GE to manufacture hybrid water heaters

By Business Wire


Substation Relay Protection Training

Our customized live online or in‑person group training can be delivered to your staff at your location.

  • Live Online
  • 12 hours Instructor-led
  • Group Training Available
Regular Price:
$699
Coupon Price:
$599
Reserve Your Seat Today
GE's (GE) Consumer & Industrial division announced that it will manufacture highly energy efficient hybrid electric water heaters in Louisville, Kentucky, at the company's Appliance Park facility - creating about 400 jobs.

The new hybrid patented technology will make GE the first manufacturer to introduce a water heater that will meet the new 2009 Department of Energy ENERGY STAR standards for heat pump hot water heaters, putting GE well ahead of the competition.

The decision to locate production of this leadership product in Louisville came as a result of cooperative efforts, investments and incentives involving GE, the IUE-CWA, the Commonwealth of Kentucky and Louisville Metro government. GE's planned manufacturing facility also has a potential to create 1,600 incremental "green" jobs over time for suppliers and contract partners and generate other positive financial impacts in Louisville and nationwide.

"We made the decision to build these products in Louisville because of the strong support from our state and local governments and the cooperative spirit of our Union leadership and our employees at Appliance Park. This clearly indicates GE's vote of confidence in this facility and our employees as a place where we can invest in our future, continuing our 50+ year history," said GE Consumer & Industrial President and CEO James Campbell. "Leadership from Governor Steve Beshear, Mayor Jerry Abramson, IUE-CWA President Jerry Carney and many others will help rebuild America's manufacturing base, create jobs and enable innovative, energy-efficient American-made products to be competitive in the marketplace."

Up to $17 million in incentives from the state and metro government will be made available for the design and construction of the new energy-efficient hybrid electric water heater and for several other investments that the Company will make at Appliance Park over the next several years, which will total over $69 million. The state incentives, which were approved by the Kentucky Economic Development Finance Authority on May 28, 2009, will be provided under the Kentucky Industrial Development Act (KIDA). Kentucky also will provide funds to train employees for the new jobs and will exempt from sales tax certain materials purchased to construct new facilities. And in Louisville, the Metro Council has approved an ordinance proposed by Mayor Jerry Abramson that will provide the city's portion of the incentive package.

"We understood that GE had other U.S. locations where the company could make the new hybrid water heater," said Kentucky Governor Steve Beshear. "But the company - like others around the country - knew that Kentucky has made energy-related development one of our highest priorities. The nation's energy needs are growing, yet it wants that energy to be clean and green. In Kentucky we see that as an economic opportunity."

Producing the hybrid electric water heater in Louisville, starting in the second half of 2011, was also made possible by a May 27 vote by GE's local IUE-CWA union membership that demonstrated a spirit of cooperation and lowered labor costs to the level GE needed to competitively produce its new innovative water heater. The union and employees approved a wage freeze until the current labor contract ends in 2011 and the implementation of new wage rates for new hires, making the facility more competitive and attractive than other manufacturing locations that were under consideration.

"The union leadership realized we were at the brink of a major, life-altering decision for our employees and the business." said Local IUE-CWA President Jerry Carney. "Decisions like these are not easy to make but as you look around the country, you can see that employees who make the right choices to compete in this global economy, win. I am proud of the IUE Local 761's membership. GE and the IUE at Appliance Park are a winning team."

"GE has been a vital part of Louisville's economy for decades," added Louisville Mayor Jerry Abramson. "We appreciate the changes that have been made at Appliance Park not only to keep jobs here, but also to add jobs. We will continue to work with the GE leadership team to help ensure the long-term future of Appliance Park."

The new hybrid electric water heater has already received tremendous interest from utility companies, and agencies that administer federal and state weatherization programs, which will become new customers for the innovative products. Conventional water heaters are the second largest energy user in the home and all home appliances make up about 85% of the home's energy consumption.

Utilities report that by providing their customers with super-efficient water heaters the utilities can better manage energy deployment and potential future power generation requirements. Some of GE's new utility customers include: Arkansas Electric Cooperatives Corporation Little Rock AR, PPL Electric Utilities Allentown PA, Gordon Williams Corporation Ontario Canada, NeighborWorks America, Community Housing Partners Corporation Christianburg VA, New Directions Housing Corporation Louisville KY, and Frontier Housing Morehead KY.

The new industry-exclusive GE Hybrid Electric Water Heater is designed to provide hot water in the quantities homeowners demand but uses only about half the energy of conventional water heaters to produce it. Based on the standard 50-gallon tank water heater that uses approximately 4800 kWh per year, the new GE Hybrid Electric Water Heater is designed to:

• Use less than half of that energy - or about 2300 kWh per year - a savings of approximately 2500 kWh per year.

• Save approximately $250 per year - that's $2,500 savings in energy costs over a 10-year period based on 10 cents per kWh.

According to the DOE (http://www.energystar.gov/), if just 10% of the nation's 4.8 million electric water heater shipments were heat pump water heaters with an Energy Factor of 2.0 instead of conventional models with an Energy Factor at the Federal standard, the aggregate energy savings would amount to nearly 1.3 billion kWh per year.

The GE Hybrid Electric Water Heater combines energy-saving heat-pump technology with traditional electric heating systems used in most conventional water heaters on the market today, without sacrificing the amount of hot water it can deliver.

This hybrid technology is designed to absorb heat in ambient air and transfer it into the water. Since this requires much less energy than the energy used to generate radiant heat - as used in a conventional electric water heater - the GE Hybrid Electric Water Heater is more economical to operate.

Federal and state tax credits for purchasing the energy efficient water heater may also be available to benefit consumers.

Related News

Egypt, Eni ink MoU on hydrogen production projects

Egypt-ENI Hydrogen MoU outlines joint feasibility studies for green and blue hydrogen using renewable energy, carbon capture, and CO2 storage, targeting domestic demand, exports, and net-zero goals within Egypt's energy transition.

 

Key Points

A pact to study green and blue hydrogen in Egypt, leveraging renewables, CO2 storage, and export/demand pathways.

✅ Feasibility study for green and blue hydrogen projects

✅ Uses renewables, SMR, carbon capture, and CO2 storage

✅ Targets local demand, exports, and net-zero alignment

 

The Egyptian Electricity Holding Company (EEHC) and the Egyptian Natural Gas Holding Company (EGAS) signed a memorandum of understanding (MoU) with the Italian energy giant Eni to assess the technical and commercial feasibility of green and blue hydrogen production projects in Egypt, which many see as central to power companies' future strategies worldwide today.

Under the MoU, a study will be conducted to assess joint projects for the production of green hydrogen using electricity generated from renewable energy and supported by regional electricity interconnections where relevant, and blue hydrogen using the storage of CO2 in depleted natural gas fields, according to a statement by the Ministry of Petroleum on Thursday.

The study will also estimate the potential local market consumption of hydrogen and export opportunities, taking cues from Ontario's hydrogen economy proposal to align electricity rates for growth.

This agreement is part of Eni's objective to achieve zero net emissions by 2050 and Egypt's strategy towards diversifying the energy mix and developing hydrogen projects in collaboration with major international companies, taking note of Italy's green hydrogen initiatives in Sicily as a comparable effort.

It signed the deal with Egyptian Natural Gas Holding (EGAS) and Egyptian Electricity Holding Co. (EEHC).

The companies will carry out a joint study on producing renewable energy powered green hydrogen, informed by electrolyzer investments in similar projects, where applicable. They will also work on blue hydrogen. This involves reforming natural gas and capturing the resulting CO2, in this instance in depleted natural gas fields.

The study will also consider domestic hydrogen use and export options, including funding models like the Hydrogen Innovation Fund now in Ontario.

Eni said the MoU was in line with its plans to eliminate net emissions and emissions cancel emission intensity by 2050. The company noted the agreement was in line with Egypt’s plan for the energy transition, in which it pursues hydrogen plans with major international companies, alongside broader clean-tech collaboration such as Tesla cooperation discussions in Dubai, to accelerate progress.

 

Related News

View more

Solar + Wind = 10% of US Electricity Generation in 1st Half of 2018

US Electricity Generation H1 2018 saw wind and solar gains but hydro declines, as natural gas led the grid mix and coal fell; renewables' share, GWh, emissions, and capacity additions shaped the power sector.

 

Key Points

It is the H1 2018 US power mix, where natural gas led, coal declined, and wind and solar grew while hydro fell.

✅ Natural gas reached 32% of generation, highest share

✅ Coal fell; renewables roughly tied nuclear at ~20%

✅ Wind and solar up; hydro output down vs 2017

 

To complement our revival of US electricity capacity reports, here’s a revival of our reports on US electricity generation.

As with the fresh new capacity report, things are not looking too bright when it comes to electricity generation. There’s still a lot of grey — in the bar charts below, in the skies near fossil fuel power plants, and in the human and planetary outlook based on how slowly we are cutting fossil fuel electricity generation.

As you can see in the charts above, wind and solar energy generation increased notably from the first half of 2017 to the first half of 2018, and the EIA expected larger summer solar and wind generation in subsequent months, reinforcing that momentum.

A large positive when it comes to the environment and human health is that coal generation dropped a great deal year over year — by even more than renewables increased, though the EIA later noted an increase in coal-fired generation in a subsequent year, complicating the trend. However, on the down side, natural gas soared as it became the #1 source of electricity generation in the United States (32% of US electricity). Furthermore, coal was still solidly in the #2 position (27% of US electricity). Renewables and nuclear were essentially in a tie at 19.8% of generation, with renewables just a tad above nuclear.

Actually, combined with an increase in nuclear power generation, natural gas electricity production increased so much that the renewable energy share of electricity generation actually dropped in the first half of 2018 versus the first half of 2017, even amid declining electricity use in some periods. It was 19.8% this year and 20% last year.

Again, solar and wind saw a significant growth in its market share, from 9% to 9.9%, but hydro brought the whole category down due to a decrease from 9% to 8%.

The visuals above are probably the best way to examine it all. The H1 2018 chart was still dominated by fossil fuels, which together accounted for approximately 60% of electricity generation, even though by 2021 non-fossil sources supplied about 40% of U.S. electricity, highlighting the longer-term shift. In H1 2017, the figure was 59.7%. Furthermore, if you switch to the “Change H1 2018 vs H1 2017 (GWh)” chart, you can watch a giant grey bar representing natural gas take over the top of the chart. It almost looks like it’s part of the border of the chart. The biggest glimmer of positivity in that chart is seeing the decline in coal at the bottom.

What will the second half of the year bring? Well, the gigantic US electricity generation market shifts slowly, even as monthly figures can swing, as January generation jumped 9.3% year over year according to the EIA, reminding us about volatility. There is so much base capacity, and power plants last so long, that it takes a special kind of magic to create a rapid transition to renewable energy. As you know from reading this quarter’s US renewable energy capacity report, only 43% of new US power capacity in the first half of the year was from renewables. The majority of it was from natural gas. Along with other portions of the calculation, that means that electricity generation from natural gas is likely to increase more than electricity generation from renewables.

Jump into the numbers below and let us know if you have any more thoughts.


 

 

Related News

View more

How Should California Wind Down Its Fossil Fuel Industry?

California Managed Decline of Fossil Fuels aligns oil phaseout with carbon neutrality, leveraging ZEV adoption, solar and wind growth, severance taxes, drilling setbacks, fracking oversight, CARB rules, and CalGEM regulation to deliver a just transition.

 

Key Points

California's strategy to phase out oil and gas while meeting carbon-neutral goals through policy, regulation, and equity.

✅ Severance taxes fund clean energy and workforce transition.

✅ Setbacks restrict drilling near schools, homes, and hospitals.

✅ CARB and CalGEM tighten fracking oversight and ZEV targets.

 

California’s energy past is on a collision course with its future. Think of major oil-producing U.S. states, and Texas, Alaska or North Dakota probably come to mind. Although its position relative to other states has been falling for 20 years, California remains the seventh-largest oil-producing state, with 162 million barrels of crude coming up in 2018, translating to tax revenue and jobs.

At the same time, California leads the nation in solar rooftops and electric vehicles on the road by a wide margin and ranking fifth in installed wind capacity. Clean energy is the state’s future, and the state is increasingly exporting its energy policies across the West, influencing regional markets. By law, California must have 100 percent carbon-free electricity by 2045, and an executive order signed by former Governor Jerry Brown calls for economywide carbon-neutrality by the same year.

So how can the state reconcile its divergent energy path? How should clean-energy-minded lawmakers wind down California’s oil and gas sector in a way that aligns with the state’s long-term climate targets while providing a just transition for the industry’s workforce?

Any efforts to reduce fossil fuel supply must run parallel to aggressive demand-reduction measures such as California’s push to have 5 million zero-emission vehicles on the road by 2030, said Ethan Elkind, director of Berkeley Law's climate program, especially amid debates over keeping the lights on without fossil fuels in the near term. After all, if oil demand in California remains strong, crude from outside the state will simply fill the void.

“If we don’t stop using it, then that supply is going to get here, even if it’s not produced in-state,” Elkind said in an interview.

Lawmakers have a number of options for policies that would draw down and eventually phase out fossil fuel production in California, according to a new report from the Center for Law, Energy and the Environment at the UC Berkeley School of Law, co-authored by Elkind and Ted Lamm.

They could impose a higher price on California's oil production through a "severance" tax or carbon-based fee, with the revenue directed to measures that wean the state from fossil fuels. (California, alone among major oil-producing states, does not have an oil severance tax.)

Lawmakers could establish a minimum drilling setback from schools, playgrounds, homes and other sensitive sites. They could push the state's oil and gas regulator, the California Geologic Energy Management Division, to prioritize environmental and climate concerns.

A major factor holding lawmakers back is, of course, politics, including debates over blackouts and climate policy that shape public perception. Given the state’s clean-energy ambitions, it might surprise non-Californians that the oil and gas industry is one of the Golden State’s most powerful special interest groups.

Overcoming a "third-rail issue" in California politics
The Western States Petroleum Association, the sector’s trade group in California's capital of Sacramento, spent $8.8 million lobbying state policymakers in 2019, more than any other interest group. Over the last five years, the group, which cultivates both Democratic and Republican lawmakers, has spent $43.3 million on lobbying, nearly double the total of the second-largest lobbying spender.

Despite former Governor Brown’s reputation as a climate champion, critics say he was unwilling to forcefully take on the oil and gas industry. However, things may take a different turn under Brown's successor, Governor Gavin Newsom.

In May 2019, when Newsom released California's midyear budget revision (PDF), the governor's office noted the need for "careful study and planning to decrease demand and supply of fossil fuels, while managing the decline in a way that is economically responsible and sustainable.”

Related reliability concerns surfaced as blackouts revealed lapses in power supply across the state.

Writing for the advocacy organization Oil Change International, David Turnbull observed, “This may mark the first time that a sitting governor in California has recognized the need to embark upon a managed decline of fossil fuel supply in the state.”

“It is significant because typically this is one of those third-rail issues, kind of a hot potato that governors don’t even want to touch at all — including Jerry Brown, to a large extent, who really focused much more on the demand side of fuel consumption in the state,” said Berkeley Law’s Elkind.

California's revised budget included $1.5 million for a Transition to a Carbon-Neutral Economy report, which is being prepared by University of California researchers for the California Environmental Protection Agency. In an email, a CalEPA spokesperson said the report is due by the end of this year.

Winding down oil and gas production
Since the release of the revised budget last May, Newsom has taken initial steps to increase oversight of the oil and gas industry. In July 2019, he fired the state’s top oil and gas regulator for issuing too many permits to hydraulically fracture, or frack, wells.

Later in the year, he appointed new leadership to oversee oil and gas regulation in the state, and he signed a package of bills that placed constraints on fossil fuel production. The next month, Newsom halted the approval of new fracking operations until pending permits could be reviewed by a panel of scientists at Lawrence Livermore National Laboratory. The California Geologic Energy Management Division (CalGEM) did not resume issuing fracking permit approvals until April of this year.

Not all steps have been in the same direction. This month Newsom dropped a proposal to add dozens of analysts, engineers and geologists at CalGEM, citing COVID-related economic pressure. The move would have increased regulatory oversight on fossil fuel producers and was opposed by the state's oil industry.

Ultimately, more durable measures to wind down fossil fuel supply and demand will require new legislation, even as regulators weigh whether the state needs more power plants to maintain reliability.

A 2019 bill by Assemblymember Al Muratsuchi (D-Torrance), AB 345, would have codified the minimum 2,500-foot setback for new oil and gas wells. However, before the final vote in the Assembly, the bill’s buffer requirement was dropped and replaced with a requirement for CalGEM “to consider a setback distance of 2,500 feet.” The bill passed the Assembly in January over "no" votes from several moderate Democrats; it now awaits action in the Senate.

A bill previously introduced by Assemblymember Phil Ting (D-San Francisco), AB 1745, didn’t even make it that far. Ting’s bill would have required that all new passenger cars registered in the state after January 1, 2040, be zero-emission vehicles (ZEV). The bill died in committee without a vote in April 2018.

But the backing of the California Air Resources Board (CARB), one of the world's most powerful air-quality regulators, could change the political conversation. In March, CARB chair Mary Nichols said she now supports consideration of California establishing a 100 percent zero-emission vehicle sales target by 2030, as policymakers also consider a revamp of electricity rates to clean the grid.

“In the past, I’ve been skeptical about whether that would do more harm than good in terms of the backlash by dealers and others against something that sounded so un-California like,” Nichols said during an online event. “But as time has gone on, I’ve become more convinced that we need to send the longer-term signal about where we’re headed.”

Another complicating factor for California’s political leaders is the lack of a willing federal partner — at least in the short term — in winding down oil and gas production, amid warnings about a looming electricity shortage that could pressure the grid.

Under the Trump administration, the Bureau of Land Management, which oversees 15 million acres of federal land in California, has pushed to open more than 1 million acres of public and private land across eight counties in Central California to fracking. In January 2020, California filed a federal lawsuit to block the move.

 

Related News

View more

Sustaining U.S. Nuclear Power And Decarbonization

Existing Nuclear Reactor Lifetime Extension sustains carbon-free electricity, supports deep decarbonization, and advances net zero climate goals by preserving the US nuclear fleet, stabilizing the grid, and complementing advanced reactors.

 

Key Points

Extending licenses keeps carbon-free nuclear online, stabilizes grid, and accelerates decarbonization toward net zero.

✅ Preserves 24/7 carbon-free baseload to meet climate targets

✅ Avoids emissions and replacement costs from premature retirements

✅ Complements advanced reactors; reduces capital and material needs

 

Nuclear power is the single largest source of carbon-free energy in the United States and currently provides nearly 20 percent of the nation’s electrical demand. As a result, many analyses have investigated the potential of future nuclear energy contributions in addressing climate change and investing in carbon-free electricity across the sector. However, few assess the value of existing nuclear power reactors.

Research led by Pacific Northwest National Laboratory (PNNL) Earth scientist Son H. Kim, with the Joint Global Change Research Institute (JGCRI), a partnership between PNNL and the University of Maryland, has added insight to the scarce literature and is the first to evaluate nuclear energy for meeting deep decarbonization goals amid rising credit risks for nuclear power identified by Moody's. Kim sought to answer the question: How much do our existing nuclear reactors contribute to the mission of meeting the country’s climate goals, both now and if their operating licenses were extended?

As the world races to discover solutions for reaching net zero as part of the global energy transition now underway, Kim’s report quantifies the economic value of bringing the existing nuclear fleet into the year 2100. It outlines its significant contributions to limiting global warming.

Plants slated to close by 2050 could be among the most important players in a challenge requiring all available carbon-free technology solutions—emerging and existing—alongside renewable electricity in many regions, the report finds. New nuclear technology also has a part to play, and its contributions could be boosted by driving down construction costs.  

“Even modest reductions in capital costs could bring big climate benefits,” said Kim. “Significant effort has been incorporated into the design of advanced reactors to reduce the use of all materials in general, such as concrete and steel because that directly translates into reduced costs and carbon emissions.”

Nuclear power reactors face an uncertain future, and some utilities face investor pressure to release climate reports as well.
The nuclear power fleet in the United States consists of 93 operating reactors across 28 states. Most of these plants were constructed and deployed between 1970-1990. Half of the fleet has outlived its original operating license lifetime of 40 years. While most reactors have had their licenses renewed for an additional 20 years, and some for another 20, the total number of reactors that will receive a lifetime extension to operate a full 80 years from deployment is uncertain.

Other countries also rely on nuclear energy. In France, for example, nuclear energy provides 70 percent of the country’s power supply. They and other countries must also consider extending the lifetime, retiring, or building new, modern reactors while navigating Canadian climate policy implications for electricity grids. However, the U.S. faces the potential retirement of many reactors in a short period—this could have a far stronger impact than the staggered closures other countries may experience.

“Our existing nuclear power plants are aging, and with their current 60-year lifetimes, nearly all of them will be gone by 2050. It’s ironic. We have a net zero goal to reach by 2050, yet our single largest source of carbon-free electricity is at risk of closure, as seen in New Zealand's electricity transition debates,“ said Kim.

 

Related News

View more

Franklin Energy and Consumers Energy Support Small Businesses During COVID-19 with Virtual Energy Coaching

Consumers Energy Virtual Energy Coaching connects Michigan small businesses with remote efficiency experts to cut utility costs, optimize energy usage, and access rebates and incentives, delivering safe COVID-19-era support and long-term savings through tailored assessments.

 

Key Points

A remote coaching service helping small businesses improve energy efficiency, access rebates, and cut utility costs.

✅ Three-call virtual coaching with usage review and savings plan

✅ Connects to rebates, incentives, and financing options

✅ Eligibility: <=1,200,000 kWh, <=15,000 MCF annually

 

Franklin Energy, a leading provider in energy efficiency and grid optimization solutions, announced today that they will implement Consumers Energy's Small Business Virtual Energy Coaching Service in response to the COVID-19 pandemic and broader industry coordination with federal partners across the power sector.

This Michigan-wide offering to natural gas, electric and combination small business customers provides a complimentary virtual energy-coaching service to help small businesses find ways to reduce electricity bills and benefit from lower utility costs, both now during COVID-19 and into the future, informed by similar Ontario electricity bill support efforts in other regions. To be eligible for the program, small businesses must have electric usage at or below 1,200,000 kWh annually and gas usage at or below 15,000 MCF annually.

"By developing lasting customer relationships and delivering consistent solutions through conversation, the Energy Coaching Program offers the next level of support for small business customers," said Hollie Whitmire, Franklin Energy program manager. "Energy coaching is suitable for all small businesses, but it's ideal for businesses that are new to energy efficiency or for those that have had low engagement with energy efficiency offerings and emerging new utility rate designs in years past."

Through a series of three calls, eligible small businesses can speak with an energy coach to help them connect to the right program offering available through Consumers Energy's energy efficiency programs for businesses, including demand response models like the Ontario Peak Perks program that support load management. From answering questions to reviewing energy usage, conducting assessments, identifying savings opportunities, and more, the energy coach is available to help small businesses put money back into their pocket now, when it matters most.

"Consumers Energy is committed to helping Michigan's small business community prosper, now more than ever, with examples such as Entergy's COVID-19 relief fund underscoring industry support," said Lauren Youngdahl Snyder, Consumers Energy's vice president of customer experience. "We are excited to work with Franklin Energy to develop an innovative solution for our small business customers. The Virtual Energy Coaching Service lets us engage our customers in a safe and effective manner, as seen with utilities waiving fees in Texas during the crisis, and has the potential to last even past the COVID-19 pandemic."

 

Related News

View more

Schneider Electric Aids in Notre Dame Restoration

Schneider Electric Notre Dame Restoration delivers energy management, automation, and modern electrical infrastructure, boosting safety, sustainability, smart monitoring, efficient lighting, and power distribution to protect heritage while reducing consumption and future-proofing the cathedral.

 

Key Points

Schneider Electric upgrades Notre Dame's electrical systems to enhance safety, sustainability, automation, and efficiency.

✅ Energy management modernizes power distribution and lighting.

✅ Advanced safety and monitoring reduce fire risk.

✅ Sustainable automation lowers consumption while preserving heritage.

 

Schneider Electric, a global leader in energy management and automation, exemplified by an AI and technology partnership in Paris, has played a significant role in the restoration of the Notre Dame Cathedral in Paris following the devastating fire of April 2019. The company has contributed by providing its expertise in electrical systems, ensuring the cathedral’s systems are not only restored but also modernized with energy-efficient solutions. Schneider Electric’s technology has been crucial in rebuilding the cathedral's electrical infrastructure, focusing on safety, sustainability, and preserving the iconic monument for future generations.

The fire, which caused widespread damage to the cathedral’s roof and spire, raised concerns about both the physical restoration and the integrity of the building’s systems, including rising ransomware threats to power grids that affect critical infrastructure. As Notre Dame is one of the most visited and revered landmarks in the world, the restoration process required advanced technical solutions to meet the cathedral’s complex needs while maintaining its historical authenticity.

Schneider Electric's contribution to the project has been multifaceted. The company’s solutions helped restore the electrical systems in a way that reduces the energy consumption of the building, improving sustainability without compromising the historical essence of the structure. Schneider Electric worked closely with architects, engineers, and restoration experts to implement innovative energy management technologies, such as advanced power distribution, lighting systems, and monitoring solutions like synchrophasor technology for enhanced grid visibility.

In addition to energy-efficient solutions, Schneider Electric’s efforts in safety and automation have been vital. The company provided expertise in reinforcing the electrical safety systems, leveraging digital transformer stations to improve reliability, which is especially important in a building as old as Notre Dame. The fire highlighted the importance of modern safety systems, and Schneider Electric’s technology ensures that the restored cathedral will be better protected in the future, with advanced monitoring systems capable of detecting any anomalies or potential hazards.

Schneider Electric’s involvement also aligns with its broader commitment to sustainability and energy efficiency, echoing calls to invest in a smarter electricity infrastructure across regions. By modernizing Notre Dame’s electrical infrastructure, the company is helping the cathedral move toward a more sustainable future. Their work represents the fusion of cutting-edge technology and historic preservation, ensuring that the building remains an iconic symbol of French culture while adapting to the modern world.

The restoration of Notre Dame is a massive undertaking, with thousands of workers and experts from various fields involved in its revival. Schneider Electric’s contribution highlights the importance of collaboration between heritage conservationists and modern technology companies, and reflects developments in HVDC technology in Europe that are shaping modern grids. The integration of such advanced energy management solutions allows the cathedral to function efficiently while maintaining the integrity of its architectural design and historical significance.

As the restoration progresses, Schneider Electric’s efforts will continue to support the cathedral’s recovery, with the ultimate goal of reopening Notre Dame to the public, reflecting best practices in planning for growing electricity needs in major cities. Their role in this project not only contributes to the physical restoration of the building but also ensures that it remains a symbol of resilience, cultural heritage, and the importance of combining tradition with innovation.

Schneider Electric’s involvement in the restoration of Notre Dame Cathedral is a testament to how modern technology can be seamlessly integrated into historic preservation efforts. The company’s work in enhancing the cathedral’s electrical systems has been crucial in restoring and future-proofing the monument, ensuring that it will continue to be a beacon of French heritage for generations to come.

 

Related News

View more

Sign Up for Electricity Forum’s Newsletter

Stay informed with our FREE Newsletter — get the latest news, breakthrough technologies, and expert insights, delivered straight to your inbox.

Electricity Today T&D Magazine Subscribe for FREE

Stay informed with the latest T&D policies and technologies.
  • Timely insights from industry experts
  • Practical solutions T&D engineers
  • Free access to every issue

Live Online & In-person Group Training

Advantages To Instructor-Led Training – Instructor-Led Course, Customized Training, Multiple Locations, Economical, CEU Credits, Course Discounts.

Request For Quotation

Whether you would prefer Live Online or In-Person instruction, our electrical training courses can be tailored to meet your company's specific requirements and delivered to your employees in one location or at various locations.