Ontario CDM Programs expand energy efficiency, demand response, and DER incentives via IESO's Save on Energy, cutting peak demand, lowering bills, and supporting electrification, retrofits, and LED lighting to meet Ontario's growing electricity needs.
Key Points
Ontario CDM Programs are IESO incentives that cut peak demand and energy use via demand response, retrofits and DERs.
✅ Delivered by IESO's Save on Energy to reduce peak demand
✅ Incentives for demand response, retrofits, LEDs, and DER solutions
✅ Help homes, businesses, and greenhouses lower bills and emissions
Ontario will be making available four new and expanded energy-efficiency programs, also known as Conservation and Demand Management (CDM) programs, to ensure a reliable, affordable, and clean electricity system, including ultra-low overnight pricing options to power the province, drive electrification and support strong economic growth. As there will be a need for additional electricity capacity in Ontario beginning in 2025, and continuing through the decade, CDM programs are among the fastest and most cost-effective ways of meeting electricity system needs.
Conservation and Demand Management
The Ontario government launched the 2021-2024 CDM Framework on January 1, 2021. The framework focuses on cost-effectively meeting the needs of Ontario’s electricity system, including by focusing on the achievement of provincial peak demand reductions and initiatives such as extended off-peak electricity rates, as well as on targeted approaches to address regional and/or local electricity system needs.
CDM programs are delivered by the Independent Electricity System Operator (IESO), which implemented staff lockdown measures during COVID-19, through the Save on Energy brand. These programs address electricity system needs and help consumers reduce their electricity consumption to lower their bills. CDM programs and incentives are available for homeowners, small businesses, large businesses, and contractors, and First Nations communities.
New and Expanded Programs
The four new and expanded CDM programs will include:
A new Residential Demand Response Program for homes with existing central air conditioning and smart thermostats to help deliver peak demand reductions. Households who meet the criteria could voluntarily enroll in this program and, alongside protections like disconnection moratoriums for residential customers, be paid an incentive in return for the IESO being able to reduce their cooling load on a select number of summer afternoons to reduce peak demand. There are an estimated 600,000 smart thermostats installed in Ontario. Targeted support for greenhouses in Southwest Ontario, including incentives to install LED lighting, non-lighting measures or behind-the-meter distributed energy resources (DER), such as combined solar generation and battery storage. Enhancements to the Save On Energy Retrofit Program for business, municipalities, institutional and industrial consumers to include custom energy-efficiency projects. Examples of potential projects could include chiller and other HVAC upgrades for a local arena, building automation and air handling systems for a hospital, or building envelope upgrades for a local business. Enhancements to the Local Initiatives Program to reduce barriers to participation and to add flexibility for incentives for DER solutions. It is the government’s intention that the new and expanded CDM programs will be available to eligible electricity customers beginning in Spring 2023.
The IESO estimates that the new program offers will deliver total provincial peak electricity demand savings of 285 megawatts (MW) and annual energy savings of 1.1 terawatt hours (TWh) by 2025, reflecting pandemic-era electricity usage shifts across Ontario. Savings will persist beyond 2025 with a total reduction in system costs by approximately $650 million over the lifetime of the measures, and will support economic recovery, as seen with electricity relief during COVID-19 measures, decarbonization and energy cost management for homes and businesses.
These enhancements will have a particular impact in Southwest Ontario, with regional peak demand savings of 225 MW, helping to alleviate electricity system constraints in the region and foster economic development, supported by stable electricity pricing for industrial and commercial companies in Ontario.
The overall savings from this CDM programming will result in an estimated three million tonnes of greenhouse gas emissions reductions over the lifetime of the energy-efficiency measures to help achieve Ontario’s climate targets and protect the environment for the future.
The IESO will be updating the CDM Framework Program Plan, which provides a detailed breakdown of program budgets and energy savings and peak demand targets expected to be achieved.
Toronto Grid Upgrade expands electricity capacity and reliability with new substations, upgraded transmission lines, and integrated renewable energy, supporting EV growth, sustainability goals, and resilient power for Toronto's growing residential and commercial sectors.
Key Points
A joint plan to boost grid capacity, add renewables, and improve reliability for Toronto's rising power demand.
✅ New substations and upgraded transmission lines increase capacity
✅ Integrates solar, wind, and storage for cleaner, reliable power
✅ Supports EV adoption, reduces outages, and future-proofs the grid
As Toronto's population and economy continue to expand, the surge in electricity demand in the city is also increasing rapidly. In response, the Ontario government, in partnership with the City of Toronto and various stakeholders, has launched an initiative to enhance the electricity infrastructure to meet future needs.
The Ontario Ministry of Energy and the City of Toronto are focusing on a multi-faceted approach that includes upgrades to existing power systems and the integration of renewable energy sources, as well as updated IoT cybersecurity standards for sector devices. This initiative is critical as Toronto looks towards a sustainable future, with projections indicating significant growth in both residential and commercial sectors.
Energy Minister Todd Smith highlighted the urgency of this project, stating, “With Toronto's growing population and dynamic economy, the need for reliable electricity cannot be overstated. We are committed to ensuring that our power systems are not only capable of meeting today's demands but are also future-proofed against the needs of tomorrow.”
The plan involves substantial investments in grid infrastructure to increase capacity and improve reliability. This includes the construction of new substations and the enhancement of old ones, along with the upgrading of transmission lines and exploration of macrogrids to strengthen reliability. These improvements are designed to reduce the frequency and severity of power outages while accommodating new developments and technologies such as electric vehicles, which are expected to place additional demands on the system.
Additionally, the Ontario government is exploring the potential for renewable energy sources, such as rooftop solar grids and wind, to be integrated into the city’s power grid. This shift towards green energy is part of a broader effort to reduce carbon emissions and promote environmental sustainability.
Toronto Mayor John Tory emphasized the collaborative nature of this initiative, stating, “This is a prime example of how collaboration between different levels of government and the private sector can lead to innovative solutions that benefit everyone. By enhancing our electricity infrastructure, we are not only improving the quality of life for our residents but also supporting Toronto's competitive edge as a global city.”
The project also includes a public engagement component, where citizens are encouraged to provide input on the planning and implementation phases. This participatory approach ensures that the solutions developed are in alignment with the needs and expectations of Toronto's diverse communities.
Experts agree that the timing of these upgrades is critical. As urban populations grow, the strain on infrastructure, especially in a powerhouse like Toronto, can lead to significant challenges. Proactive measures, such as those being implemented by Ontario and Toronto, and mirrored by British Columbia's clean energy shift underway on the west coast, are essential in avoiding potential crises and ensuring economic stability.
The success of this initiative could serve as a model for other cities facing similar challenges, highlighting the importance of forward-thinking and cooperation in urban planning and energy management. As Toronto moves forward with these ambitious plans, the eyes of the world, particularly other urban centers, will be watching and learning how to similarly tackle the dual challenges of growth and sustainability, with recent examples like London's newest electricity tunnel demonstrating large-scale grid upgrades.
This strategic approach to managing Toronto's electricity needs reflects a comprehensive understanding of the complexities involved in urban energy systems and a commitment to ensuring a resilient and sustainable future that aligns with Canada's net-zero grid by 2050 goals at the national level for all residents.
Boeing 787 More-Electric Architecture replaces pneumatics with bleedless pressurization, VFSG starter-generators, electric brakes, and heated wing anti-ice, leveraging APU, RAT, batteries, and airport ground power for efficient, redundant electrical power distribution.
Key Points
An integrated, bleedless electrical system powering start, pressurization, brakes, and anti-ice via VFSGs, APU and RAT.
✅ VFSGs start engines, then generate 235Vac variable-frequency power
✅ Bleedless pressurization, electric anti-ice improve fuel efficiency
✅ Electric brakes cut hydraulic weight and simplify maintenance
The 787 Dreamliner is different to most commercial aircraft flying the skies today. On the surface it may seem pretty similar to the likes of the 777 and A350, but get under the skin and it’s a whole different aircraft.
When Boeing designed the 787, in order to make it as fuel efficient as possible, it had to completely shake up the way some of the normal aircraft systems operated. Traditionally, systems such as the pressurization, engine start and wing anti-ice were powered by pneumatics. The wheel brakes were powered by the hydraulics. These essential systems required a lot of physical architecture and with that comes weight and maintenance. This got engineers thinking.
What if the brakes didn’t need the hydraulics? What if the engines could be started without the pneumatic system? What if the pressurisation system didn’t need bleed air from the engines? Imagine if all these systems could be powered electrically… so that’s what they did.
Power sources
The 787 uses a lot of electricity. Therefore, to keep up with the demand, it has a number of sources of power, much as grid operators track supply on the GB energy dashboard to balance loads. Depending on whether the aircraft is on the ground with its engines off or in the air with both engines running, different combinations of the power sources are used.
Engine starter/generators
The main source of power comes from four 235Vac variable frequency engine starter/generators (VFSGs). There are two of these in each engine. These function as electrically powered starter motors for the engine start, and once the engine is running, then act as engine driven generators.
The generators in the left engine are designated as L1 and L2, the two in the right engine are R1 and R2. They are connected to their respective engine gearbox to generate electrical power directly proportional to the engine speed. With the engines running, the generators provide electrical power to all the aircraft systems.
APU starter/generators
In the tail of most commercial aircraft sits a small engine, the Auxiliary Power Unit (APU). While this does not provide any power for aircraft propulsion, it does provide electrics for when the engines are not running.
The APU of the 787 has the same generators as each of the engines — two 235Vac VFSGs, designated L and R. They act as starter motors to get the APU going and once running, then act as generators. The power generated is once again directly proportional to the APU speed.
The APU not only provides power to the aircraft on the ground when the engines are switched off, but it can also provide power in flight should there be a problem with one of the engine generators.
Battery power
The aircraft has one main battery and one APU battery. The latter is quite basic, providing power to start the APU and for some of the external aircraft lighting.
The main battery is there to power the aircraft up when everything has been switched off and also in cases of extreme electrical failure in flight, and in the grid context, alternatives such as gravity power storage are being explored for long-duration resilience. It provides power to start the APU, acts as a back-up for the brakes and also feeds the captain’s flight instruments until the Ram Air Turbine deploys.
Ram air turbine (RAT) generator
When you need this, you’re really not having a great day. The RAT is a small propeller which automatically drops out of the underside of the aircraft in the event of a double engine failure (or when all three hydraulics system pressures are low). It can also be deployed manually by pressing a switch in the flight deck.
Once deployed into the airflow, the RAT spins up and turns the RAT generator. This provides enough electrical power to operate the captain’s flight instruments and other essentials items for communication, navigation and flight controls.
External power
Using the APU on the ground for electrics is fine, but they do tend to be quite noisy. Not great for airports wishing to keep their noise footprint down. To enable aircraft to be powered without the APU, most big airports will have a ground power system drawing from national grids, including output from facilities such as Barakah Unit 1 as part of the mix. Large cables from the airport power supply connect 115Vac to the aircraft and allow pilots to shut down the APU. This not only keeps the noise down but also saves on the fuel which the APU would use.
The 787 has three external power inputs — two at the front and one at the rear. The forward system is used to power systems required for ground operations such as lighting, cargo door operation and some cabin systems. If only one forward power source is connected, only very limited functions will be available.
The aft external power is only used when the ground power is required for engine start.
Circuit breakers
Most flight decks you visit will have the back wall covered in circuit breakers — CBs. If there is a problem with a system, the circuit breaker may “pop” to preserve the aircraft electrical system. If a particular system is not working, part of the engineers procedure may require them to pull and “collar” a CB — placing a small ring around the CB to stop it from being pushed back in. However, on the 787 there are no physical circuit breakers. You’ve guessed it, they’re electric.
Within the Multi Function Display screen is the Circuit Breaker Indication and Control (CBIC). From here, engineers and pilots are able to access all the “CBs” which would normally be on the back wall of the flight deck. If an operational procedure requires it, engineers are able to electrically pull and collar a CB giving the same result as a conventional CB.
Not only does this mean that the there are no physical CBs which may need replacing, it also creates space behind the flight deck which can be utilised for the galley area and cabin.
A normal flight
While it’s useful to have all these systems, they are never all used at the same time, and, as the power sector’s COVID-19 mitigation strategies showed, resilience planning matters across operations. Depending on the stage of the flight, different power sources will be used, sometimes in conjunction with others, to supply the required power.
On the ground
When we arrive at the aircraft, more often than not the aircraft is plugged into the external power with the APU off. Electricity is the blood of the 787 and it doesn’t like to be without a good supply constantly pumping through its system, and, as seen in NYC electric rhythms during COVID-19, demand patterns can shift quickly. Ground staff will connect two forward external power sources, as this enables us to operate the maximum number of systems as we prepare the aircraft for departure.
Whilst connected to the external source, there is not enough power to run the air conditioning system. As a result, whilst the APU is off, air conditioning is provided by Preconditioned Air (PCA) units on the ground. These connect to the aircraft by a pipe and pump cool air into the cabin to keep the temperature at a comfortable level.
APU start
As we near departure time, we need to start making some changes to the configuration of the electrical system. Before we can push back , the external power needs to be disconnected — the airports don’t take too kindly to us taking their cables with us — and since that supply ultimately comes from the grid, projects like the Bruce Power upgrade increase available capacity during peaks, but we need to generate our own power before we start the engines so to do this, we use the APU.
The APU, like any engine, takes a little time to start up, around 90 seconds or so. If you remember from before, the external power only supplies 115Vac whereas the two VFSGs in the APU each provide 235Vac. As a result, as soon as the APU is running, it automatically takes over the running of the electrical systems. The ground staff are then clear to disconnect the ground power.
If you read my article on how the 787 is pressurised, you’ll know that it’s powered by the electrical system. As soon as the APU is supplying the electricity, there is enough power to run the aircraft air conditioning. The PCA can then be removed.
Engine start
Once all doors and hatches are closed, external cables and pipes have been removed and the APU is running, we’re ready to push back from the gate and start our engines. Both engines are normally started at the same time, unless the outside air temperature is below 5°C.
On other aircraft types, the engines require high pressure air from the APU to turn the starter in the engine. This requires a lot of power from the APU and is also quite noisy. On the 787, the engine start is entirely electrical.
Power is drawn from the APU and feeds the VFSGs in the engines. If you remember from earlier, these fist act as starter motors. The starter motor starts the turn the turbines in the middle of the engine. These in turn start to turn the forward stages of the engine. Once there is enough airflow through the engine, and the fuel is igniting, there is enough energy to continue running itself.
After start
Once the engine is running, the VFSGs stop acting as starter motors and revert to acting as generators. As these generators are the preferred power source, they automatically take over the running of the electrical systems from the APU, which can then be switched off. The aircraft is now in the desired configuration for flight, with the 4 VFSGs in both engines providing all the power the aircraft needs.
As the aircraft moves away towards the runway, another electrically powered system is used — the brakes. On other aircraft types, the brakes are powered by the hydraulics system. This requires extra pipe work and the associated weight that goes with that. Hydraulically powered brake units can also be time consuming to replace.
By having electric brakes, the 787 is able to reduce the weight of the hydraulics system and it also makes it easier to change brake units. “Plug in and play” brakes are far quicker to change, keeping maintenance costs down and reducing flight delays.
In-flight
Another system which is powered electrically on the 787 is the anti-ice system. As aircraft fly though clouds in cold temperatures, ice can build up along the leading edge of the wing. As this reduces the efficiency of the the wing, we need to get rid of this.
Other aircraft types use hot air from the engines to melt it. On the 787, we have electrically powered pads along the leading edge which heat up to melt the ice.
Not only does this keep more power in the engines, but it also reduces the drag created as the hot air leaves the structure of the wing. A double win for fuel savings.
Once on the ground at the destination, it’s time to start thinking about the electrical configuration again. As we make our way to the gate, we start the APU in preparation for the engine shut down. However, because the engine generators have a high priority than the APU generators, the APU does not automatically take over. Instead, an indication on the EICAS shows APU RUNNING, to inform us that the APU is ready to take the electrical load.
Shutdown
With the park brake set, it’s time to shut the engines down. A final check that the APU is indeed running is made before moving the engine control switches to shut off. Plunging the cabin into darkness isn’t a smooth move. As the engines are shut down, the APU automatically takes over the power supply for the aircraft. Once the ground staff have connected the external power, we then have the option to also shut down the APU.
However, before doing this, we consider the cabin environment. If there is no PCA available and it’s hot outside, without the APU the cabin temperature will rise pretty quickly. In situations like this we’ll wait until all the passengers are off the aircraft until we shut down the APU.
Once on external power, the full flight cycle is complete. The aircraft can now be cleaned and catered, ready for the next crew to take over.
Bottom line
Electricity is a fundamental part of operating the 787. Even when there are no passengers on board, some power is required to keep the systems running, ready for the arrival of the next crew. As we prepare the aircraft for departure and start the engines, various methods of powering the aircraft are used.
The aircraft has six electrical generators, of which only four are used in normal flights. Should one fail, there are back-ups available. Should these back-ups fail, there are back-ups for the back-ups in the form of the battery. Should this back-up fail, there is yet another layer of contingency in the form of the RAT. A highly unlikely event.
The 787 was built around improving efficiency and lowering carbon emissions whilst ensuring unrivalled levels safety, and, in the wider energy landscape, perspectives like nuclear beyond electricity highlight complementary paths to decarbonization — a mission it’s able to achieve on hundreds of flights every single day.
Alberta wind power surpasses coal as AESO reports record renewable energy feeding the grid, with natural gas conversions, solar growth, energy storage, and decarbonization momentum lowering carbon intensity across Alberta's electricity system.
Key Points
AESO data shows wind surpassing coal in Alberta, driven by coal retirements, gas conversions, and growing renewables.
✅ AESO reports wind output above coal several times this week
✅ Coal units retire or convert to natural gas, boosting renewables
✅ Carbon intensity falls; storage and solar improve grid reliability
Marking a significant shift in Alberta energy history, wind generation trends provided more power to the province's energy grid than coal several times this week.
According to data from the Alberta Energy System Operator (AESO) released this week, wind generation units contributed more energy to the grid than coal at times for several days. On Friday afternoon, wind farms contributed more than 1,700 megawatts of power to the grid, compared to around 1,260 megawatts from coal stations.
"The grid is going through a period of transformative change when we look at the generation fleet, specifically as it relates to the coal assets in the province," Mike Deising, AESO spokesperson, told CTV News in an interview.
The shift in electricity generation comes as more coal plants come offline in Alberta, or transition to cleaner energy through natural gas generation, including the last of TransAlta's units at the Keephills Plant west of Edmonton.
Only three coal generation stations remain online in the province, at the Genesee plant southwest of Edmonton, as the coal phase-out timeline advances. Less available coal power, means renewable energy like wind and solar make up a greater portion of the grid.
EVOLUTION OF THE GRID "Our grid is changing, and it's evolving," Deising said, adding that more units have converted to natural gas and companies are making significant investments into solar and wind energy.
For energy analyst Kevin Birn with IHS Markit, that trend is only going to continue.
"What we've seen for the last 24 to 36 months is a dramatic acceleration in ambition, policy, and projects globally around cleaner forms of energy or lower carbon forms of energy," Birn said.
Birn, who is also chief analyst of Canadian Oil Markets, added that not only has the public appetite for cleaner energy helped fuel the shift, but technological advancements have made renewables like wind and solar more cost-efficient.
"Alberta was traditionally heavily coal-reliant," he said. "(Now) western Canada has quite a diverse energy base."
LESS CARBON-INTENSIVE According to Birn, the shift in energy production marks a significant reduction in carbon emissions as Alberta progresses toward its last coal plant closure milestone.
Ten years ago, IHS Markit estimates that Alberta's grid contributed about 900 kilograms of carbon dioxide equivalent per megawatt-hour of energy generation.
"That (figure is) really representing the dominance and role of coal in that grid," Birn said.
Current estimates show that figure is closer to 600 kilograms of CO2 equivalent.
"That means the power you and I are using is less carbon-intensive," Birn said, adding that figure will continue to fall over the next couple of years.
RENEWABLES HERE TO STAY While many debate whether Alberta's energy is getting clean enough fast enough, Birn believes change is coming.
"It's been a half-decade of incredible price volatility in the oil market which had really dominated this sector and region," the analyst said.
"When I think of the future, I see the power sector building on large-scale renewables, which means decarbonization, and that provides an opportunity for those tech companies looking for clean energy places to land facilities."
Coal and natural gas are considered baseline assets by the AESO, where generation capacity does not shift dramatically, though some utilities report declining coal returns in other markets.
"Wind is a variable resource. It will generate when the wind is blowing, and it obviously won't when the wind is not," Deising said. "Wind and solar can ramp quickly, but they can drop off quite quickly, and we have to be prepared.
"We factor that into our daily planning and assessments," he added. "We follow those trends and know where the renewables are going to show up on the system, how many renewables are going to show up."
Deising says one wind plant in Alberta currently has an energy storage capacity to preserve renewably generated electricity during summer demand records and peak hours as needed. As the technology becomes more affordable, he expects more plants to follow suit.
"As a system operator, our job is to make sure as (the grid) is evolving we can continue to provide reliable power to Albertans at every moment every day," Deising said. "We just have to watch the system more carefully."
P.E.I. Community Energy Independence empowers local microgrids through renewable generation, battery storage, and legislative reform, enabling community-owned power, stable electricity rates, and grid-friendly distributed generation across Island communities with wind, biomass, and net metering models.
Key Points
A program enabling communities to generate and store renewable power under supportive laws and grid-friendly models.
✅ Legislative review of Electric Power and Renewable Energy Acts
✅ Community microgrids with wind, biomass, and battery storage
✅ Grid integration without raising rates via Maritime Electric
The P.E.I. government is taking steps to review energy legislation and explore new options when it comes to generating power across Island communities.
Energy Minister Steven Myers said one of those options will be identifying ways for Island communities to generate their own energy, aligning with a federal electrification study now examining how electricity can reduce or eliminate fossil fuels.
He said the move would provide energy independence, create jobs and economic development, and save the communities on their energy bills, as seen with an electricity bill credit in Newfoundland that eased costs for consumers.
But the move will require sweeping legislative changes, that may include the merging of the Electric Power Act and the Renewable Energy Act, similar to an electricity market overhaul in Connecticut seen in other jurisdictions.
Myers said creating energy independence should ensure a steady supply of electricity while also ensuring costs remain reasonable for P.E.I. residents, even as a Nova Scotia electricity rate hike highlights regional cost pressures.
"We have communities that are looking to generate their own electricity for their own needs," said Myers, adding the province will not dictate what energy sources communities can invest in.
He also said the province wants to find new community-based models that will complement existing services.
"How do we do that in a way that we don't impact the grid, that we don't impact the service that Maritime Electric is delivering, mindful of a seasonal rate backlash in New Brunswick that illustrates consumer concerns, that we don't drive up the rates for all other Islanders."
Last fall, a group of P.E.I. MLAs traveled to Samsø, a small Danish island, where they learned about renewable and sustainable energy systems being used there.
The province is looking at storage options so it can store power generated during the day to be used in the evening when electricity use is at its highest. (CBC) Samsø produces 100 per cent of its electricity from wind and biomass, and utilities like HECO meeting renewable goals early show how quickly transitions can occur. The P.E.I. government said the Island produces 25 per cent of its electricity from wind.
Following the trip, Myers said he was impressed by the control the island had over its energy production and would like to see if a similar model could work on P.E.I.
Myers said the legislative review will also look at different ways to store energy on the Island.
He said that will allow communities to sell that excess energy into the provincial electricity grid, and those revenues could be redirected into that community's priorities.
'For the survival and the future of their community' "This is kind of a model that we had suggested that would be in place that would allow people in their own community to produce a revenue stream for themselves that they could then turn into projects like rinks, or parks, or tennis courts or whatever it is that community thinks is the most important thing for the survival and the future of their community," said Myers.
Energy Minister Steven Myers says creating energy independence could create a steady supply of electricity while also ensuring costs remain reasonable for P.E.I. residents. (Randy McAndrew/CBC) The province said Maritime Electric, Summerside Electric and the P.E.I. Energy Corporation will be involved in the review, recognizing that a Nova Scotia ruling on rate-setting powers underscores regulatory limits
Government also wants to hear from Islanders and will be accepting written submissions beginning Monday. Myers said the province is also planning to host public consultations, but because of COVID-19, those will be held virtually in mid-June.
Myers calls this a major move, one that will take time. He said he doesn't expect the legislation to be made public until the spring of 2021.
"I want to make sure we take our time and do the proper consultation."
OESP Eligibility 2024 updates Ontario electricity affordability: TOU, Tiered, Ultra-Low-Overnight price plans, online bill calculator, higher income thresholds, monthly credits for low-income households, and a winter disconnection ban for residential customers.
Key Points
Raises income thresholds and credits to help low-income Ontarians cut electricity costs and choose suitable price plans.
✅ TOU, Tiered, and ULO price plans with online bill calculator
✅ Income eligibility thresholds raised up to 35% on March 1, 2024
✅ Winter disconnection ban for residences: Nov 15, 2023 to Apr 30, 2024
Residential, small business and farm customers can choose their price plan, either Time-Of-Use (TOU), Tiered or the ultra-low overnight rates price plan available to many customers. The OEB has an online bill calculator to help customers who are considering a switch in price plans and monitoring changes for electricity consumers this year.
The Government of Ontario announced on Friday, October 19, 2023, that it is raising the income eligibility thresholds that enable Ontarians to qualify for the Ontario Electricity Support Program (OESP) by up to 35 percent. OESP is part of Ontario’s energy affordability framework and other support for electric bills meant to reduce the cost of electricity for low-income households by applying a monthly credit directly on to electricity bills.. The higher income eligibility thresholds will begin on March 1, 2024.
The amount of OESP bill credit is determined by the number of people living in a home and the household’s combined income, and can help offset typical bill increases many customers experience. The current income thresholds cap income eligibility at $28,000 for one-person households and $52,000 for five-person households, and temporary measures like the off-peak price freeze have also influenced bills in recent periods.
The new income eligibility thresholds, which will be in effect beginning March 1, 2024, will allow many more families to access the program as rates are about to change across Ontario.
In addition, under the OEB’s winter disconnection ban, which follows the Nov. 1 rate increase, electricity distributors cannot disconnect residential customers for non-payment from November 15, 2023, to April 30, 2024.
Port of Vancouver Wind Turbine Blades arrive from China for a Saskatchewan wind farm, showcasing record oversized cargo logistics, tandem crane handling, renewable energy capacity, and North America's longest blades from Goldwind.
Key Points
Record-length blades for a Canadian wind farm, boosting renewable energy and requiring heavy-lift logistics at the port.
✅ 27 blades unloaded via tandem cranes with cage supports
✅ 50 turbines headed to Assiniboia over 21 weeks
✅ Largest 250 ft blades to arrive; reduced CO2 vs coal
A set of 220-foot-long wind turbine blades arrived at the Port of Vancouver from China over the weekend as part a shipment bound for a wind farm in Canada, alongside BC generating stations coming online in the region.
They’re the largest blades ever handled by the port, and this summer, even larger blades will arrive as companies expand production such as GE’s blade factory in France to meet demand — the largest North America has ever seen.
Alex Strogen described the scene as crews used two tandem cranes to unload 27 giant white blades from the MV Star Kilimanjaro, which picked up the wind turbine assemblies in China. They were manufactured by Goldwind Co.
“When you see these things come off and put onto these trailers, it’s exceptional in the sheer length of them,” Strogen said. “It looks as long as an airplane.”
In fact, each blade is about as long as the wingspan of a Boeing 747.
Groups of longshoremen attached the cranes to each blade and hoisted it into the air and onto a waiting truck. Metal cage-like devices on both ends kept the blades from touching the ground. Once loaded onto the trucks, the blades and shaft parts head to a terminal to be unloaded by another group of workers.
Another fleet of trucks will drive the wind turbines, towers and blades to Assiniboia, Saskatchewan, Canada, over the course of 21 weeks. Potentia Renewables of Toronto is erecting the turbines on 34,000 acres of leased agriculture land, amid wind farm expansion in PEI elsewhere in the country, according to a news release from the Port of Vancouver.
Potentia’s project, called the Golden South Wind Project, will generate approximately 900,000 megawatt-hours of electricity. It also has greatly reduced CO2 emissions compared with a coal-fired plant, and complements tidal power in Nova Scotia in Canada’s clean energy mix, according to the news release.
The Port of Vancouver will receive 50 full turbines of two models for the project, as Manitoba invests in new turbines across Canada. In August, the larger of the models, with blades measuring 250 feet, will arrive. They’ll be the longest blades ever imported into any port in North America.
“It’s an exciting year for the port,” said Ryan Hart, chief external affairs officer.
The Port of Vancouver is following all the recommended safety precautions during the COVID-19 pandemic, including social distancing and face masks, Strogen said, with support from initiatives like Bruce Power’s PPE donation across Canada. As for crews onboard the ships, the U.S. Coast Guard is the agency in charge, and it is monitoring the last port-of-call for all vessels seeking to enter the Columbia River, Hart wrote in an email.
Vessel masters on each ship are responsible for monitoring the health of the crew and are required to report sick or ill crew members to the USCG prior to arrival or face fines and potential arrest.