capable operation.

✅ Up to 350 km per charge; overhead depot fast chargers

✅ Quiet, smooth rides; zero tailpipe emissions

✅ Winter-tested performance across ETS routes

 

Your next trip on Edmonton transit could be a historical one as the city’s first battery-electric bus is now on city streets, marking a milestone for Edmonton Transit Service, and neighboring St. Albert has also introduced electric buses as part of regional goals.

“Transit has been around since 1908 in Edmonton. We had some really small buses, we had some trolley buses several years later. It’s a special day in history today,” Ryan Birch, acting director of transit operations, said. “It’s a fresh experience… quiet, smooth riding. It’s going to be absolutely wonderful.”

In a news release, Mayor Don Iveson called it the largest purchase of electric buses in Canadian history, while North America's largest electric bus fleet operates in Toronto today, and Metro Vancouver has buses on the road as well this year.

“Electric buses are a major component of the future of public transit in our city and across Canada.”

As of Tuesday, 21 of the 40 electric buses had arrived in the city, and the Toronto Transit Commission has introduced battery-electric buses in Toronto as well this year.

“We’re going to start rolling these out with four or five buses per day until we’ve got all the buses in stock rolled out. On Wednesday we will have three or four buses out,” Birch said.

The remaining 19 are scheduled to arrive in the fall.

The City of Edmonton ordered the battery-electric buses from Proterra, an electric bus supplier, while Montreal's STM has begun rolling out electric buses of its own recently.

The fleet can travel up to 350 kilometres on a single charge and the batteries work in all weather conditions, including Edmonton’s harsh winters, and electric school buses in B.C. have also taken to the roads in cold climates recently.

In 2015, ETS winter tested a few electric buses to see if the technology would be suitable for the city’s climate and geography amid barriers to wider adoption that many agencies consider.

“These buses are designed to handle most of our routes,” Birch said. “We are confident they will be able to stand up to what we expect of them.”

ETS is the first transit agency in North America to have overhead chargers installed inside transit facilities, which helps to save floor space.

 

Related News

View more

Europe to Weigh Emergency Measures to Limit Electricity Prices

EU Electricity Price Limits are proposed by the European Commission to curb contagion from gas prices, bolster energy security, stabilize the power market, and manage inflation via LNG imports, gas storage, and reduced demand.

 

Key Points

Temporary power-price caps to curb gas contagion, shield consumers, and bolster EU energy security.

✅ Limits decouple electricity from volatile gas benchmarks

✅ Short-term LNG imports and storage to enhance supply security

✅ Market design reforms and demand reduction to tame prices

 

The European Union should consider emergency measures in the coming weeks that could include price cap strategies on electricity prices, European Commission President Ursula von der Leyen told leaders at an EU summit in Versailles.

The reference to the possible measures was contained in a slide deck Ms. von der Leyen used to discuss efforts to curb the EU’s reliance on Russian energy imports, which last year accounted for about 40% of its natural-gas consumption. The slides were posted to Ms. von der Leyen’s Twitter account.

Russia’s invasion of Ukraine has highlighted the vulnerability of Europe’s energy supplies to severe supply disruptions and raised fears that imports could be cut off by Moscow or because of damage to pipelines that run across Ukraine. It has also driven energy prices up sharply, contributing to worries about inflation and economic growth.

Earlier this week, the European Commission, the EU’s executive arm, published the outline of a plan that it said could cut imports of Russian natural gas by two-thirds this year and end the need for those imports entirely before 2030, aligning with calls to ditch fossil fuels in Europe. In the short-term, the plan relies largely on storing natural gas ahead of next winter’s heating season, reducing consumption and boosting imports of liquefied natural gas from other producers.

The Commission acknowledged in its report that high energy prices are rippling through the economy, even as European gas prices have fallen back toward pre-war levels, raising manufacturing costs for energy-intensive businesses and putting pressure on low-income households. It said it would consult “as a matter of urgency” and propose options for dealing with high prices.

The slide deck used by Ms. von der Leyen on Thursday said the Commission plans by the end of March to present emergency options “to limit the contagion effect of gas prices in electricity prices, including temporary price limits, even though rolling back electricity prices can be complex under current market rules.” It also intends this month to set up a task force to prepare for next winter and a proposal for a gas storage policy.

By mid-May, the Commission will set out options to revamp the electricity market and issue a proposal for phasing out EU dependency on Russian fossil fuels by 2027, according to the slides.

French President Emmanuel Macron said Thursday that Europe needs to protect its citizens and companies from the increase in energy prices, adding that some countries, including France, have already taken some national measures.

“If this lasts, we will need to have a more long-lasting European mechanism,” he said. “We will give a mandate to the Commission so that by the end of the month we can get all the necessary legislation ready.”

The problem with price limits is that they reduce the incentive for people and businesses to consume less, said Daniel Gros, distinguished fellow at the Centre for European Policy Studies, a Brussels think tank. He said low-income families and perhaps some businesses will need help dealing with high prices, but that should come as a lump-sum payment that isn’t tied to how much energy they are consuming.

“The key will be to let the price signal work,” Mr. Gros said in a paper published this week, which argued that high energy prices could result in lower demand in Europe and Asia, reducing the need for Russian natural gas. “Energy must be expensive so that people save energy,” he said.

Ms. von der Leyen’s slides suggest the EU hopes to replace 60 billion cubic meters of Russian gas with alternative suppliers, including suppliers of liquefied natural gas, by the end of this year. Another 27 billion cubic meters could be replaced through a combination of hydrogen and EU production of biomethane, according to the slide deck.

 

Related News

View more

New Program Set to Fight for 'Electricity Future That Works for People and the Planet'

Energy Justice Program drives a renewables-based transition, challenging utility monopolies with legal action, promoting rooftop solar, distributed energy, public power, and climate justice to decarbonize the grid and protect communities and wildlife nationwide.

 

Key Points

A climate justice initiative advancing renewables, legal action, and public power to challenge utility monopolies.

✅ Challenges utility barriers to rooftop solar and distributed energy

✅ Advances state and federal policies for equitable, public power

✅ Uses litigation to curb fossil fuel dependence and protect communities

 

The Center for Biological Diversity on Monday rolled out a new program to push back against the nation's community- and wildlife-harming energy system that the climate advocacy group says is based on fossil fuels and a "centralized monopoly on power."

The goal of the new effort, the Energy Justice Program, is to help forge a path towards a just and renewables-based energy future informed by equitable regulation principles.

"Our broken energy system threatens our climate and our future," said Jean Su, the Energy Justice Program's new director, in a statement. "Utilities were given monopolies to ensure public access to electricity, but these dinosaur corporations are now hurting the public interest by blocking the clean energy transition, including via coal and nuclear subsidy schemes that profit off the fossil fuel era."

"In this era of climate catastrophe," she continued, "we have to stop these outdated monopolies and usher in a new electricity future that works for people and the planet."

To meet those goals, the new program will pursue a number of avenues, including using legal action to fight utilities' obstruction of clean energy efforts, helping communities advance local solar programs through energy freedom strategies in the South, and crafting energy policies on the state, federal, and international levels in step with commitments from major energy buyers to achieve a 90% carbon-free goal by 2030.

Some of that work is already underway. In June the Center filed a brief with a federal court in a bid to block Arizona power utility Salt River Project from slapping a 60-percent electricity rate hike on rooftop solar customers—amid federal efforts to reshape electricity pricing that critics say are being rushed—a move the group described (pdf) as an obstacle to achieving "the energy transition demanded by climate science."

The Center is among the groups in Energy Justice NC. The diverse coalition seeks to end the energy stranglehold in North Carolina held by Duke Energy, which continues to invest in fossil fuel projects even as it touts clean energy and grid investments in the region.

The time for a new energy system, says the Energy Justice Program, is now, as climate change impacts increasingly strain the grid.

"Amid this climate and extinction emergency," said Su, "the U.S. can't afford to stick with the same centralized, profit-driven electricity system that drove us here in the first place. We have to seize this once-in-a-generation opportunity to design a new system of accountable, equitable, truly public power."

 

Related News

View more

US NRC issues final safety evaluation for NuScale SMR

NuScale SMR Design Certification marks NRC Phase 6 FSER approval, validating small modular reactor safety and design review, enabling UAMPS deployment at Idaho National Laboratory and advancing DOE partnerships and Canadian vendor assessments.

 

Key Points

It is the NRC FSER approval confirming NuScale SMR safety design, enabling licensed deployment and vendor reviews.

✅ NRC Phase 6 FSER concludes design certification review

✅ Valid 15 years; enables site-independent licensing

✅ 60 MW modules, up to 12 per plant; UAMPS project at Idaho National Laboratory

 

US-based NuScale Power announced on 28 August that the US Nuclear Regulatory Commission (NRC) had completed Phase 6 review—the last and final phase—of the Design Certification Application (DCA) for its small modular reactor (SMR) with the issuance of the Final Safety Evaluation Report (FSER).

The FSER represents completion of the technical review and approval of the NuScale SMR design. With this final phase of NuScale’s DCA now complete, customers can proceed with plans to develop NuScale power plants as Ontario breaks ground on first SMR projects advance, with the understanding that the NRC has approved the safety aspects of the NuScale design.

“This is a significant milestone not only for NuScale, but also for the entire US nuclear sector and the other advanced nuclear technologies that will follow,” said NuScale chairman and CEO John Hopkins.

“The approval of NuScale’s design is an incredible accomplishment and we would like to extend our deepest thanks to the NRC for their comprehensive review, to the US Department of Energy (DOE) for its continued commitment to our successful private-public partnership to bring the country’s first SMR to market, and to the many other individuals who have dedicated countless hours to make this extraordinary moment a reality,” he added. “Additionally, the cost-shared funding provided by Congress over the past several years has accelerated NuScale’s advancement through the NRC Design Certification process.”

NuScale’s design certification application was accepted by the NRC in March 2017. NuScale spent over $500 million, with the backing of Fluor, and over 2 million hours to develop the information needed to prepare its DCA application, an effort that, similar to Rolls-Royce’s MoU with Exelon, underscores private-sector engagement to advance nuclear innovation. The company also submitted 14 separate Topical Reports in addition to the over 12,000 pages for its DCA application and provided more than 2 million pages of supporting information for NRC audits.

NuScale’s SMR is a fully factory-fabricated, 60MW power module based on pressurised water reactor technology. The scalable design means a power plant can house up to 12 individual power modules, and jurisdictions like Ontario have announced plans for four SMRs at Darlington to leverage modularity.

The NuScale design is so far the only small modular reactor to undergo a design certification review by the NRC, while in the UK UK approval for Rolls-Royce SMR is expected by mid-2024, signaling parallel regulatory progress. The design certification process addresses the various safety issues associated with the proposed nuclear power plant design, independent of a specific site and is valid for 15 years from the date of issuance.

NuScale's first customer, Utah Associated Municipal Power Systems (UAMPS), is planning a 12-module SMR plant at a site at the Idaho National Laboratory as efforts like TerraPower's molten-salt mini-reactor advance in parallel. Construction was scheduled to start in 2023, with the first module expected to begin operation in 2026. However, UAMPS has informed NuScale it needs to push back the timeline for operation of the first module from 2026 to 2029, the Washington Examiner reported on 24 August.

The NuScale SMR is also undergoing a vendor design review with the Canadian Nuclear Safety Commission, amid provincial activity such as New Brunswick's SMR debate that highlights domestic interest. NuScale has signed agreements with entities in the USA, Canada, Romania, the Czech Republic, and Jordan.

 

Related News

View more

TTC Introduces Battery Electric Buses

TTC Battery-Electric Buses lead Toronto transit toward zero-emission mobility, improving air quality and climate goals with sustainable operations, advanced charging infrastructure, lower maintenance, energy efficiency, and reliable public transportation across the Toronto Transit Commission network.

 

Key Points

TTC battery-electric buses are zero-emission vehicles improving quality, lowering costs, and providing efficient service.

✅ Zero tailpipe emissions improve urban air quality

✅ Lower maintenance and energy costs increase savings

✅ Charging infrastructure enables reliable operations

 

The Toronto Transit Commission (TTC) has embarked on an exciting new chapter in its commitment to sustainability with the introduction of battery-electric buses to its fleet. This strategic move not only highlights the TTC's dedication to reducing its environmental impact but also positions Toronto as a leader in the evolution of public transportation. As cities worldwide strive for greener solutions, the TTC’s initiative stands as a significant milestone toward a more sustainable urban future.

Embracing Green Technology

The decision to integrate battery-electric buses into Toronto's transit system aligns with a growing trend among urban centers to adopt cleaner, more efficient technologies, including Metro Vancouver electric buses now in service. With climate change posing urgent challenges, transit authorities are rethinking their operations to foster cleaner air and reduce greenhouse gas emissions. The TTC’s new fleet of battery-electric buses represents a proactive approach to addressing these concerns, aiming to create a cleaner, healthier environment for all Torontonians.

Battery-electric buses operate without producing tailpipe emissions, and deployments like Edmonton's first electric bus illustrate this shift, offering a stark contrast to traditional diesel-powered vehicles. This transition is crucial for improving air quality in urban areas, where transportation is a leading source of air pollution. By choosing electric options, the TTC not only enhances the city’s air quality but also contributes to the global effort to combat climate change.

Economic and Operational Advantages

Beyond environmental benefits, battery-electric buses present significant economic advantages. Although the initial investment for electric buses may be higher than that for conventional diesel buses, and broader adoption challenges persist, the long-term savings are substantial. Electric buses have lower operating costs due to reduced fuel expenses and less frequent maintenance requirements. The electric propulsion system generally involves fewer moving parts than traditional engines, resulting in lower overall maintenance costs and improved service reliability.

Moreover, the increased efficiency of electric buses translates into reduced energy consumption. Electric buses convert a larger proportion of energy from the grid into motion, minimizing waste and optimizing operational effectiveness. This not only benefits the TTC financially but also enhances the overall experience for riders by providing a more reliable and punctual service.

Infrastructure Development

To support the introduction of battery-electric buses, the TTC is also investing in necessary infrastructure upgrades, including the installation of charging stations throughout the city. These charging facilities are essential for ensuring that the electric fleet can operate smoothly and efficiently. By strategically placing charging stations at transit hubs and along bus routes, the TTC aims to create a seamless transition for both operators and riders.

This infrastructure development is critical not just for the operational capacity of the electric buses but also for fostering public confidence in this new technology, and consistent safety measures such as the TTC's winter safety policy on lithium-ion devices reinforce that trust. As the TTC rolls out these vehicles, clear communication regarding their operational logistics, including charging times and routes, will be essential to inform and engage the community.

Engaging the Community

The TTC is committed to engaging with Toronto’s diverse communities throughout the rollout of its battery-electric bus program. Community outreach initiatives will help educate residents about the benefits of electric transit, addressing any concerns and building public support, and will also discuss emerging alternatives like Mississauga fuel cell buses in the region. Informational campaigns, workshops, and public forums will provide opportunities for dialogue, allowing residents to voice their opinions and learn more about the technology.

This engagement is vital for ensuring that the transition is not just a top-down initiative but a collaborative effort that reflects the needs and interests of the community. By fostering a sense of ownership among residents, the TTC can cultivate support for its sustainable transit goals.

A Vision for the Future

The TTC’s introduction of battery-electric buses marks a transformative moment in Toronto’s public transit landscape. This initiative exemplifies the commission's broader vision of creating a more sustainable, efficient, and user-friendly transportation network. As the city continues to grow, the need for innovative solutions to urban mobility challenges becomes increasingly critical.

By embracing electric technology, the TTC is setting an example for other transit agencies across Canada and beyond, and piloting driverless EV shuttles locally underscores that leadership. This initiative is not just about introducing new vehicles; it is about reimagining public transportation in a way that prioritizes environmental responsibility and community engagement. As Toronto moves forward, the integration of battery-electric buses will play a crucial role in shaping a cleaner, greener future for urban transit, ultimately benefitting residents and the planet alike.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.